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ABSTRACT
Modern integrated circuits, fabricated in nanometer tech-
nologies, suffer from significant power/performance varia-
tion across-chip, chip-to-chip and over time due to aging
and ambient fluctuations. Furthermore, several existing and
emerging reliability loss mechanisms have caused increased
transient, intermittent and permanent failure rates. While
this variability has been typically addressed by process, de-
vice and circuit designers, there has been a recent push
towards sensing and adapting to variability in the various
layers of software. Current hardware platforms, however,
typically lack variability sensing capabilities. Even if sens-
ing capabilities were available, evaluating variability-aware
software techniques across a significant number of hardware
samples would prove exceedingly costly and time consuming.

We introduce VarEMU, an extension to the QEMU virtual
machine monitor that serves as a framework for the evalua-
tion of variability-aware software techniques. VarEMU pro-
vides users with the means to emulate variations in power
consumption and in fault characteristics and to sense and
adapt to these variations in software. Through the use (and
dynamic change) of parameters in a power model, users can
create virtual machines that feature both static and dynamic
variations in power consumption. Faults may be injected
before or after, or completely replace the execution of any
instruction. Power consumption and susceptibility to faults
are also subject to dynamic change according to an aging
model. A software stack for VarEMU features precise con-
trol over faults and provides virtual energy monitors to the
operating system and processes. This allows users to pre-
cisely quantify and evaluate the effects of variations on in-
dividual applications. We show how VarEMU tracks energy
consumption according to variation-aware power and aging
models and give examples of how it may be used to quantify
how faults in instruction execution affect applications.

1. INTRODUCTION
The scaling of semiconductor processes to atomic dimen-

sions has led to decreased control over manufacturing qual-
ity, which makes integrated circuit designs unpredictable.
This is compounded with aging related wear-out and en-
vironmental factors, and has led to fluctuations in critical
device/circuit parameters of manufactured parts across the
die, between dies, and over time. Consequently, electronic
devices are increasingly plagued by variability in perfor-
mance (speed, power) and error characteristics across nom-
inally identical instances of a part, and across their usage
life [14]. Variability has been typically isolated from soft-
ware, and handled (or hidden, through guardbanding) by
process, device and circuit designers, which has led to de-
creased chip yields and increased costs [16].

Recently there have been several efforts to handle vari-
ability at higher system layers, including various layers of
software. The range of actions that the software can take
in response to variability includes: alter the computational
load by adjusting task activation; use a different set of hard-
ware resources (e.g., use instructions that avoid a faulty
module or minimize use of a power hungry module); change
software parameters or the hardware’s operational setting
(e.g., tune software-controllable knobs such as voltage/fre-
quency); and change the code that performs a task, either by
dynamic recompilation or through algorithmic choice. Con-
crete examples of variability-aware software include video
codec adaptation [23], embedded sensor deployment strate-
gies [22, 12], duty cycling [32], memory allocation [1], pro-
cedure hopping [27], and error tolerant applications [9].

The evaluation of a variability-aware software stack faces
two main challenges: first, commercially available platforms
typically do not provide means to “sense” or discover vari-
ability. Second, even if this sensing capability was available,
evaluating a software stack across a statistically significant
number of hardware samples and ambient conditions would
prove exceedingly costly and time consuming.

In hardware design, simulations at various levels of ab-
straction can be used to evaluate the impacts of hardware
variability due to PVT (Process, Voltage, and Tempera-
ture) variations and circuit aging. While gate- and RTL-
level simulators can co-simulate both software and hard-
ware, their runtimes are orders of magnitude slower than
real-time [7]. Cycle-accurate architecture-level simulators
like Wattch [4] suffer from the same problem. FPGA-based
emulators like [19, 9] can achieve similar runtime as real-
time, but offer limited observability and controllability, and
suffer from poor portability and flexibility.



In this paper we introduce VarEMU, an extensible frame-
work for the evaluation of variability-aware software. VarEMU
provides users with the means to emulate variations in power
consumption and fault characteristics and to sense and adapt
to these variations in software. VarEMU is an extension to
the QEMU virtual machine monitor [25], which relies on
dynamic binary translation and supports a variety of target
architectures with very good performance. For many target
machines, QEMU provides faster than real time emulation.
Because QEMU can run unmodified binary images of phys-
ical machines, VarEMU enables the evaluation of complete
software stacks, with operating system, drivers, and appli-
cations.

In VarEMU, timing and cycle count information is ex-
tracted from the code being emulated. This information is
fed into a variability model, which takes configurable param-
eters to determine energy consumption and fault variations
in the virtual machine. Energy consumption and suscepti-
bility to faults are also subject to dynamic change according
to an aging model. Control over faults and virtual energy
sensors are exported as “variability registers” mapped into
memory that is accessible to the software being emulated,
closing the loop. This information is exposed through a vari-
ability driver in the operating system, which can be used
to support software adaptation policies. Through the use
of different variability emulation parameters that capture
instance-to-instance, environmental, and age-related varia-
tion, VarEMU allows users to evaluate variability-aware soft-
ware adaptation strategies across a statistically significant
number of hardware samples and scenarios.

The remainder of this paper is organized as follows. Sec-
tion 2 presents related work. Section 3 presents the VarEMU
architecture, its variability models and details about their
implementation. Section 4 presents the software interfaces
from VarEMU to emulated software and external monitors
and users. Section 5 presents verification results and case
studies with VarEMU. Section 6 presents our conclusions.

2. RELATED WORK
The hardware and software co-evaluation of variability ef-

fects can be done with instrumented hardware platforms or
simulations at various levels of abstraction. For example,
Wanner et. al. [32] used off-the-shelf hardware platforms
instrumented with power sensors to evaluate the impacts
of power variations on software duty-cycling. FPGA-based
platforms or architectural simulators can be used to evalu-
ate system performance due to delay variations [19, 13] or
to inject hardware faults [9, 20, 24, 10]. Architectural simu-
lators are typically several orders of magnitude slower than
real time. FPGA-based emulators can achieve fast runtime,
but offer limited observability and controllability, and suffer
from poor portability and flexibility.

Full system emulators can run unmodified binary code for
their target architectures. QEMU, on top of which VarEMU
was built, uses binary translation to achieve very good full
system emulation performance. Wind River Simics [28] is
a commercial simulator that features fault injections that
can change the contents of memory, registers, sensor read-
ings, or network packets. While VarEMU currently does
not provide a high level mechanism for injection of faults in
sensor readings or network packets, it features a more power-
ful fault injection mechanism that allows arbitrary functions
that can manipulate virtual hardware state to be injected as
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Figure 1: VarEMU Architecture

faults in any instruction. Furthermore, VarEMU integrates
fault injection with aging and power consumption models
not present in Simics. The gem5 simulator [3] has been ex-
tended to provide energy evaluation for parallel computing
loads [15]. Although gem5 is open source and capable of
booting a full Linux system for some of its target architec-
tures, its performance is considerably worse than that of
QEMU [3]. Cycle-accurate architecture-level simulators like
Wattch [4] have runtimes of 2-3 orders of magnitude slower
than real-time, and are typically less robust than QEMU in
their support for running complete virtual machines.

Binary instrumentation tools such as Pin [21] could be
used to implement similar functionality to VarEMU, e.g.,
by inserting a callback to a variability module after the ex-
ecution of every instruction. Binary instrumentation, how-
ever, typically does not support cross-architecture simula-
tion. VarEMU also benefits from QEMU’s virtual hardware
device architecture to provide virtual sensors for the OS and
applications.

3. ARCHITECTURE AND
IMPLEMENTATION

Figure 1 presents an overview of the VarEMU architec-
ture. Applications in a virtual machine interact with VarEMU
by querying for energy, cycle count, and execution registers
for different classes of instructions and by allowing or disal-
lowing faults in the execution of emulated instructions. An
operating system driver mediates the interaction of appli-
cations with a virtual hardware device which exposes the
VarEMU interface to the VM. On VMs without operating
systems, applications handle this interaction directly.



When starting VarEMU, users provide a configuration file
that sorts instructions into different classes and parameters
to a model that is used to determine power consumption for
each of the classes. These parameters are subject to dynamic
change during runtime according to an aging model. Users
may change parameters for the power model dynamically
(e.g. to emulate variations in power consumption due to
changes in temperature, the user would periodically change
the temperature parameter of the power model). Users may
also query the VM’s cycle counters and energy registers.

Whenever an instruction is executed in the virtual ma-
chine, the cycle counter for its instruction class is incre-
mented. Energy expenditure for a class of instruction is
determined as a function of accumulated execution time for
all instructions in that class and power consumption for the
class as determined by a power model.

For instructions configured by the user as susceptible to
faults, the execution of translated code may be preceded,
succeed, or replaced with alternative, faulty operations. These
operations may, in turn, cause changes to cycle counting
(e.g. due to a less precise version of the instruction tak-
ing fewer cycles to complete) or change parameters in the
power model (e.g. voltage or frequency). Faults are injected
only when explicitly activated by emulated software. A run-
time parameter passed from emulated software to the fault
module when enabling faults allows users to configure which
faults are enabled and/or the nature of faults (e.g. preci-
sion of a numerical operation). This allows users to study
the effects of faults in instruction execution on individual
applications phases, without compromising the stability of
the runtime system. The remainder of this section describes
the architecture and implementation of VarEMU.

3.1 Cycle and Time Accounting
We account time in VarEMU on an instruction class basis.

Each instruction is associated with a user-defined class. A
data structure holds total number of cycles and time spent
executing instructions of each class. To associate instruc-
tions with classes, each instruction in a translation block is
augmented with an information structure (vemu_instr_info)
containing fields for the instruction operation code (opcode),
instruction name, instruction class, number of cycles, fault
status, and the instruction word itself.

When a new instruction word is found, its opcode is de-
coded, and the instruction information structure is filled
with its corresponding default values. An input file in JSON
format allows users to change the default number of cycles,
class, and fault status for any instruction. The number of
cycles may also be altered by the fault module at runtime.

A helper function in QEMU allows calling arbitrary func-
tions from translated code. We use one such helper to per-
form a call to a function that increments the number of
cycles for a given instruction class after each instruction
is executed (vemu_increment_cycles). This function adds
the number of cycles in the instruction’s information struc-
ture to the total number of cycles for its instruction class.
Likewise, it increments total active time for that instruction
class, based on current (virtual) frequency. In processors
where the number of cycles taken by an instruction is not
constant, information from the instruction word (e.g. input
registers used, immediate values) could be used to accurately
determine the number of cycles.

We must also account for cycles spent in standby or sleep
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modes. In many architectures, a special instruction (e.g.
WFI in ARM, or HLT in x86 processors) puts the processor
in standby mode. After this instruction is issued, the pro-
cessor will not execute other instructions until an interrupt
(typically from a timer or an external device) is fired. Keep-
ing track of real sleep time (i.e., reflecting hardware timing)
is important for applications (e.g., in energy-aware duty cy-
cling), as well as for circuit aging models. When we en-
counter such an instruction, we store a timestamp with cur-
rent VM time. When an interrupt occurs following standby
we read a new timestamp, and add the time difference to
the counter for total time spent in sleep mode.

Because QEMU runs virtual machines as best-effort, the
actual execution frequency of emulated instructions may not
match the (virtual) frequency of the hardware. If the VM
never enters standby mode, there will be no adverse ef-
fects other than a discrepancy between total virtual time ac-
counted with the cycle counters and wall clock time elapsed.
If the VM does enter a standby mode, time spent in that
mode must be adjusted to reflect hardware behavior.

Consider, for example, a system with periodic tasks where
processor utilization is less than 100%. After the system
completes tasks, it goes into standby mode, and waits for
a timer interrupt corresponding to the next period. Fig-
ure 2(a) illustrates such a system, where processor frequency
is 100 MHz, timer frequency is 1 Hz, task execution takes 50
M cycles (0.5 seconds), and time spent in standby mode is
0.5 seconds. If emulated execution is faster than hardware,
sleep time in the VM would be greater than in hardware.
Conversely, if emulation is slower than hardware, sleep time
in the VM would be smaller than in hardware.

In order for sleep time accounting in VarEMU to reflect
hardware timing, we keep track of emulated execution time
for each active time cycle. When a sleep cycle is initiated,



we calculate the delta between virtual execution time (from
our cycle counters, reflecting hardware execution time) and
emulated execution time for the last active period. We then
deduct this delta from the sleep time interval. Figure 2(b)
illustrates our solution. In cases where processor utilization
in hardware is 100%, but emulated execution time is faster
than hardware, it is possible for the sleep time interval to be
negative. In this case, the hardware version of the proces-
sor would continue executing immediately after the standby
instruction. We emulate this by returning a sleep interval
of 0. The converse situation (emulated time is slower than
virtual time) does not lead to a problem, as after continu-
ing execution immediately after the standby instruction we
deduct a negative delta from an interval of zero, leading to
the correct positive sleep time interval.

3.2 Energy Accounting
Energy consumed by an instruction of a given class is de-

termined as a function of execution time (number of cycles
divided by frequency) and power for that class. Power is
in turn determined by a model with arbitrary parameters
(minimally, voltage and frequency). By fitting the power
model with different parameters, users can emulate instance-
to-instance variation. By changing parameters dynamically,
users can emulate the effects of dynamic or environmental
variation (e.g. due to changes in supply voltage or temper-
ature). Power model parameters may also be dynamically
changed with an aging model.

While active and sleep time are accounted on a per-event
basis (i.e. on each instruction or sleep cycle), energy is ac-
counted on demand, i.e. only when a read command is issued
from emulated software or external monitor, or when one of
the power model parameters change. For each energy ac-
counting event, we keep track of sleep time and active time
for each class of instructions since the last event, and ac-
cumulate energy for each interval in the appropriate energy
registers. There is one active energy register per instruction
class, and one energy register for sleep energy.

Energy accounting is independent of power model, so that
users may define their own models. A power model im-
plements three functions: The first function returns active
power in Watts for a given class of instruction. The sec-
ond returns sleep power in Watts as a function of standby
mode (e.g. clock gated, power gated). The final function is
used to change power model parameter n of class c to value
v. Any power model must also define at least two param-
eters: frequency and voltage. The default power model for
VarEMU, presented in Section 3.4 defines several additional
parameters to capture static and dynamic variability.

3.3 NBTI Aging Model
Negative bias temperature instability (NBTI) is a circuit

wear-out mechanism that will degrade the PMOS threshold
voltage (Vthp) and thus the circuit performance. To model
the NBTI-induced aging effect in VarEMU, we use the ana-
lytical model for the |Vthp| degradation of a MOS transistor
as in [8, 2, 31].

|∆Vthp| =

(√
K2
vTclkω

1− β1/2n
t

)2n

βt = 1−
b1 +

√
b2(1− ω)Tclkexp(b5/T )

b3 + b4
√
t

Kv = b4(Vdd − Vthp)exp(b5/T )

(1)

where Vdd is the supply voltage, b1, b2, b3, b4, b5 are technology-
dependent parameters. Tclk is the time period of one stress-
recovery cycle, ω is the duty cycle (the ratio of the time
spent in stress to time period), t is the total lifetime of a
transistor, n is a time exponent equal to 1/6 for an H2 dif-
fusion model. Since NBTI-induced degradation is insensitive
to the switching frequency when it is larger than 100Hz [2],
similar to [31], we assume Tclk = 0.01s in this work.

Based on the aging model in (1), the key activity-related
parameters are the duty cycle ω and total lifetime t. In
VarEMU, we use the cycle counting feature to implement
the bookkeeping function for activity-related parameters,
i.e. total normal runtime tn and total runtime under power
gating tpg.

Since NBTI-induced degradation depends on the exact
signal switching pattern, VarEMU reports the upper and
lower bound aging scenarios. The upper bound of the ag-
ing scenario will be t = tn + tpg and ω = tn/t. The lower
bound of the aging scenario will be t = tn + tpg and ω =
0.5tn/t. Since the model in (1) assumes a periodic stress-
recovery pattern, this model may not be adequate to accu-
rately capture NBTI effects under some dynamical scenar-
ios like dynamic voltage scaling and long-term power-gating.
To enable the dynamical features, it will require either more
sophiscated aging models (currently unavailable) or aging
simulators as in [6] (too slow for our purpose).

3.4 Aging-aware Power and Delay Model
In this section we present the default power model for

VarEMU which accounts for aging effects. The processor
power consumption can be classified as active power and
sleep power. Active power includes switching power and
short circuit power. In VarEMU, we use the switching power
model as in [26]:

Pswitching =

n∑
i=1

CiβiV
2
ddf (2)

where Ci is the equivalent switching capacitance for each
instruction class i, βi is the fraction of class i instructions
in all instructions, and f is the clock frequency.

We use the short circuit power model as in [30]:

Pshort =
n∑
i=1

ηi(Vdd − Vthn − Vthp)3f (3)

where ηi is a technology- and design-dependent parame-
ter for instruction class i, Vthn is the threshold voltage for
NMOS, and Vthp is the threshold voltage for PMOS and
equals |Vthp0 + ∆Vthp|, Vthp0 is the threshold voltage with-
out degradation.

The sleep power can be modeled as:

Psleep = Vdd(Isub + Ig) (4)

where Isub is the subthrshold leakage current and Ig is the
gate leakage current.

The leakage current models can be derived from the de-
vice model in [5]. We simplify the model and extract the
temperature- and voltage-dependency as:

Isub = a1T
2(exp(

−a2Vthp
T

) + exp(
−a2Vthn

T
))exp(

−a3Vdd
T

)

(5)
where a1, a2, a3 are empirical fitted parameters.
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We use the gate leakage model from [18]:

Ig = a4V
2
ddexp(−a5/Vdd) (6)

where a4, a5 are empirical fitted parameters.1

The dependence of circuit delay d on supply voltage Vdd
and threshold voltage can be modeled by the alpha-power
law [29]. Since NBTI has effect only on PMOS (PBTI on
NMOS respectively), due to the complementary property of
CMOS, the overall circuit delay can be modeled as:

d =
KpCpVdd

(Vdd − Vthp)α
+

KnCnVdd
(Vdd − Vthn)α

(7)

where Cp and Cn are equivalent load capacitances for PMOS
and NMOS respectively, Kp, Kn and α (1 < α < 2)) are
technology and design dependent constants.

In this work, we use a commercial 45nm process tech-
nology and libraries as our baseline. The aging model is
fitted to the NBTI aging equation given in the technology
design manual. The fitting results for different voltage and
temperature are shown in Figure 3. The power and delay
model parameters are fitted to the SPICE simulation results
of a inverter chain using device model given in the technol-
ogy libraries. Compared to the power and delay value re-
ported by SPICE results, errors in our model are less than
2% for 0.8V < Vdd < 1V , 0mV < |∆Vthp| < 50mV and
10◦C < T < 90◦C.

Although the absolute power and delay values of the entire
processor may not match the results of the inverter chain, we

1There are secondary effects of temperature on some param-
eters such as threshold votage and electron mobility, but the
effects are neglagible for our purpose.

expect their sensitivity to voltage and temperature to follow
similar trends if the inverter chain is designed to match the
same design properties (e.g., cell types, fan-out ratio) of a
particular processor design. In this work, the final power and
delay values are normalized to the measured data obtained
from a Cortex M3 testchip using the same technology.

3.5 Faults
VarEMU allows faults to be inserted before or after, or

to completely replace the execution of an instruction. A
faulty implementation of an instruction in VarEMU is an ar-
bitrary C function that has access to the complete architec-
tural state of the VM, and hence may manipulate memory,
general purpose registers, and status and control registers.
Faulty versions of instructions may co-exist with its respec-
tive correct versions, and faults may be dynamically enabled
and disabled from emulated software.

When an instruction is disassembled, we check its VarEMU
field to determine if it is susceptible to faults. For instruc-
tions with pre and post execution faults, we simply gener-
ate code that calls the respective fault helper functions at
execution time. These helper functions determine whether
the fault will occur, and conditionally call the fault imple-
mentation. For instructions with replace faults, the code
generation process is more complex: if we simply called
a replace helper, the developer of the replacement fault
would also have to implement a correct version of the in-
struction. Hence, we generate two code paths, one for the
faulty path, and one for the original instruction (for when
faults do not occur). The faulty path is always called, and
returns a boolean value which determines whether the orig-
inal instruction should be executed or not. This is accom-
plished with the equivalent of a conditional branch instruc-
tion, which jumps to the end of the current translation block
if the return value of the replace helper is not zero.

All of the following conditions must be met in order for a
fault to occur: 1) the instruction under execution is marked
as subject to faults; 2) the processor is not in a privileged
mode (e.g., faults are not permitted in the OS kernel); 3)
faults have been enabled by emulated software; 4) user-
defined conditions, e.g., based on conditional or random vari-
ables. If these conditions are not met, the original version
of the instruction will be executed without faults.

Figure 4 shows a simple example of a stuck-at fault in the
multiply instruction. If the processor is currently running in
privileged mode, or if faults have not been enabled from em-
ulated software, the function returns zero, which causes the
original instruction to be executed. Otherwise, the instruc-
tion operation code is decoded. For the multiply opcode,
the source and target registers are decoded, and the multi-
ply operation is augmented with the stuck-at-one fault. The
result is written into the destination register.

While the fault presented in Figure 4 is deterministic in
nature (a stuck-at-one in the LSB of the target register)
and occurrence (always happens when faults are enabled in
non-privileged mode), users may include additional imple-
mentations or conditions for faults, e.g., based on history,
random variables, architectural state, or operational param-
eters such as voltage and frequency in the power model.
Users may also call external software modules (e.g. RTL
simulators) from the fault module in order to model realis-
tic faults that, for example, take spacial correlation or in-
struction inter-dependency into account. Faulty execution



uint32_t vemu_fault_replace(CPUArchState * env ,
TranslationBlock* tb)

{
if (privmode |( vemu_faults_enabled == 0))

return 0;
switch(instr_info ->opcode) {

case OPCODE_MUL: {
int rd = (instr_word >> 16) & 0xf;
int rs = (instr_word >> 8) & 0xf;
int rm = (instr_word) & 0xf;
env ->regs[rd] = (env ->regs[rm] * env ->regs[rs])

| 0x01;
}; break;
...
default: break;

}
return 1;

}

Figure 4: Stuck-at fault in the multiply instruction

may in turn influence cycle counting (e.g. a faulty version
of an instruction that finishes in fewer cycles) or energy ac-
counting (e.g. a faulty version of the instruction that is less
power intensive). Section 5 shows a small case study that
illustrates the usage of the VarEMU fault framework.

3.6 Portability
We currently support the ARM architecture (with Thumb

and Thumb2 extensions) in VarEMU. We’ve tested VarEMU
with two target machines: versatilepb (ARMv7) and lm3s6965
(Cortex-M3). Extending support to new target machines in
the same architecture is trivial: all that is needed is to map
the VarEMU virtual hardware device to a free slot in the
target machine’s address space and, if necessary, to adjust
the number of cycles per instruction.

Most VarEMU modules (e.g., energy accounting, user I/O,
virtual hardware device) are architecture independent. Power
model coefficients are empirically fitted to match the nom-
inal power consumption of target platforms. Architecture
and device dependent modules include cycle counting (re-
quires decoding and mapping of the target architecture in-
structions), power, and aging models. Because the imple-
mentation of faults typically involves manipulating registers,
memory, or processor state, specific implementations of in-
struction faults are not portable.

4. SOFTWARE INTERFACES
VarEMU allows users and external software to configure

instruction information (class of instruction, susceptibility
to faults), dynamically change power model parameters, and
query the VM for cycle, time, and energy information.

An input file in JSON format specifies instruction classes
and power model parameters for a VM. A class of instruc-
tions is defined by an index, a name and a list of instruction
names. By default, all instructions are linked to a single
catch-all class. Instructions not listed in the input file re-
main linked to the default class. A dictionary links each
instruction class with its respective list of power model pa-
rameters. A minimal input file includes only a list of power
model parameters for the catch-all instruction class. The
input file may also define lists of instructions susceptible to
each type of fault supported by VarEMU.

QEMU provides a monitor architecture for external inter-
action with the VM. This monitor listens for commands and
sends replies on an I/O device (e.g. stdio or a socket). We
extended this monitor to provide commands to query a VM’s
energy, cycle, and time information, and to dynamically

typedef struct {
uint64_t act_time[MAX_INSTR_CLASSES ];
uint64_t act_energy[MAX_INSTR_CLASSES ];
uint64_t cycles[MAX_INSTR_CLASSES ];
uint64_t total_act_time;
uint64_t total_act_energy;
uint64_t total_cycles;
uint64_t slp_time;
uint64_t slp_energy;
uint64_t fault_status;

} vemu_regs;

Figure 5: VarEMU register layout

change power model parameters. Inputs and responses to
and from the monitor are in JSON format. A query-energy

command returns accumulated energy for sleep mode and
for each instruction class. Similarly, a query-time command
returns accumulated execution and sleep times. Finally, a
change-model-param command allows users to change power
model parameter n of class c to value v.

A combination of the change-model-param command de-
scribed above and the standard stop and cont commands
provided by QEMU allows users to systematically emulate
dynamic variations in power consumption due to environ-
mental factors (e.g. changes in ambient temperature).

We implemented a small application that demonstrates
interaction with the VarEMU monitor commands. This ap-
plication queries the monitor every second for energy and
time information and plots average active and sleep power
for that time interval. Inputs allow users to change the tem-
perature in the power model, which leads to changes in av-
erage power consumption.

4.1 Interaction with Emulated Software
Emulated software interacts with VarEMU through mem-

ory mapped registers. A virtual hardware device maps I/O
operations in specific memory regions to VarEMU functions.
A command register provides three operations: read, enable
faults, and kill. The read operation creates a checkpoint
for all VarEMU registers (Figure 5). Subsequent reads to
register memory locations will return values from the last
checkpoint. This allows users to read values that are tem-
porally consistent across multiple registers.

A write to the enable faults command register propagates
its input value to a variable shared with the VarEMU fault
module. A value of 0 means that faults are completely dis-
abled. The implications of a write to the fault register with
a value greater than zero depend on the specific implemen-
tation of the fault model, but in general such a write means
that faults are allowed to happen from this point on.

Finally, a write to the kill command register kills the VM
and stops emulation. This allows users to systematically
finish an emulation session in machines that do not provide
the equivalent of a shutdown command.

In machines without an operating system (or memory pro-
tection), applications may directly interact with the VarEMU
memory region. We provide a small library of high level
functions that issues the adequate sequence of write/read
operations in order to interact with VarEMU. For machines
that use the Linux operating system, these operations are
embedded into a driver, which also performs per-process
time and energy accounting and handles fault status.

4.2 Software Interface for Linux
In a multi-process system, it is difficult to attribute en-

ergy expenditure to different processes from a global energy



meter without system support. Furthermore, it would be
very difficult to conduct experiments and evaluate the im-
pact of faults to individual applications in a multi-process
system if fault states were allowed to cross process bound-
aries. For example, if enabling faults in an application led to
faults being enabled in kernel code, or in the shell process,
the system would most likely become unstable and/or crash.
Nevertheless, a multi-process system typically provides sev-
eral software conveniences that may not be available in a
simpler, OS-less system (e.g. I/O shell, networking stack,
remote file copy).

We implemented a series of small extensions to the Linux
kernel that allows applications to benefit from its software
stack while avoiding the issues described above. First, we
extended the process data structure with a new data struc-
ture containing VarEMU registers. This field holds fault
status and time and energy counters for each process.

When a process is scheduled in, we create a checkpoint
by reading all VarEMU registers from hardware. When the
process is scheduled out, we create a second checkpoint. En-
ergy and cycles between the schedule in and out events are
attributed to the process. Energy and cycles between the
out event for the previous process and the in event for the
next process are attributed to the operating system. Fault
status is part of process context, and hence saved/restored
in scheduling events. Thus, enabling faults in one process
does not enable faults in other processes or the OS.

Applications interact with the VarEMU driver through a
system call interface. A write system call takes two parame-
ters: command and value. Two commands — which map to
the corresponding operations in the virtual hardware device
— are available: fault and kill. Value is ignored for the kill
command. A read system takes two parameters: an inte-
ger type and a pointer to a VarEMU data structure (which
mirrors the register layout in Figure 5). Type can be sys-
tem, process, or hardware. Read system calls issue the read
command to the hardware hardware device, read VarEMU
registers, and copy values into the VarEMU data structure
provided by the user, according to the type variable. Type
can be system (reads counters for the OS), process (reads
counters for the current process), or hardware (reads raw
hardware counters). A small library of functions aids users
in the interaction with the VarEMU driver.

Figure 6 shows how a Linux application may interact with
VarEMU. The vemu_regs data structure holds fields for all
time, energy, cycle, and fault registers. The main function
goes through an infinite loop where it reads and prints out
energy values for process, system, and hardware. It then
enables faults and goes through a for loop with multiplica-
tion and additions. Until faults are disabled again towards
the end of the main loop, faults are allowed for this pro-
cess. This means that, for every instruction configured as
susceptible to faults by the user, a call will be issued to the
VarEMU fault model. The exact nature of the faults will
depend on the fault model implementation and may lead to
application crashes (e.g. due to invalid pointers being com-
puted as a result of a faulty add instruction). A fault or
crash in this application will not lead to faults in the kernel
or in other processes.

While our example application only reads and prints out
VarEMU register values, variability-aware applications could
use this information to adapt its quality of service based on
energy constraints. Likewise, extensions to the OS kernel

#include <stdio.h>
#include "vemu.h"

int main() {
vemu_regs hw, sys , proc;
do {

usleep (1000000);
vemu_read(READ_HW , &hw);
vemu_read(READ_SYS , &sys);
vemu_read(READ_PROC , &proc);
printf("Energy: \n");
printf("hw: %d sys: %u proc: %u sleep: %u\n",

hw.total_act_energy ,
sys.total_act_energy ,
proc.total_act_energy ,
hw.slp_energy);

int i, x, y, z, sum;
vemu_enable_faults (1);
for (i = 0; i < 100; i++) {

z = x * y;
sum = sum + z;

}
vemu_disable_faults ();
printf("sum: %d", sum);

} while (1);
}

Figure 6: Linux application using VarEMU

could use this information to inform scheduling decisions.

5. EXPERIMENTS AND RESULTS
This section presents verification and performance results

along with case studies for the VarEMU aging model and
fault framework.

5.1 Time Accounting Accuracy
VarEMU accounts time on the basis of number of instruc-

tions executed, clock frequency, and number of cycles taken
by each instruction. In hardware implementations, the num-
ber of cycles taken by some instructions may be variable.
Because VarEMU relies on an underlying platform of func-
tional (not cycle accurate) emulation, this variable timing
information is not available to our time accounting module,
and instructions are assumed to take a fixed number of cy-
cles based on their operation code. While this number of
cycles may be calibrated to reflect specific platforms and
workloads, it is inherently subject to inaccuracy.

To quantify the accuracy of time accounting in VarEMU,
we compare execution times in hardware with execution
times reported by VarEMU for different applications. For
each application tested, we follow the same sequence of events:
1) a GPIO pin is raised, 2) a VarEMU read command is is-
sued 3) the main body of the application is executed, 4)
the GPIO pin from step 1 is lowered, and 5) a new read
command is issued. Because both the GPIO write and the
VarEMU read command can be implemented with a single
“write” instruction (in systems without an OS), there is only
one instruction difference between the two. By connecting
the GPIO pin to an oscilloscope and measuring is logical
high period, we can quantify execution time in hardware.

For this evaluation, we used the LM36965 model Cortex-
M3 processor by Texas Instruments. When running in hard-
ware, interaction with VarEMU is replaced with equivalent
read/write operations in a reserved area in memory. GPIO
operations have no effect in QEMU, but are still accounted
for (i.e. a read or write instruction is executed). To check
against cumulative errors, we ran a varying number of iter-
ations for each application.

Figure 7 shows VarEMU time accounting accuracy for dif-



App Unit Vanilla QEMU VarEMU Overhead Kernel Overhead Total Overhead
Dhrystone p/sec. 259304 102536 150% 98352 4 % 164 %
Whetstone MIPS 14.2 5 180% 4.8 4 % 196 %
null syscall µs 12.4 13.5 9% 13.5 0 % 9 %

context switch µs 61 75.6 24% 88.3 17 % 45 %
dd if=/dev/zero s 0.98 1.43 46 % 1.49 2 % 49 %
Bitmap to JPEG s 0.9 1.3 45 % 1.31 1 % 46 %

WAV to MP3 (lame) s 19.1 57.3 200 % 57.4 0 % 200 %

Table 1: Runtime overheads for VarEMU and the VarEMU kernel extensions

Figure 7: Time Accounting Accuracy

ferent applications. Accuracy is defined as the ratio between
actual execution time in hardware and execution time re-
ported by VarEMU. We calibrated the number of cycles per
instruction using the “empty loop” application, and hence
that application has the highest accuracy. For all other ap-
plications, accuracy is better than 96%, and does not in-
crease with longer execution runs. In future work, we intend
to increase this accuracy by performing deeper inspection of
instruction words (e.g., in Cortex-M3 cores, some instruc-
tions take more or less cycles depending on which registers
are used), and by performing basic bookkeeping on branches
and load/store instructions to estimate pipeline bubbles.

5.2 Runtime Overheads
Every time an emulated instruction is executed a call is

made to the VarEMU module that performs cycles and time
accounting. Periodically, the cycle counting module makes
calls to the aging module. If an instruction is susceptible
to errors, its translated code is augmented with calls to the
error module. Finally, every time a query is issued for the
energy counters, or whenever a variability model parameter
(e.g. temperature) changes, the power model is called.

On the emulated software system, the Linux module for
VarEMU performs per-process energy and time accounting.
Every time a process is switched in or out, a read command
is issued to the VarEMU virtual hardware module, and all
VarEMU registers are copied. When an OS is not available,
the standalone VarEMU library performs the same function.

To quantify the various runtime overheads of VarEMU, we
compare runtime performance of software under VarEMU
with its equivalent performance under the vanilla version
of QEMU. We measured the relevant performance metrics
(e.g. time-to-completion, throughput) of various software
applications. Table 1 presents the resulting average of each
application’s metric over 10 runs.

The overhead of VarEMU over the vanilla version of QEMU
is highly dependent on workload. This is due to the fact
that some emulated instructions (e.g. integer arithmetic)
translate very efficiently into native instructions, while oth-
ers (e.g., load/stores, branches) have higher emulation over-

head. Because VarEMU adds a function call with constant
execution time to each instruction, for very efficient instruc-
tions the VarEMU extensions become a significant part of
total execution time. For less efficient instructions, VarEMU
overhead is relatively smaller. For our test applications,
best-case overhead was 9%, and worst-case 200%.

The overhead of the Linux kernel extensions for VarEMU
also depends on workload. Bookkeeping is performed for
every process switch, and therefore the context switch op-
eration has the highest overhead, at 17%. For the other
applications in our test set, the overhead is at most 4%.
Total combined overhead for VarEMU, including emulation
and kernel overheads, ranged from 9% to 200% for our test
applications. Since QEMU (in combination with a fast host
system) provides faster than real-time emulation for many of
its target platforms, this overhead is manageable, and much
smaller than that of other simulation alternatives such as
cycle-accurate simulators. In future work, we intend to opti-
mize the cycle counting module of VarEMU by replacing its
current implementation, which uses high-overhead QEMU
helper functions, with low-overhead intermediate interpreter
instructions.

5.3 Case Study: Approximate Arithmetic
In this section we present a small case study that uses the

VarEMU fault module to implement approximate arithmetic
operations. Approximate arithmetic is used to increase the
throughput of the application or reduce the consumed power
by reducing the cycle period or reducing the number of cy-
cles taken by each instruction. By propagating control over
the hardware approximation to the software stack, we can
allow the software programmer to adaptively configure the
approximate behavior at runtime based on the software re-
quirements. This shifts the power vs. performance or power
vs. latency tradeoffs to a higher level which can lead to
better solutions that vary from one application to another.

The main bottleneck of most adders is the propagation
of the carry-chain. Bounds have been established for de-
lay of reliable adder schemes, where no reliable adder can
have a sub-logarithmic delay [11]. However, unreliable
adders could reach sub-logarithmic delay by cutting down
the carry-chain. We adapted a configurable approximate
adder design [17] for an image edge filter application where
addition is done by concatenating a number of partial sums
generated by an approximate adder. A faulty replacement
for add instructions was implemented as described in [17].

A parameter passed from emulated software to the VarEMU
fault module when enabling faults is used to set the accu-
racy in the approximate add routine, where 25% accuracy
means 25% of the partial sums generated by the approxi-
mate adder are being corrected to give accurate partial sums.
We used approximate calculation for the value of each pixel
during edge filtering. Depending on the micro-architecture



(a) Original Image. (b) Accurate Edge Filter. (c) Edge Filter with Approximate Adder
Using 25% Accuracy Correction.

Figure 8: Variable accuracy edge filter application using fault injection in VarEMU

implementation, a faulty adder might affect different sets
of instructions. In this experiment, we assume the adder is
only used by the ALU add instruction. Other faults, e.g. in
branch instructions, can also be emulated in VarEMU.

The output of the edge filter application under VarEMU
is shown in Figure 8, where 8(b) shows the result with the
accurate operations, and 8(c) shows the result with approx-
imate operations. We evaluated the accuracy of the approx-
imate addition operations with respect to the result of the
accurate operations and obtained a pass rate of 96%, which
matches the accuracy reported in [17]. The approximate fil-
ter accurately detected 99.8% of black edges in the original
image, and 97% of pixels in the approximate filter are within
± 5% of the value of corresponding pixels in the accurate
filter. As per [17], clock period may be reduced by 25% with
6% recovery-cycle overhead (correction penalty) for 16 bit
adder using 4 partial sums. This led to a reduction of 18%
in execution time with no increase in energy consumption
for the approximate case in our experiment.

5.4 Case Study: Dynamic
Reliability Management

In this section, we present a case study using the VarEMU
aging and power model to evaluate the potential power sav-
ings of dynamic reliability managements. In VarEMU, a
dynamic reliability management is implemented which au-
tomatically adjusts the supply voltage based on the delay
reported by Equation (7). In this experiment, we use the
aging model as in Section 3.3. The reliability management
unit is set to increase the supply voltage by step of 5mV .
We run applications with different activity factors with the
management unit enabled (i.e. with adaptive voltage) and
without the management unit (i.e. with one-time margined
voltage). The one-time margined voltage is set to account
for the aging scenario with 100% software duty cycle and
100◦C. The results are shown in Table 2, where DC is pro-
cessor duty cycle (fraction of active time), T is temperature,
mode is upper bound aging (UB), lower bound aging (LB),
and non-adaptive (NA), PS and PA are average sleep and
active power across the lifetime, ∆Vthp is the total delta in
threshold voltage due to aging, and UP, LB, NA stand for
upper bound, lower bound and non-adaptive cases respec-
tively. Compared to one-time margining, adaptive voltage

DC (%) T(◦C) Mode PS(uW) PA(mW) ∆Vthp(mV) Vdd

100

21
LB 92.71 6.06 7.10 1.01
UB 92.72 6.08 13.38 1.015
NA 108.85 6.87 15.38 1.040

100
LB 315.12 6.31 18.92 1.020
UB 315.12 6.39 35.67 1.030
NA 360.56 7.22 41.00 1.040

40

21
LB 90.85 6.01 5.88 1.005
UB 91.15 6.04 6.75 1.010
NA 107.2 6.84 7.75 1.040

100
LB 300.14 6.31 15.69 1.015
UB 297.97 6.30 17.97 1.015
NA 340.1 7.13 20.66 1.040

Table 2: Aging Experiment Results

scaling can achieve 11% to 13%2 active power saving and
11% to 15% sleep power saving. Note that these values
heavily depend on the actual aging and power model.

6. CONCLUSIONS
We presented VarEMU, an extensible framework for the

evaluation of variability-aware software based on the QEMU
virtual machine monitor. VarEMU uses cycle counting to ac-
curately keep track of execution times in a virtual machine
and relies on variability-aware power and aging models to
determine energy consumption. Its fault injection mecha-
nism allows arbitrary functions to augment or replace the
execution of any instruction in the system. Emulated soft-
ware has access to time and energy registers and precise
control over when and under what circumstances faults are
allowed to occur. Linux kernel extensions for VarEMU allow
users to precisely quantify the effects of power variations and
variability-driven fault injection to individual applications.

While VarEMU adds 9–200% overhead to baseline QEMU
performance, it is significantly faster than other variability
emulation alternatives, which are typically orders of magni-
tude slower than real-time. In future work, we will explore
performance optimizations in the critical paths of VarEMU
to reduce overhead. VarEMU currently tracks hardware tim-
ing with 96% accuracy. We intend to increase this accuracy
by performing deeper inspection of instruction words, and
by performing basic bookkeeping on branches and load/s-
tore instructions to estimate pipeline bubbles. We will vali-

2The savings here are larger than implied by a simple V 2
dd

power model, because the short-circuit power is proportional
to (Vdd − Vthn − |Vthp|)3 as in Equation (3).



date these extensions along with our existing power models
with an M3 test platform instrumented for power analy-
sis [33]. VarEMU currently supports the ARM architecture
(with Thumb/Thumb2 extensions). We intend to support
other architectures in the future, including OpenSparc and
OpenMIPS. Further, we will model delay variability induced
errors (e.g. due to timing speculation).

VarEMU, its supporting Linux kernel extensions, test ap-
plications, and virtual power monitor are available for down-
load at http://github.com/nesl/varemu.
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