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ABSTRACT
ITRS predicts that over the next decade, hardware power
variation will increase at alarming rates. As a result, design-
ers must build software that can adapt to and exploit these
variations to reduce power consumption and improve system
performance. This paper presents ViPZonE, a system-level
solution that opportunistically exploits DRAM power vari-
ation through physical address zoning. ViPZonE is com-
posed of a variability-aware software stack that allows de-
velopers to indicate to the OS the expected dominant us-
age patterns (write or read) as well as level of utilization
(high, medium, or low) through high-level APIs. ViPZonE’s
variability-aware page allocator, implemented in the Linux
kernel, is responsible for interpreting these high-level requests
for memory and transparently mapping them to physical ad-
dress zones with different power consumption. Our experi-
mental results across various configurations running PAR-
SEC workloads show an average of 13.1% memory power
consumption savings at the cost of a modest 1.03% increase
in execution time over a typical Linux virtual memory allo-
cator.

Categories and Subject Descriptors
B.3 [Design Styles]: Virtual Memory; D.4.2 [Storage Man-
agement]: Allocation/deallocation strategies

General Terms
Design, Experimentation, Management

Keywords
power; variability; memory management; DRAM

1. INTRODUCTION
Over the past decade, inter-die and intra-die process vari-

ations have become more significant [11, 8, 12]. The ITRS
predicts that over the next decade, both performance and
power consumption variation will increase by up to 66%, and
100%, respectively [23]. Variations can stem from semicon-
ductor manufacturing processes, ambient conditions, device
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wear out, and in case of multi-sourced systems, vendors. De-
spite considerable hardware variability, the software stack
assumes homogeneity in both frequency and power dissipa-
tion for a given hardware specification. Device manufac-
turers have partially masked the presence of variability by
guardbanding systems, leading to over-design with less than
optimal power and performance. For example, the device
community has resorted to binning processors by operating
frequencies to reduce the impact of inter-die variation. How-
ever, even with guardbanding, binning, and dynamic volt-
age and frequency scaling, variability is inherently present
in any set of identically specified chips. Furthermore, with
the emergence of multi-core technology, intra-die variation
has also become an issue [21]. To minimize the overheads of
guardbanding, recent efforts have shown that exploiting the
inherent variation in devices [19, 42, 14, 39] yields significant
improvements in both the energy-delay product and overall
system performance.

Memory subsystems also suffer from power and timing
variations. Off-chip DRAM memory may consume as much
power as the processor in a server-class system [25, 47, 22,
49], and this problem may worsen for future many-core plat-
forms (e.g., Tilera’s TILEPro64 [41], Intel’s Single Chip Cloud
Computer (SCC) [20]). A recent study observed up to ap-
proximately 20% power variation in an off-the-shelf set of
nineteen 1 GB DDR3 DIMMs [17]. On-chip memory de-
signers have tried to create process variation-aware memory
subsystems [32, 27, 40, 4] to address this issue, and mul-
tiple efforts have been made to minimize off-chip memory
accesses via caching [43, 24, 38, 18], OS-level [50, 15, 22],
and DRAM-level power management [13, 30, 22]. However,
these designs required changes to existing memory configu-
rations. As a result, we should adapt existing DRAM power
management schemes in software to account for these varia-
tions in power consumption. Moreover, this layer should be
flexible enough to deal with a predicted increase in power
variation for current [23] and emerging [51, 2] memory tech-
nologies (e.g., phase-change memory).

In this work, we present ViPZonE (OS-Level Memory
V ariability-Driven Physical Address Z oning for Energy Sav-
ings), a system-level variability-aware solution that adapts
to the power variability inherent in a set of DRAM mem-
ory modules. Although our approach focuses on harnessing
variability in DDR3 memory at the DIMM modular level,
our approach could be generalized to work at finer granular-
ities of memory, if variability data and hardware support are
available. Our experimental results across various configura-
tions running PARSEC workloads show an average of 13.1%



memory power consumption savings at the cost of a modest
1.03% increase in execution time over a typical Linux vir-
tual memory allocator, running on a simulated high-end PC
platform. The key contributions of this work are as follows:

• An application annotation scheme complemented by a
modified GLIBC library for power-aware memory al-
locations

• A power variation-aware physical address zoning and
page allocation scheme implemented inside the kernel

• A study of the challenges traditional systems will face
as variation in power consumption reaches 100% and
beyond

To the best of our knowledge, ViPZonE is the first OS-
level, pure-software, and portable solution to exploit DRAM
power variation through memory zone partitioning.

This paper is organized as follows. We begin with a sum-
mary of related work and how our approach is novel in Sec. 2,
followed by a brief background section discussing memory
system terminology and the Linux kernel physical page al-
locator zoning scheme in Sec. 3. In Sec. 4, we describe our
target platform and assumptions, and then move to a dis-
cussion of the ViPZonE system architecture and implemen-
tation of both the front-end and back-end. Sec. 5 discusses
the results of our simulations, and we summarize this work
and discuss future research in Sec. 6.

2. RELATED WORK
Most efforts dealing with variation have focused on ex-

ploiting frequency variation in processors [42, 21, 14, 39,
35] and process variations (due to voltage scaling) in on-
chip memory [32, 27, 40, 4]. Hanson et al. [19] measured
the power consumption across identical Intel M processors
and found between 3%-10% variation and up to 2x active
power variation across various DRAMs. Wanner et al. [44]
found over 5x sleep power variation across various Cortex
M3 processors and proposed a variability-aware duty cycle
scheduling algorithm [45]. Sartori et al. [39] looked at fre-
quency variation across processing cores. Pant et al. [35]
proposed hardware signatures to adapt the software stack
to deal with performance variation in the underlying hard-
ware in the context of media applications. Pan et al. [34] has
proposed a selective wordline voltage boosting for caches to
manage yield under process variations. Mutyam et al. [32,
33] and Sasan et al. [40] proposed process variation-aware
cache architectures (traditional and NUCA). Bennaser et
al. [7] proposed a variable-cycle-latency cache architecture
to mitigate the impact of process variations on access la-
tency. Liang et al. [27] proposed replacing 6T SRAM with
3T1D DRAM for caches to address physical device variation.
Zhao et al. [48] proposed cache migration schemes that uti-
lizes fast banks while limiting the cost due to migration to
address access latency variations in a 3D DRAM stacked
non-uniform cache. Meng et al. [31] proposed way prioriti-
zation to minimize cache leakage to address within-die leak-
age variation. Li [26] proposed repairing only important bits
to address process variations.

Traditional main memory management has focused pri-
marily on minimizing accesses to main memory through
smart caching schemes (hardware) or compiler/OS optimiza-
tions (software), yet none of these methods have taken mem-
ory variability into account. Sartor et al. [38] and Gu et

al. [18] proposed exploiting program hints for optimal cache
management to minimize off-chip memory accesses. Wang
et al. [43] proposed a DSP partitioning scheme and instruc-
tion scheduler to minimize energy in multi-bank memories.
Kandemir et al. [24] explored the impact of data transforma-
tions on memory bank locality. Hur et al. [22] and Felter et
al. [15] exploited throttling at the memory controller level
to reduce DRAM power consumption. Delaluz et al. [13]
predicted the idle duration of various memory devices (at
the controller level) to control the use of low power mode.
Zheng et al. [49] proposed the concept of mini-banks to
significantly reduce memory power consumption with mini-
mum performance overheads (within 10%). Memory access
scheduling has also been explored to increase performance
and minimize power consumption [30]. Zhou et al. [50] de-
signed a hardware monitor to track cache misses to improve
system performance. Ahn et al. [1] proposed an energy ef-
ficient memory module that divides DIMMs into separate
virtual entities, improving energy efficiency with minimal
performance overheads. Finally, Bathen et al. [5] proposed
the introduction of a hardware engine to virtualize on-chip
and off-chip memory space to exploit the variation in the
memory subsystem.

Our approach is different from the related works, as it
specifically optimizes for inter-device variability in memory
power, although it may be complemented by other memory
management schemes. Compiler-level and directed-cache
techniques [43, 24, 38, 18] could exploit our custom APIs
(e.g., GLIBC) to define low/high DRAM power consumption
zones and map their data to their preferred zones to min-
imize power consumption. Similarly, OS-level schemes [30,
50] could exploit our variation-aware allocator to map pages
with highest cache miss ratio to low power space to mini-
mize power consumption. Our approach can complement [5];
however, we do not need to modify existing architectures to
support our physical zoning strategy (our scheme is portable
and could be exploited by any system running a Linux ker-
nel, if power data is available). Moreover, our scheme can
differentiate between low read and write-power zones, if they
happen to be different. Similarly, our scheme can comple-
ment [1] by prioritizing among virtual zones within the var-
ious DIMMs. Finally, with hardware monitoring support
such as [50], our scheme could perform variation-aware page
migration with negligible performance/energy overheads.

3. BACKGROUND
3.1 Memory System Architecture

When discussing memory systems and devices, terminol-
ogy often becomes confusing and is misinterpreted by read-
ers. To avoid this, we will briefly define relevant terms in
the memory system. In this work, we use DDR3 DRAM
memory technology.

In a typical server, desktop, or notebook system, the mem-
ory controller accesses DRAM-based main memory through
one or more memory channels. Each channel may have one
or two DIMMs, which is a user-serviceable memory module.
Each DIMM may have one or two ranks which are typically
on opposing sides of the module. Each rank is indepen-
dently accessible by the memory controller, and is composed
of several DRAM devices (Figure 1 shows non-ECC with 8
devices). Inside each DRAM are multiple banks, where each
bank has an independent memory array composed of rows
and columns. A memory location is a single combination
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Figure 1: Components in a Typical DRAM Memory System

of rank, bank, row, and column in the main memory sys-
tem, where an access is issued in parallel to all DRAMs in
the selected rank. This hierarchy is depicted in Fig. 1. In
this work, we are optimizing for variability measured at the
DIMM level. However, our approach can be adapted for
finer granularities, as previously mentioned.

3.1.1 Zoning in the Traditional Linux x86-64 Kernel
In order to understand our ViPZonE back-end implemen-

tation, we now discuss how the traditional Linux kernel par-
titions physical memory space. At the core of the Linux
kernel memory management subsystem is the physical page
allocator. When faced with an allocation request for one
or more pages with certain constraints, the system tries to
find the most suitable allocation in the least amount of time.
The kernel may pass through multiple stages during an al-
location attempt, with greater performance penalties as it
tries harder to find suitable memory.

The page allocator relies on several important constructs,
including, but not limited to: page structures, memory zones,
page freelists, and constraint bitmasks [29]. The kernel uti-
lizes several zones to group regions of contiguous physical
memory (see Fig. 2a), required for legacy hardware support
[29]. In direct memory access (DMA), devices talk directly
with physical memory, bypassing the CPU. However, many
legacy devices can only address the lowest 16 MB of memory,
and must be able to receive page allocations in this region.
The kernel, if configured to support DMA, needs to reserve
this space accordingly. There are also newer devices that
are capable of addressing up to 4 GB of memory, and the
kernel must be able to accomodate these DMA32 devices as
well, albeit with more headroom.

The kernel does this by representing these spaces with
physically contiguous and adjacent DMA and DMA32 mem-
ory zones, each of which tracks pages in its space inde-
pendently of other zones [29, 28]. This allows for separate
bookkeeping for each zone as well, such as low-memory wa-
termarks, buddy system page groups, performance metrics,
etc. Thus, if both are supported, the DMA zone occupies
the first 16 MB of memory, while the DMA32 zone spans 16

MB to 4096 MB. This means that for 64-bit systems with
less than 4 GB of memory, all of memory will be in DMA
or DMA32-capable zones.

The rest of the memory space not claimed by DMA or
DMA32 is left to the “Normal” zone1. On x86-64, this will
contain all memory above DMA and DMA32. Because the
kernel cannot split allocations across multiple zones [29],
each allocation must come from a single zone. Thus, each
zone maintains its own page freelists, least-recently-used
lists, and other metrics for its space.

The kernel tries to fulfill page allocation requests in the
most suitable zone first, but it can fall back to other zones if
required [29, 28]. For example, a user application will typ-
ically have its memory allocated in the normal zone. How-
ever, if memory there is low, it will try DMA32 next, and
DMA only as a last resort (see Fig. 4a for a simplified de-
cision flow). The kernel can also employ other techniques
if required and permitted by the allocation constraints (if
the request cannot allow I/O, filesystem use, or blocking,
they may not apply) [29, 28]. However, the reverse is not
true. If a device driver needs DMA space, it must come from
the DMA zone or the allocation will fail. For this reason,
the kernel does its best to reserve these restricted spaces for
these situations [29].

4. VIPZONE: EXPLOITING OFF-CHIP
MEMORY POWER VARIATION

ViPZonE is composed of several different components in
the software stack which work together to achieve power sav-
ings in the presence of DIMM variability. We refer to these
separate components by the “back-end” and the “front-end”
and describe them in Sec. 4.2 and Sec. 4.3, respectively. ViP-
ZonE uses source code annotations at the application level2,
which work together with a modified GLIBC library to gen-
erate special memory allocation requests which indicate the
expected use patterns (write or read dominance, and high-
/medium/low utilization) to the OS. Inside the back-end
Linux kernel memory management system, ViPZonE can
make intelligent physical allocation decisions with this infor-
mation to reduce DRAM power consumption. By choosing
this approach, we are able to keep overheads in the OS a
minimum, as we place most of the burden of power-aware
memory requests to the application programmer. With our
approach, no special hardware support is required beyond
available power data or sensors that are software-accessible
to the kernel.

An alternative approach could avoid requiring a mod-
ified GLIBC library and application-level source annota-
tions, while still utilizing the ViPZonE physical page allo-
cator. However, such an approach would place the burden
of smarter page allocations on the kernel. This would likely
cause a significant performance and memory overhead, as
the kernel would be required to monitor applications’ mem-
ory access behaviors with hardware support from the mem-

1The “HighMem” zone present in x86 32-bit systems is not
used in the x86-64 Linux implementation.
2Our scheme does not currently support kernel memory allo-
cations (e.g., kmalloc()). The goal of this paper is to provide
programmers with the means to opportunistically exploit
off-chip memory power variation. We are considering ad-
ditional support for both kernel-level power variation-aware
allocation (requires major changes to the kernel), as well as
per-process allocation of memory space to the different zones
through compile-time hints.
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Figure 3: Layered Architecture of ViPZonE With Alternative
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ory controller. We leave the second approach as future work,
and focus primarily on the use of zoning with application
programmer support. The two approaches can be compared
in Fig. 3.

4.1 Target Platform and Assumptions
We target generic x86-64 PC and server platforms, that

run on a Linux kernel and have access to two or more DIMMs
(the more DIMMs, the greater the potential benefit of this
work). If device-level power variation is available, then this
approach could be adapted to finer granularities, depend-
ing on the memory architecture. We make the following
assumptions:

• ViPZonE’s page allocator has prior knowledge of the
approximate write and read power of each DIMM (for
an identical workload). We could detect off-chip mem-
ory power variation, obtained by one of the following
methods: (1) via embedded power data in each DIMM,
measured and set at fabrication time, or (2) through
embedded or auxiliary power sensors sampled during
the startup procedure.

• As DIMM-to-DIMM power variability is mostly fixed
post-manufacturing [17], there is little need for real-
time monitoring of memory power use for each mod-
ule. However, if power variation changes (e.g., due to
aging and wear-out), we assume these changes can be
detected through power sensors in each module (left
as future work).

• We can perform direct mapping of the address space
(e.g., select which DIMM each read/write request goes
through). This is achieved by disabling rank and chan-
nel interleaving (though our method should work in a
multi-channel system with some minor adaptations).
It should be possible to overcome any overheads due
to this by deploying multiple memory controllers as in
[41, 37, 46].

• There is programmer application-level support through
the use of our power-variability enhanced GLIBC li-
brary.

4.2 Back-End: ViPZonE Implementation in
the Linux Kernel

We will begin the discussion of the back-end implementa-
tion of ViPZonE by describing how the generic Linux kernel
handles the physical part of page allocation requests, and
how it divides the physical address space into multiple con-
tiguous zones for this purpose. We then discuss the imple-
mentation of the ViPZonE address partitioning scheme and
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Figure 4: Typical vs. ViPZonE Memory Allocation Flow in Linux x86-64 (Simplified)

allocation approach. Our implementation is based on the
Linux 3.2.14 kernel [28].

4.2.1 Enhancing Physical Memory Zoning to Exploit
Variability in ViPZonE Linux x86-64

In order to support memory variability-awareness, the ker-
nel must be able to distinguish between physical regions of
different power consumption. If the kernel has knowledge of
these power profiles, it can construct separate physical ad-
dress zones corresponding to each region of different power
characteristics. The kernel can then serve allocation requests
using the suggestions defined by the front-end of ViPZonE
(see Section 4.3).

In the ViPZonE kernel on an x86-64 platform, we have ex-
plicitly removed the Normal and DMA32 zones, while still
allowing for DMA32 allocation support. Regular DMA-able
space is retained. Instead, zones are added for each physi-
cal DIMM in the system (Zone 1, Zone 2, etc.), with page
ranges corresponding to the actual physical space on each
DIMM. Allocations requesting DMA32-capable memory are
translated to using certain DIMMs that use the equivalent
memory space. Fig. 2b depicts our revised memory zon-
ing scheme for the ViPZonE back-end. For example, in an
Linux x86-64 system supporting DMA and DMA32, with 8
GB of memory located on four DIMMs (4x2 GB), the ViP-
ZonE back-end would divide the memory space into zones
as follows:

1. DMA zone: 0-16 MB, located on DIMM 1 physically.

2. Zone 1 : 16-2048 MB, located on DIMM 1 physically.

3. Zone 2 : 2048-4096 MB, located on DIMM 2 physically.

4. Zone 3 : 4096-6144 MB, located on DIMM 3 physically.

5. Zone 4 : 6144-8192 MB, located on DIMM 4 physically.

4.2.2 Modifying the Physical Page Allocation Algo-
rithm in ViPZonE Linux x86-64

With this scheme, the ViPZonE back-end now has the
ability to control allocations to lower power DIMMs, com-
pared to the traditional kernel, which makes no distinction.
With zones set up for each DIMM, the kernel has the es-
sential tools it needs to make power variability-aware page
allocations. The modified allocation decision flow is depicted
in Fig. 4b. For example, in a system with four DIMMs, each
with 2 GB of space, the ViPZonE kernel would make allo-
cation decisions as follows:

1. Request for DMA-capable space: Grant in DMA zone.

2. Request for DMA32-capable space (DMA subset im-
plicit): Grant in Zone 2 or Zone 1, with the order
determined by DIMM power consumption and usage
hints (write/read dominance, and high/med/low uti-
lization) passed from the front-end (see Sec. 4.3), or
DMA zone (as a last resort).



3. Request for Normal space: Grant in Zone 4, Zone 3,
Zone 2, or Zone 1, with the order determined by DIMM
power consumption and usage hints (write/read domi-
nance, and high/med/low utilization) passed from the
front-end (see Sec. 4.3). Again, the DMA zone is only
used as a last resort.

4.3 Front-End: High-Level APIs
The other major component of ViPZonE is implemented

as the front-end, in the form of upper layer OS function-
ality in conjunction with annotations to application code.
The front-end allows the programmer to make suggestions
regarding intended use for memory allocations, so that the
kernel can prioritize low power zones for frequently written
or read pages.

4.3.1 Modified C-Library
We took the GNU C library (GLIBC [16]) and imple-

mented our power variation enhanced allocation/de-allocation
methods as part of the standard library (available at [3]).
We will briefly describe the methods and their use. For
more details please refer to our technical report [6].

Table 1: Enhanced GLIBC Methods
Function Parameter Type Return Type
void * vip malloc size size t Request size

vflag size t Bitmap flag used by
ViPZonE back-end page allocator

void vip free ptr void * Pointer to block to be freed
void * vip mmap addr void * Address to be mapped

(best effort mapping)
length size t Size to be allocated
prot int PROT READ l PROT WRITE
flags int MAP PRIVATE | vflag
fd int MAP ANONYMOUS
offset off t

int munmap addr void * Address to be freed
length size t Size to be allocated

There are two key functions shown in Table 1, which are
exposed to the programmer and allow him/her to tell the
memory manager to allocate the object in low power mem-
ory space. We implement vip malloc and vip free as separate
calls to allow the use of custom mmap and munmap system
calls (vip mmap and munmap) that serve as hooks into the
kernel. We used the kernel’s mmap/unmap functions de-
fined in the kernel’s memory manager (mm) as templates.
Furthermore, the kernel consists of ViPZonE helper func-
tions that allow us to pass down the flags from the upper
layers in the software stack down to the lower levels, from
custom do vip mmap pgoff, vip mmap region down to the
page allocator ( alloc pages nodemask). For this purpose,
we reserved the four most significant bits in the flags field
to contain the flags passed down from the upper levels of
the software stack ( vflags).

Because [17] showed that there is a significant difference
between read and write power consumption for the various
DIMMs tested, our vip malloc exploits the notion of memory
pooling to construct a two-region low power memory space
(high-read and high-write utilization) for a given process.
These pools are constructed on the first call to vip malloc
via the vip mmap function (which then makes the call to the
kernel’s virtual memory allocator – going all the way to the
ViPZonE back-end physical page allocator). These pools
are used to serve small requests to minimize the number of
system calls (vip mmap). When the pool space is exhausted
or the pool space is insufficient to serve a memory allocation
request, vip malloc makes a call to vip mmap to serve the

request. These pools are managed separate from the mem-
ory pools managed by traditional malloc, which typically use
sbrk to grow the heap. The vip free function is used to free
low power space. If the space is small enough, it is added
back to the read/write pool it belongs to. If the memory
space is large enough, it is freed via the munmap function.

Because we know that low power memory space is pre-
cious, we try to give as much space back to the OS as pos-
sible (via munmap) when the application no longer needs
it. As a result, we prefer the use of mmap over traditional
sbrk, which assumes the heap grows contiguously, and often
memory is not really freed (e.g., given back to the OS) until
a large amount of contiguous virtual address space is found.

The size of the low power pools is tunable as it depends
upon the domain in which the GLIBC library is deployed.
In embedded systems, the memory footprint tends to be
smaller than the desktop domain, and much smaller than the
server domain, thus the pools may range from a few KBs (at
least 4 KB) of space to MBs (multiples of the page size, e.g.,
4 KB) of space. One key issue is memory fragmentation. To
minimize fragmentation due to many mmap calls, we can
exploit existing patches that re-arrange the virtual address
space where the mmap area grows from the stack downward,
while the heap grows upward as normal [3].

1int lame_encode_buffer_interleaved(
2lame_global_flags *gfp ,
3short int buffer[], int nsamples ,
4char *mp3buf , int mp3buf_size)
5{
6stat ic int frame_buffered =0;
7int mp3size=0,ret ,i,ch,mf_needed;
8...
9
10i f (gfp ->resample_ratio !=1) {
11short int *buffer_l;
12short int *buffer_r;
13
14/* Create two read/modify buffers with
15medium utilization in low power
16memory space
17*/
18buffer_l=vip_malloc(
19s izeof (short int)*nsamples ,
20READ | MED_UTIL);
21buffer_r=vip_malloc(
22s izeof (short int)*nsamples ,
23READ | MED_UTIL);
24i f (buffer_l ==NULL|| buffer_r ==NULL) {
25return -1;
26}
27...
28
29ret = lame_encode_buffer(gfp ,buffer_l ,
30buffer_r ,nsamples ,mp3buf ,mp3buf_size);
31...
32/* Free up the low power memory space */
33vip_free(buffer_l);
34vip_free(buffer_r);
35
36return ret;
37}
38}

Function 1: Sample Annotated Source Code from LAME Library

4.3.2 User Annotations/Programming Model
Table 2 shows the sample set of flags supported by our

GLIBC functions, passed down to the ViPZonE back-end
kernel to allocate pages from the preferred zone. Function 1
shows sample code from the LAME Codec library and how
to use them via our vip malloc function (underlined red func-
tions in Lines 18-23). The (READ, WRITE) flags tell the
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Figure 5: ViPZonE Simulation Framework

Table 2: ViPZonE Supported Flags
Parameter Flag Description
Access Type WRITE The memory space will have

high write to read ratio
READ The memory space will have

high read to write ratio
Utilization LOW UTIL Low utilization

MED UTIL Medium utilization
HIGH UTIL High utilization

allocator that the expected workload is heavily read or write
intensive. If neither write nor read is dominant, the choice
of flag is left to the developer3.

These are used to decide whether to allocate space from
the read or write pools (if there is enough space) or from
DIMMs with low read power or low write power. Similarly,
the utilization flags (LOW UTIL, MED UTIL, HIGH UTIL)
are used to prioritize among pages from low power mem-
ory space. We decided to support these flags (only two
bits) rather than using a different metric (e.g., measured
utilization), since keeping track of page utilization would re-
quire higher storage and logic overheads. To free up the low
power memory space, programmers would need to invoke our
vip free function (Function 1 Lines 33-34). As shown by this
example, the necessary programming changes to exploit our
variability-aware memory allocation scheme are minimal.

5. EXPERIMENTAL EVALUATION
5.1 Experimental Setup and Goals

Our goal is to show that ViPZonE is capable of reducing
power consumption with minimal (almost negligible) per-
formance overheads. In this section we will investigate the
overheads of 1) ViPZonE’s software stack (Sec. 5.2) and 2)
direct address mapping versus interleaved address mapping
at the memory controller level (Sec. 5.3). Next, we will in-
vestigate the benefits of our approach in terms of energy
savings in two scenarios: a small platform (Table 3) and
a large platform (Table 3). Sec. 5.4 will investigate ViP-

3Some algorithms may allocate a common space for both
write and read intensive operation, such as a buffer used
in streaming applications. In these cases, the usage of
vip malloc() is left to the application programmer (e.g.
he/she might split the buffer in two if possible, or arbitrarily
pick write or read priority for a single space).

ZonE’s power savings due to zone prioritization (the ideal
case), then ViPZonE’s power savings due to zone prioritiza-
tion and selective page allocation (with the help of program
annotations). Sec. 5.4 will conclude with a what-if study
that investigates the effect of variation on power consump-
tion as it reaches 100% as predicted by ITRS.

The experimental setup consists of two parts: 1) A real
Linux-based ViPZonE implementation to test for execution
time overheads and 2) a simulation environment to test the
overheads of our direct address mapping (DIMM selection),
and the benefits of our allocation mechanisms in the pres-
ence of power variation. Figure 5 shows our simulation envi-
ronment, which consists of interfacing and modifying GEM5
[10] with DRAMSim2 [36] to simulate our page allocation.
We simulated two DDR3 1 GB DIMMs (a total of 2 GB
physical address space), each DIMM with different power
consumption (due to variation). Our DRAM memory vari-
ation models are obtained from [17] and used to do realistic
simulations and a what-if analysis. Table 3 shows the differ-
ent platform configurations we used and their workloads, the
Sim2Core platform has lower resources than the Sim8Core
platform, as a result, we expect higher main memory uti-
lization.

5.2 ViPZonE Performance Overheads
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Figure 6: ViPZonE Execution Time Overheads With Respect to
Typical Linux Kernel

We have implemented ViPZonE’s front-end by modifying
GLIBC 2.15 [16] and the Linux 3.2.14 kernel [28]. We then
ran PARSEC 2.1 benchmarks [9] with simlarge workloads
to estimate the performance overheads of the software stack
on a real-system (Native configuration in Table 3, running
Ubuntu 10.04 on a VirtualBox VM with 2 virtual CPUs).

As we can see from Figure 6, performance overheads due



Table 3: ViPZonE Platform Configurations
Configuration Cores Threads L1 Caches (I/D) L2 Cache Workload Frequency
Sim2Core 2 4 24kB/32KB 1MB simsmall 1.8GHz
Sim8Core 8 8 32kB/32KB 4MB simsmall 2.0GHz
Native (i5-540M) 2 Virtual 4 - - simlarge 2.53GHz

to ViPZonE’s zone prioritization are minimal. On aver-
age, we observe a slight performance improvement (less than
0.5%), which is in the noise. The main point is that ViP-
ZonE’s performance overheads are minimal and should not
have a major effect on system performance, as the virtual
page allocator is best effort. In order to effectively exploit
the power variation in the memory subsystem we must sup-
port physical address mapping, i.e., we must be able to pri-
oritize physical accesses to a particular DIMM based on how
frequently a virtual page is accessed (see Sec. 5.3).

5.3 Direct Address Mapping Vs. Interleaved
Address Mapping
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Figure 7: Execution Time Overheads of Non-Interleaved DIMM
Accesses

In order to truly test the overheads of DIMM page ac-
cess prioritization, we need to change the way the virtual to
physical address mapping works. Typical mapping assumes
rank interleaving to improve performance. As a result, in a
typical system, with n DIMMs, it is possible that all DIMM-
s/ranks are accessed in a pipeline fashion. While one rank
is opening a row, another rank may be accessed, thus hid-
ing row access latencies. In order to address the variation
of the system, we must disable this interleaving and rely on
direct address mapping, i.e., each page is mapped to a single
DIMM rank physically. To investigate these overheads, we
explored two mappings in GEM5’s memory controller and
ran PARSEC benchmarks on top of two different simulation
configurations (Sim2Core and Sim8Core in Table 3).

Fig. 7 shows the performance overheads due to direct ver-
sus interleaved mapping. We observe an average 1.6% per-
formance overhead for the Sim8Core configuration and less
than 0.5% for the Sim2Core configuration, which gives us
a total of 1.03% execution time overhead across all bench-
marks with respect to the interleaved mapping. Though a
maximum of 6.2% has been observed for the single channel
configuration, this overhead might increase for multi-channel
configurations. To address this issue, we could exploit mul-
tiple memory controllers as shown in [41, 37, 46].

5.4 Power Savings through DIMM Prioritiza-
tion

ViPZonE’s goal is to save power consumption by prioritiz-
ing accesses to the low power DIMMs via zoning as discussed
in Sec. 4.2.1. In order to show the true benefits of DIMM
access prioritization (zoning), we simulated an ideal case
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Figure 8: Average Power Savings (%) - Mapping All Data to the
Ideal Zone vs. Typical Linux Kernel

Table 4: ViPZonE Maximum Physical Space
Benchmark Required (MB) Allocated

(MB)
blackscholes 34 16
bodytrack 42 32
canneal 78 64
dedup 107 64
facesim 341 256
ferret 57 32
fluidanimate 52 32
freqmine 83 64
rtview 127 64
streamcluster 32 16
swaptions 32 16
vips 32 16
x264 32 16

where all applications had unlimited space to the low-power
zone. In this configuration we mapped all pages used by
the PARSEC benchmarks to the low-power DIMM modeled
in DRAMSim2, while the second DIMM remained idle. In
this experiment, we have one memory controller per DIMM.
The base case for comparison in the next set of experiments
(Sec. 5.4-5.6) is the typical scheme where a single memory
controller interleaves physical pages across the two DIMMs
modeled in the system and the virtual memory allocator is
unaware of the power variation in the memory subsystem.
We will refer to this scheme as Typical scheme.

Figure 8 shows the ideal savings with respect to the typi-
cal case (no DIMM prioritization and interleaving enabled).
As we can observe, we see an average of 15.4% average power
consumption savings for the Sim2Core configuration and
15.6% savings for the Sim8Core configuration with respect
to the Typical scheme. The average power consumption re-
flects the total power consumed by the system over the en-
tire execution time of the given workload, so it takes into
account any overheads due to direct mapping with respect
to interleaved mapping.

5.5 Power Savings through Annotations and
Zone Prioritization

Section 5.4 discussed the power consumption savings in
an ideal scenario. However, we cannot dedicate the entire
physical memory space to a single application since the low
power memory space is precious. Moreover, as memory uti-
lization grows past the DIMM capacity, we will be unable to
map virtual pages to the low power DIMM(s). As a result,



we must prioritize access to the low power memory space in
order to minimize the power consumption of the system.

Table 4 shows the total physical space given to each of
the PARSEC benchmarks we tested in our system. Some of
the benchmarks have smaller footprints as the workloads we
simulated were small (streamcluster-x264 ). That is, even if
we ran 4 to 8 threads (Sim2Core and Sim8Core), the maxi-
mum physical low power address space will be limited to the
amount shown in Table 4 for each application. We simulate
the annotation behavior by letting our page allocator know
the expected usage of individual virtual pages, the page al-
locator then decided where to map these virtual pages, be
it low power memory space (e.g., low power zone/DIMM)
or high power memory space. These annotations are hints,
as the allocator will enforce them with best-effort given that
the memory power variations will also vary among systems.
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Figure 9: Average Power Savings (%) - ViPZonE’s Page Priori-
tization vs. Typical Linux Kernel

Like Sec. 5.4, the Sim8Core configuration had lower DIMM
utilization than the Sim2Core configuration due to the larger
amount of on-chip memory resources. Figure 9 shows the
savings due to page prioritization with respect to the tra-
ditional case (no prioritization, rank interleaving enabled).
We observe an average of 15.3% power consumption sav-
ings for the Sim2Core configuration and 10.8% savings for
the Sim8Core configuration (an average 13.1% across both
configurations) with respect to the Typical scheme. The sav-
ings will grow as the memory utilization grows. As memory
utilization shrinks, idle power takes over, and ViPZone will
perform as good as typical memory allocators (e.g., tradi-
tional Linux memory management).

5.6 What-if Scenario: As Power Variation
Reaches 100%
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Figure 10: Average Power Savings (%) As Variation Increases -
ViPZonE’s Page Prioritization vs. Typical Linux Kernel

The experimental results thus far have been based on re-
alistic variation models. In this section, we will investigate
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Figure 11: Average Power Savings (%) As Dedicated Mem-
ory Space Increases - ViPZonE’s Page Prioritization vs. Typical
Linux Kernel

the effects of increased variation in average power consump-
tion. Notice that like Sections 5.4 and 5.5, the benefits of our
scheme are directly proportional to the main memory utiliza-
tion. For this experiment, we limited the available physical
low power space to the same amounts for each benchmark
as in Sec. 5.5.

Figure 10 shows the savings due to page prioritization with
respect to the traditional case (no prioritization, rank inter-
leaving enabled) as variation reaches 100% for the Sim2Core
configuration. Here the ESL label refers to the variation re-
ported in [17], while VAR25 -VAR100 refer to variation in-
creases of 25%, 50%, and 100% respectively. As expected,
the applications with the highest memory utilization (e.g.,
the enterprise based benchmark dedup) see larger average
power savings. Over all benchmarks we see up to 26% av-
erage power savings as variation increases by 100%, with an
average of 22.8%.

The reason facesim does not see the upward improvement
in average power savings the other applications see (as shown
in Figure 10 ) is that its memory requirement is higher. Fig-
ure 11 shows the average power savings of facesim with re-
spect to the Typical scheme as the dedicated physical space
increases for the different projections (ESL-VAR100 run-
ning the Sim2Core configuration. Though the average power
consumption savings increase with more dedicated memory,
the true benefits of our scheme are more noticeable as we
dedicate more space to the facesim. In the cases of 16 MB
to 256 MB, we notice that though most accessed pages are
mapped to low-power DIMM, the second DIMM consumes
much more power due to the variation. Since idle power is
dominant, it will grow equally for both the Typical scheme
and our scheme, which leads to the behavior seen in Fig-
ures 10 and 11.

6. CONCLUSION AND FUTURE WORK
In this paper we presented ViPZonE (OS-Level Mem-

ory V ariability-Driven Physical Address Z oning for Energy
Savings), a system-level variability-aware solution that adapts
to the power variability inherent in a set of DRAM memory
modules. ViPZonE is portable enough to be deployed in
any environment running Linux (from laptops to high-end
servers). Our experimental results across various configura-
tions running PARSEC workloads show an average of 13.1%
memory power consumption savings at the cost of a modest
1.03% increase in execution time over a typical Linux virtual
memory allocator. Our ongoing and future work includes:
1) The complete deployment of our software prototype on an
Atom-board and an Intel i7 board to truly evaluate the ben-



efits of our scheme (with support for more than 4 DIMMs).
2) The adoption of server- and scientific-based workloads. 4)
Bookkeeping and power variability-aware dynamic page mi-
gration between zones. 5) Kernel-space and compiler-driven
per-process zone prioritization. 6) Possibly exploring and
exploiting memory power variation in mobile platforms (e.g.,
Android OS). 7) If the data is available, intra-DIMM power
variation.
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