
Parametric Hierarchy Recovery in Layout Extracted

Netlists

John Lee and Puneet Gupta

Electrical Engineering

UCLA

lee@ee.ucla.edu, puneet@ee.ucla.edu

Fedor Pikus

Formerly at Mentor Graphics

fedor pikus@mentor.com

Abstract—Modern IC design flows depend on hierarchy to
manage the complexity of large-scale designs; however, due to
the increased impact of long-range layout context on device
behavior, extraction tools flatten these designs. As a result, in
post-layout extraction, the hierarchy is lost and the designs are
flattened, increasing both the size of the design database, and the
amount of runtime that is needed to process these designs. In this
paper, the idea of parametric hierarchy recovery is proposed that
takes netlists extracted from the design layout, and recovers their
hierarchical structure while preserving parametric accuracy.
This decreases the size of the netlist and enables the use of
hierarchical comparison methods and analysis. Our experiments
show that in physical verification this method leads to a 70%
reduction in runtime on average without any parametric error.
Furthermore, this method can be used to provide tractable timing
and power analysis that utilizes detailed transistor information
in the presence of systematic layout-dependent variation.

I. INTRODUCTION

Modern large digital designs are highly hierarchical: they

are composed of standard cells which are organized into

blocks, larger macros, and even larger chiplets or tiles. The

hierarchical nature of these designs is used at every stage of

the design and verification flow – it is used for the partitioning

of the design to enable large design teams to work efficiently

and is used by most EDA tools to increase their performance

by improving data and memory management (c.f. [1], [2], [3]).

This results in orders of magnitude runtime improvements and

in addition, it makes verification and debugging easier.

However, as the design proceeds through verification and

characterization, the original hierarchy may degrade. For de-

signs targeting advanced manufacturing nodes, one of the

main culprits of hierarchy degradation is the computing of

complex layout-dependent device parameters, usually done

during the circuit extraction. These device parameters describe

the impact of different effects, such as stress, annealing, etch

and lithographic variability, on device performance. Many of

these are very long-range effects whose effective radius can

exceed the size of the small hierarchy blocks. The resulting

device parameters cannot be represented within the original

hierarchy, since every placement of a cell would have slightly

different parameter values.

This causes the following problems:

• The resulting netlist is much larger than the hierarchical

netlist.

• It is difficult to debug errors in verification, as millions

of errors in the flattened netlist may be due an error in

one block in the hierarchy.

• Slower runtimes in downstream tools. The removal of

hierarchy makes the netlists larger, and slower to process.

While the effective dimensions of this context may be much

larger than the size of a cell, the repetitive nature of modern

designs imply that the number of contexts is usually fairly

limited. While devices in different placements of the same cell

have different parameters, these differences can be represented

by introducing multiple variants of the original cell, each with

different parameters.

In this paper we explore the idea of parametric hierarchy

recovery in the context of layout extracted netlists. Here,

parametric refers to the parameters in the netlists, such as gate

length, width and stress information. The recovered hierarchy

helps to manage the complexity, and enable faster runtimes.

The contributions of this paper are as follows.

• We give algorithms for recovering hierarchy, in the con-

text of verification, and post-layout timing.

• Results that show that hierarchy recovery is effective at

reducing runtime and netlist size, and provides tractable

timing and power analysis.

Section II describes the methods used to recover hierarchy.

Section IV-A presents applications of this method in verifica-

tion, and Section IV-B presents applications of this method in

standard cell recovery. The paper is concluded in Section V.

II. RECOVERING HIERARCHY

In the hierarchical design process, the designs are cre-

ated by using building blocks of parent-types Tparent =
{A,B,C,D, ...}. Each of these types are instantiated as in-

stances I = {a1, ..., b1, ..., c1, ...}. For example, instance a
might be, by design, of type NAND2X1, and instance b might

be an 8-bit adder block.

As the design process progresses towards fabrication, the

hierarchy becomes flattened as additional parameters are added

to each instance, increasing the runtime for any tools that use

the resulting designs. However, the hierarchy can be recov-

ered with respect to the different parameters. Type-variants

(Tvariant) can be used to improve the accuracy of the parent-

type. For example, type-variants NAND2X1a and NAND2X1b

may be created to cover different variations. NAND2X1a may

be an instance with a 2% increase in leff and a 3% increase in

vth, while NAND2X1b may be an instance with corresponding

decreases in leff and vth. Each instance is then mapped to an

expanded set of variants to increase the accuracy of the type

to instance correspondence.

The mapping between instances to types can be formalized

using a type mapping function (type(·)) that matches each in-

stance with a unique type. typeparent(·) matches each instance

to its parent-type, and typevariant(·) matches each instance to

its assigned type-variant. There are many possible functions,

and the proper choice of mapping functions depends on the

available types. Instances that are mapped to the same type

are said to be clustered.

III. METHODS FOR TYPE MAPPING AND TYPE CREATION

Type mapping and type creation are very similar to the data

clustering problem. In the clustering problem, instances are

grouped together into clusters, to minimize an error function

between each member of the cluster and the cluster centroid1.

Similarly, in the context of type mapping, the objective is

to minimize some measure of the error (see Section III-A)

which is a function of the difference between the instance’s

parameters and the type-variant’s parameters.

A. Error measures

In this work, we consider two different classes of error

objectives. The first class is related to applications in power.

In this case, we use the square error measure of the error:

Error2(I) =
∑

i∈I

||pi − ptype
variant

(i)||
2 (1)

where pi is a vector of parameters associated with instance

i and ptype(i) is a vector of parameters associated with the

type associated with instance i. Note that this error measure

is continuous and differentiable.

The second class of error objectives is related to timing and

verification, and is neither continuous nor differentiable. This

error is a tolerance objective:

Errortol(I) =

{

∞ if maxi{|pi − ptype
variant

(i)|} > ptol

0 otherwise
(2)

In the above, ptol is a given tolerance for the parameters. In

other words, this error function is ∞ (e.g. it is unacceptably

large) if any of the parameters exceed the tolerance, and 0
otherwise. In this case, the objective is to find a mapping that

does not violate the tolerance.

B. Algorithms for Type Mapping

Once the number of type-variants or the tolerance is chosen,

a suitable clustering algorithm is needed to group together

different instances into clusters, and create type-variants to

represent each cluster. In the context of layout extracted

netlists, the number of instances of each type-parent is in the

1See [4] for an overview of clustering methods

100’s of thousands, and may run into the millions. In this case,

it is important to consider scalable algorithms. The following

methods are used to perform type mapping in this paper.

1) k-Means algorithm: The k-Means algorithm [5] is a

popular algorithm for performing clustering. It scales well and

can be used to cluster millions of instances under the Error2
objective. In the type-mapping application of this algorithm,

the number of type-variants for each type is a given input,

and the assignment to the clusters is refined iteratively in two

steps. In the first step, each instance is assigned to the type-

variant that minimizes the error. Next, the parameters of each

type-variant is updated to minimize the error.

2) Type-mapping with tolerance: The k-Means algorithm

cannot be used effectively when a tolerance-based type-

mapping is needed because the derivative of the objective

Errortol is constant (= 0) wherever it is defined. Furthermore,

clustering with tolerance will give the number of clusters as

an output, while the number of clusters is an input to k-means.

In this paper, tolerance based type-mapping is performed

using a heuristic that assigns each instance to the first matching

type-variant. If there are remaining unmatched instances, a

new type-variant is formed by using a modified version of

the k-means++ algorithm [6]2. In this method, the unmapped

instance that is farthest, with the largest parametric difference

deviation (in a || · ||∞ sense), from all current type-variants is

assigned to the new type-variant. This has the interpretation

of choosing the furthest outlier as the new type-variant. The

unmapped instances are then checked to see if they can be

mapped with the new type-variant. This process is iterated

until no remaining members are left.

At the beginning of the method, when no type-variants have

been created, the choice of which instance that should be

chosen first affects the performance of the algorithm. Thus,

along the lines of [6], we perform the type-mapping multiple

times, each with a different initial instance, and the type-

mapping with the least number of type-variants is used. In

the experiments in Section IV-B, the clustering is performed

five times, and provides a 2% to 12.8% reduction in type-

variants, with an average reduction of 7.8%. The method is

summarized as follows:

1) Start: All instances I unclustered, and empty set of

type-variants (Tvariant = {})

2) Randomly assign an instance to the first type-variant

3) Do: For each instance i

a) Assign each instance i to the first τ ∈ Tvariant that
satisfies the tolerance condition (e.g. Errortol =
0). If none are satisfied, then the instance is left

unmapped

4) If there are unmapped instances remaining, assign the

instance with the largest parametric distance (||p −
ptype

variant
(k)||∞) over all k to a new type-variant. Add

2The k-means++ algorithm works for norm-based clustering. We interpret
tolerance based mapping as similar to clustering with the || · ||∞ norm, and
this is used to adapt the k-means++ algorithm.

Fig. 1. Example of a hierarchical design. The design currently has types A,
B, and C with 30 instances total. Instances in {1, 7, 13, 16, 22, 28} are of
type A; instances in {4, 10, 19, 25} are of type B; the remainder are of type
C.

the type-variant to Tvariant, and repeat Step 3 above.

Otherwise exit.

3) Hierarchical type-mapping with tolerance: In many

designs, the instances may be composed of smaller, lower-

level instances, with multiple levels of hierarchy. For example,

consider the case of a controller block that is composed of

FIFOs, which are in turn composed of flip-flops. These cases

are ubiquitous in modern VLSI designs as the hierarchy is

essential for managing the complexity of the design.

The hierarchy complicates the creation of types, as the

higher-level types must be composed of the available lower-

level blocks types in T . Furthermore, higher-level types that

are mapped to the same variant must use the same corre-

sponding variants for the lower-level types. Thus there is an

interaction across the levels of the hierarchy that must be

considered.

Figure 1 shows an example of a hierarchical design. In this

example, the higher-level mapping of the top blocks, A and B,

induces, or forces, the matching instances at the lower-levels to

be clustered together. These clusters must be maintained when

the lower-level instances are clustered together. For example,

if B/4 and B/10 are mapped to the same type-variant, then A/7

and A/13 must also be mapped together, as well as C/8 and

C/14, among others.

To perform hierarchical type mapping, while accounting

for the interactions between different levels of hierarchy, the

following method is used:

1) Sort the parent-types tk ∈ Tparent such that each tk is

not composed of types tj , j < k by using dependency

graph.

2) Looping over k, cluster the instances of each parent-type

tk by:

a) Creating initial clusters that are induced by higher

level parent-types

b) Checking each pair of clusters, and merging them

if they are jointly within the tolerance

c) Merging instances into the existing clusters if pos-

sible, otherwise create new clusters

This provides a top-down approach for clustering. This method

uses the hierarchy in the design, and the concept of induced

clusters to provide a straightforward method for hierarchical

clustering. By starting with the top level, and working down,

the complex interactions between hierarchies can be accounted

for. In contrast to Section III-B2, this algorithm does not have

a random part to it. Due to the interactions of the higher levels

on the clustering of lower level instances, the improvements

gained by using a variation of the k-means++ approach is

< 1%.

IV. APPLICATIONS

A. Experiment 1: Validation

Post-layout validation requires a Layout Versus Schematic

comparison, where the layout is validated against the original

netlist. This step checks if all of the devices in the original

netlist are present in the layout, and if the connectivity in the

netlist is accurately represented in the layout.

This process can be thought of in two steps. First the

transistor information is extracted from the layout, along with

the connectivity information between transistors. Next, the

extracted information is compared against the original netlist

to verify that the two netlists are the same.

In the extraction process, however, extracting the complete

set of parameters flattens the hierarchy. This is because each

instance of a master cell (such as an “AND” gate) gains

extra properties due to its neighboring structures, such as

stress, lithography effects, and coupling capacitances. This

increases the runtime of the verification. Note that while

ignoring layout context parameters may be ok for LVS, the

extracted information and netlist is also used downstream by

parasitic extraction tools.

Currently, traditional LVS tools may attempt to partially

recover the hierarchy, but are limited because they do not

create variants of the original cells to preserve the exact

values of extracted properties. These tools may employ a push

process, where devices that are identical are “pushed” down

the hierarchy. For example, suppose that the ADD64 block has

the following sets of transistors that correspond to the M0 of

NAND2X2:

ADD64: NAND2X2: M0 PARAM1=1

ADD64: NAND2X2: M0 PARAM1=1

ADD64: NAND2X2: M0 PARAM1=1 In this case, the M0

transistor of NAND2X2 will be pushed down out of the

ADD64 block, and into the NAND2X2 cell. However, sup-

pose that the M1 transistors of NAND2X2 has the following

parameters:

ADD64: NAND2X2: M1 PARAM1=1

ADD64: NAND2X2: M1 PARAM1=1

ADD64: NAND2X2: M1 PARAM1=1.001

In this case, because the third transistor does not match, the

transistor cannot be “pushed” down the hierarchy, and the

transistor remains in the ADD64 block. However, this means

that every M1 transistor in every NAND2X2 will not be able

to be pushed down, creating as many extra instances of the

M1 transistor as there are instances of NAND2X2, which may

be in the hundreds of thousands.

TABLE I
EXPERIMENT 1- BENCHMARKS

flat pushed R0%

trans # trans # subckt # trans # subckt

test0 17,505,258 2,330,409 219 92,236 941

test1 834,062 834,062 368 833,456 61,108

test2 3,336,248 3,256,313 369 833,468 61,112

test3 7,506,558 7,293,398 369 833,468 61,112

test4 2,354,107 1,027,717 1219 83,405 33,623

In contrast, the example above could be handled with type

creation. Instead of pushing the transistors into the same type,

two different types could be created:

NAND2X2_A M1: PARAM1=1

NAND2X2_B M1: PARAM1=1.001

This has two benefits. First, the type creation preserves the

entire cell in the hierarchy, and allows the verification tools

to run faster. Second, this may result in a smaller netlist than

the pushed netlist.

As an experiment, the hierarchy recovery method is applied

to five real industrial circuits designated “test0”, “test1”,

“test2”, “test3”, “test4”. The test1, test2 and test3 circuits are

multi-core versions of the same design – test1 is a 1x1 core die,

test2 is a 3x3 die and test3 is a 4x4 die. Test 0 has 8 parameters

that vary between instances of the same type, tests 1-3 have

13 parameters that vary, and test4 has 39 parameters that vary.

These parameters are related to transistor context information,

and transistor stress information. Note that in these examples,

there is no variation in the gate lengths and gate widths.

The recovery is performed with a range of tolerances,

RX%, where X is the percentage tolerance with respect to

the maximum deviation of the parameter. Thus, for example,

if the well proximity effect parameter “sca” has a maximum

deviation between instances of 9.8, then a R10% would set the

tolerance to be 0.98. The sizes of these circuits are summarized

in Table I which lists the number of transistors in the total

design, the pushed netlist, and the recovered netlist with zero

tolerance (R0%).

Table I shows that the number of transistors in the recovered

netlist with zero tolerance is generally much smaller than the

number of transistors in the pushed netlist, showing that the

hierarchy recovery is more effective at modeling the variations.

In these examples, the difference in size between the recovered

netlist and the pushed netlist grows as the size of the circuit

grows. Also, the recovery is very effective in the test2 and

test3 designs, where it can exploit the hierarchy that is inherent

in the design. Figures 2(a) and 2(b) summarize the transistor

count and the subcircuit count, as a function of the tolerance.

We measure the effect of hierarchy recovery on the Layout

vs. Schematic (LVS) comparison process using Calibre [7].

In this experiment, the pushed and recovered netlists are

compared against the hierarchical netlist. The comparison

runtime depends on the size of the netlist, and also on the

list of hierarchical-cell pairs that is given to the verification

engine. This list contains pairs of subcircuits, one from the

TABLE II
NETLIST VERIFICATION TIMES

Runtimes (s)

Typemap LVS ERC

R0% pushed R0% pushed R0%

test0 72 179 (1.0) 15 (.08) – –

test1 7 9 (1.0) 5 (.56) 158 (1.0) 141 (.89)

test2 12 39 (1.0) 6 (.15) 568 (1.0) 545 (.96)

test3 28 114 (1.0) 6 (.05) 1302 (1.0) 724 (.56)

test4 15 6 (1.0) 5 (.83) 160 (1.0) 81 (.51)

layout and one from the source netlist, and instructs the tool

to compare the elements of the pair hierarchically. In the LVS

experiments, type-variants with 2 or more instances, and 1000

or more elements are added to this list using a bottom-up

method (starting with the deepest level of the hierarchy). When

counting elements in a type-variant, the size of the elements

within the subcircuits is also counted, unless that subcircuit is

on the hcell list.

The runtimes for this process and the runtime of the hierar-

chy recovery process are shown in Table II. The comparison

time3 is smaller than the pushed comparison time for all of

the five R0% examples. When the hierarchy-recovery time

is accounted for, two of the benchmarks are slower. Note,

however, that the slowest comparisons (test0 and test3) benefit

the most, and are faster with the hierarchy recovery. A plot

of the runtime vs. tolerance is shown in Figure 2(c).The

plots show that the hierarchy recovery with any tolerance

significantly reduces long LVS runtimes and never appreciably

degrades the total runtime.

Another step of validation is the Electrical Rule Checking

(ERC), which checks if the electrical requirements are correct

by analyzing the netlist. For example, ERC can be used to find

all PMOS transistors that have gates tied to VDD, or perform

more complicated checks such as finding all inverter structures

that have their gates tied to VDD. As the checks become more

and more complex, the runtime difference between the pushed

netlist and the clustered netlist will grow.

Table II and Figure 2(d) show an example of an ERC run

in Calibre [7] for a set of common checks4. Hierarchical-cell

pairs are created for type-variants with 2 or more instances

and 2 or more elements. All of the benchmarks run faster

at the R0% point, with an average runtime reduction of 27%

and a minimum reduction of 11%. At the R10% point, the

average reduction is 63.4%, with a minimum reduction of

56%. The results show a significant improvement in runtime

that increases as the tolerance increases.

3The hierarchy recovery time measures the amount of time that is needed
to create type-variants and remap them, and excludes the time that is needed
to read the data and prepare the data in memory. However, these times are
also excluded from the netlist comparison times.

4The benchmark test0 was unable to run as the netlist had non-standard
transistors. The runtime given is the total CPU time, minus the time needed
to read the netlist.

(a) (b)

(c) (d)

Fig. 2. Performance plots for hierarchy recovery. All plots are normalized to
the “pushed” netlist; thus a value of 1.0 is equivalent to the “pushed” netlist.
(a) gives transistor counts; (b) gives the subcircuit (type-variant) counts; (c)
gives the LVS runtime; and (d) gives the ERC runtime.

B. Experiment 2: Standard Cell Recovery

Another example application of post-layout hierarchy re-

covery comes from recovering the standard cells from the

extracted layout of a lithography simulated design. The idea

is to capture the systematic (e.g. predictable) variations in

the transistor geometries using type-variants of each cell.

These variations come from imperfections in the lithography

conditions, such as defocus and exposure. The resulting netlist

can then be used to improve power and timing estimates.

The idea of lithographically extracted timing is discussed

in [8], [9], [10], [11]. In the normal timing sign-off flow, the

netlist is timed with the assumption that the lithography is

ideal, and the gates printed as drawn. However there is an

advantage that can be gained by utilizing the extra information

into the design flow, and the papers above consider using this

information to adjust the timing estimates. However, they do

not consider the idea of type-variants5.

In this paper, three lithography process conditions: Nominal

(Exposure= 1.0 / Defocus= 0nm); Exposure= .9 / Defocus=
80nm; and Exposure= .8 / Defocus= 160nm are considered.

Under nominal lithography conditions, the width and lengths

have approximately zero mean, and standard deviations that

are 3nm in gate width, and 2nm in gate length. However at

non-ideal lithography conditions, the standard deviations in

l can double, and cause a substantial shift in the mean. For

example, while in the nominal case, the mean gate length error

is approximately 0nm, in the Exposure .9 / Defocus 80nm

case, the mean length error is +3.7nm, and for the Exposure

.8 / Defocus 160nm case, the mean length error is +5.7nm.

In this experiment, the layouts, with the extracted lengths

and widths, are run through the hierarchy recovery algorithm

for three ISCAS ‘89 benchmarks and an arithmetic logic unit

from OpenCores.org [12].

The new type-variants can be used to improve timing esti-

mates. For example, suppose that a timing accuracy of 1% is

5[8] does, however, use predefined variants.

(a) (b)

(c) (d)

Fig. 3. Hierarchy recovery applied to post-layout timing. The top plots show
timing results when a strict tolerance is used for type-mapping while the
bottom plots show the results when slacks are used to adjust the tolerance.
The left-side plots show the delay error vs. tolerance, and right-side plots
shows the library characterization time vs. the tolerance. The delay error in
(c) is similar to (a), but the corresponding library characterization time in (d)
is much smaller than (b).

needed. The approximate model Delay ∝ C
I
≈ L

W
C

(VGS−VT)2 ,

can be used to type-mapping for timing. Thus, instances that

have their L/W values within a tolerance will be mapped to

the same type-variant.6

Experiments are run to measure the effect of the tolerance

τ on the circuit delay for the lithography condition Exposure

.8 / Defocus 160nm using the model above. The tolerance is

a function of the L/W for each transistor. The top plot in

Figure 3 plots the error in the timing as a function of the

tolerance τ . The delays are calculated using transistor level

netlists that are created by the hierarchy recovery program,

using the commercial tool NanoTime [13]. The transistor

widths and lengths are extracted as the maximum width, and

the average gate length of the simulated lithography printing,

respectively7. In these cases, a tolerance of less than 10%
is needed to achieve a delay accuracy of 2%. To achieve an

accuracy of 1% however, the tolerance needs to decrease to

7%.

A tolerance-based clustering is used because timing appli-

cations are sensitive to outliers. For example, with a square-

error, while the total error may be small, there may be outliers

– sporadic instances with a large square-error. If the outlier

falls on the critical path, this will cause the timing-estimates

to be unreliable. Thus, for reliable timing, a tolerance is used

to guarantee the reliability of the timing estimates.

The number of extra cells that are needed to satisfy the

tolerance may be prohibitively high. For example, using a

tolerance of 7% on the s38417 circuit requires 474 extra

cells (i.e. type-variants), which would require approximately

14 hours to run in the library characterization tool Liberty

NCX [14]8. Plots of the delay error vs. tolerance and the

runtimes vs. the tolerance are shown in Figures 3(a) and 3(b).

6Note more sophisticated models are also possible when additional para-
metric variation is present. For example, models that incorporate the effects
of stress, doping and line-edge roughness can be used.

7Note that better models, such as those in [11] can be used to improve the
accuracy of the effective transistor dimensions.

8The runtimes are estimated by adding the time it takes to characterize the
nominal versions of each cell. As a rough guide, the time per cell, in seconds,
is roughly proportional to [# inputs].85[# outputs]2.1[# transistors].62.

Fortunately, there is a way to reduce the runtimes. This

is because the number of gates that determine the maximum

delay of the circuit is much smaller than the total number

of gates. Thus, initial slack estimates can be used to adjust

the tolerances on each of the gates, giving non-critical cells a

larger tolerance than the cells that are critical. More formally,

if gate i has the corresponding minimum slack path πi that

runs through it, the tolerance of each gate is adjusted as:

τi = min
πi

{(

slack(πi)

α · delay(πi)
+ τ

)

, τmax

}

(3)

where τ is the desired tolerance, τi is the adjusted tolerance for
the widths and lengths of the gate, and slack(πi) and delay(πi)
are the slack and the delay of the paths, respectively. α is a

term that corrects for modeling errors and is set to α = 2.0,
and τmax is the maximum allowed error, and is set to 20%.

Intuitively, the ratio
slack(πi)

α·delay(πi)
is related to the percentage

change in the delay before the gate becomes critical. Thus,

if a gate has a slack of .3ns, and a corresponding path delay

of .6ns, then the delay of each gate in that path can vary by

50% before it becomes critical. Dividing this by α accounts

for modeling errors, and this is added to the original tolerance

for this gate. In this case, it can be assumed that a change

that is less than 25% in the gate parameters will not affect the

worst-case delay.

The results for the slack-adjusted case is shown in Fig-

ures 3(c) and 3(d). The error vs the tolerance is similar to the

case where no slack is used, showing that the critical cells are

accounted for appropriately. However, the library characteri-

zation runtimes are dramatically smaller (approximately 2.5

hours and under, compared to 10+ hours), as the number of

type-variant cells that are needed is decreased9.

The library characterization runtime can also be decreased

by reusing previous library characterizations. For a tolerance

τ = 4%, the runtime reductions are between 1% and 22%,

with an average of 7%, when the library created from a

different benchmark is reused. This suggests that there is

significant overlap between designs and that a library of prior

characterizations can be reused in the future to reduce future

library characterization runtimes.

In the case of library characterization for power analysis, re-

centering the transistor dimensions provides adequate accuracy

– adding one type-variant (e.g. N=1) that contains the mean

parameters can correct to approximately 2% of the correct

values. For example, in the alu circuit, while the nominal

power values have a −4% error in total power and a −11%
error in leakage power10, adding one extra type-variant reduces

the error to −.4% in total power and −1.2% in leakage power,

and costs only 6 minutes in library characterization time. In

the s38417 circuit, while the nominal power values have a

−5% error in total power and a −8.5% error in leakage

9Note that the runtime of the type-mapping itself is less than a minute for
all benchmarks and tolerances, and is thus negligible in comparison to the
library characterization time.

10These experiments were run using Liberty NCX [14] to characterize the
library, and Encounter [15] to compute the power of the design.

power, adding one extra type-variant reduces the error to

approximately −1% in total power and −1% in leakage power.

This translates into only 19 minutes in library characterization

time. Thus, accurate power estimates can be performed with

little cost.

V. SUMMARY

In this paper, we presented a method to recover the hierarchy

in layout extracted netlists. The idea is to account for variations

between instances of a type by creating type-variants, and

using these variants to recover the hierarchy. Applications

in validation show that this can result in a significant im-

provement in runtime, and a reduction in the size of the

netlist. Furthermore, applications in timing and power show

that this method can improve the accuracy of timing and power

estimates with a small library characterization overhead. The

experiments show that in physical verification, this method

leads to a 70% reduction in runtime on average, without any

parametric error. In the case of post-layout timing, slack-

weighted type-mapping can be used to reduce the library

characterization needed from over 12 hours to under 2.5

hours. In the future, the work can be extended to hierarchy

degradation coming from wire parasitics as well.

VI. ACKNOWLEDGMENTS

We would like to thank Dr. Saumil Shah and Amarnath

Kasibhatla for some early discussions and experiments.

REFERENCES

[1] T. Lengauer and K. Wagner, “The correlation between the complexities
of the nonhierarchical and hierarchical versions of graph problems,”
Journal of Computer and System Sciences, vol. 44, no. 1, pp. 63–93,
1992.

[2] M. Igusa, H. Chen, S. Chao, W. Dai, and D. Shyong, “Design hierarchy-
based placement,” Jun. 19 2001, US Patent 6,249,902.

[3] P. Russell and G. Weinert, “System and method for verifying a hierar-
chical circuit design,” Jun. 18 1996, uS Patent 5,528,508.

[4] A. Jain, M. Murty, and P. Flynn, “Data clustering: a review,” ACM

computing surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.
[5] J. MacQueen et al., “Some methods for classification and analysis of

multivariate observations,” in Proc. of Berkeley symposium on mathe-

matical statistics and probability, vol. 1, no. 281-297. , 1967, p. 14.
[6] D. Arthur and S. Vassilvitskii, “k-means++: the advantages of careful

seeding,” in Proc. ACM-SIAM Symposium on Discrete algorithms, 2007,
pp. 1027–1035.

[7] Mentor Graphics, “Calibre v2010.2 38.23,” http://www.mentor.com/,
2010.

[8] P. Gupta and F. Heng, “Toward a systematic-variation aware timing
methodology,” in Proc. Design Automation Conference. , 2004, p.
326.

[9] J. Yang, L. Capodieci, and D. Sylvester, “Advanced timing analysis
based on post-OPC extraction of critical dimensions,” in Proc. Design

Automation Conference. ACM, 2005, pp. 359–364.
[10] P. Gupta, A. Kahng, S. Nakagawa, S. Shah, and P. Sharma, “Lithography

simulation-based full-chip design analyses,” in Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series, vol. 6156, 2006,
pp. 277–284.

[11] T. Chan, R. Ghaida, and P. Gupta, “Electrical Modeling of Lithographic
Imperfections,” in International Conference on VLSI Design. , 2010,
pp. 423–428.

[12] Available from http://www.opencores.org.
[13] Synopsys , “Nanotime a-2007.12-sp1,” http://www.synopsys.com/, 2008.
[14] Synopsys, “Liberty ncx d-2009.12-sp3,” http://www.synopsys.com/,

2010.
[15] Cadence, “Soc encounter 6.2,” http://www.cadence.com/, 2007.

