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Abstract—Double/Multiple-patterning (DP/MP) lithography in
a multiple litho-etch steps process is a favorable solution for
technology scaling to the 20nm node and below. Mask-assignment
conflicts represent the biggest challenge for MP and limiting
them through design rules is crucial for the adoption of MP
technology. In this paper, we offer a methodology for the early
evaluation and exploration of layout and MP rules intended for
speeding up the rules-development cycle. Using a novel wiring-
estimation method, we create layout estimates with fine-grained
congestion prediction. MP-conflicts are then predicted using a
machine-learning approach. In this work, we demonstrate the
use of the method for double-patterning lithography in litho-etch-
litho-etch process; the methodology is more general, however, and
can be applied for other multiple-patterning technologies includ-
ing tripe/multiple-patterning with multiple litho-etch steps, self-
aligned double patterning (SADP), and directed self-assembly.
Results of testing the methodology on standard-cell layouts show
an 81% accuracy in DP-conflicts prediction. The methodology
was then used to explore DP and layout rules and investigate their
effects on DP-compatibility and layout area. The methodology
allows for rules optimization; for example, pushing the minimum
tip-to-side same-color spacing rule value from 1.7× to 1.5× the
minimum side-to-side spacing design rule (i.e., from 110nm down
to 90nm) would more than double the number of DP-compatible
cells in the library.

I. INTRODUCTION

Double/Multiple-patterning (DP/MP) lithography, where
layout patterns are formed in multiple separate exposure and
etch steps (i.e., litho-etch-litho-etch process), is one of the
most favorable solutions for scaling down technology to the
20nm node and below. For the layout to be MP-compatible,
layout features must be assigned to two different masks
without violating any design rules. Most importantly, features
assigned to the same mask, or colored with same color, must
obey the minimum same-color spacing rule1. Any violation
of the same-color spacing is referred to as a MP conflict and
achieving a conflict-free assignment is usually impossible for
many layouts, especially dense layouts. In fact, it has been
shown that layouts typically contain native conflicts, which
are patterns that cannot be correctly assigned to the two masks
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Figure 1. Overview of our methodology for exploration of DP design rules.

without violating the same-color spacing2.
There are two known approaches to get rid of native

conflicts. The first approach is to modify the layout so that
it is possible to achieve a correct assignment and this has
been investigated extensively in literature [1–4]. These works
either fail to achieve a conflict-free assignment or successfully
remove all the conflicts in small layouts (cell layouts) at the
cost of area increase and considerable layout modifications.
The second is a correct-by-construction approach. Here, MP
rules (i.e., coloring and overlay rules) are accounted for during
cell-layout generation and conservative rules are used at the
design/cell interface to avoid any possibility of a conflict after
placement and routing. Designing with MP rules is believed
to be a hassle and conservative rules are expected to have a
significant cost in terms of area [5, 6].

An alternative to the known approaches, which has not
been investigated yet, is to construct layouts with design rules
that would bring MP conflicts down to a manageable number,
allowing manual or automated legalization of the layout. For
this approach to be examined, a method for studying the effect
of rules on MP conflicts as well as layout area is needed.

The work in [7] presents a flow for DP design rules
optimization. The method consists of an optimization loop
in which rules are modified, the layout is generated, and
printability is analyzed. Because actual layout generation and
printability analysis are time-consuming, exploring a wide
range of rules and rules combinations is impractical with such
approach. Moreover, it is susceptible to the specific layout
generator used which makes it tough to measure the inherent
“DP-friendliness” of the rules.

In this paper, we propose a novel methodology for early

1The minimum different-colors spacing rule is equivalent to the minimum
spacing rule in the layout and is obeyed during the construction of the layout.
2Similar issues exist in other flavors of multiple patterning technologies, such
as sidewall image transfer and triple patterning.



evaluation and exploration of DP design rules. The overview
of the methodology is depicted in Figure 1. Given trial design
rules and DP rules, the first step is to generate the layout of
device layers. Next, wiring-layers layout are estimated and
congestion is predicted using a novel fine-grained wiring-
estimation method. The presence of DP conflicts in the layout
is then predicted using a machine-learning approach. In partic-
ular, fine-grained estimates of wiring congestion and estimates
of layout features (e.g., lineends and L and T-shapes) and their
distribution are given to the machine learning (ML) model,
a feed-forward back-propagation Artificial Neural Network
(ANN).

To the best of our knowledge, this paper is the first to offer
a methodology for the exploration of DP rules at early stages
of process development. Although the focus of this paper is on
DP, the methodology is more general and can be applied to
explore rules of other layout-restrictive technologies, such as
triple patterning, self-aligned double patterning, and directed
self-assembly.

We make the following contributions.
• We present the first work on evaluation and exploration of

DP rules intended for speeding up the rules-development
cycle.

• We propose a novel method for estimating the layout and
wiring congestion at a fine-grained level.

• We offer a method that predicts the presence of DP
native conflicts based on machine learning, using neu-
ral networks, and requires basic layout information like
congestion and feature distribution.

• We study the effects of rules and layout styles on DP
compatibility of cells and report preliminary results on
this topic.

The remaining paper is organized as follows. Section II
describes our layout estimation approach that predicts wiring
congestion and distribution of layout features. The machine
learning-based method for DP conflict prediction in the es-
timated layouts is presented in Section III. Different rule-
exploration studies are performed in Section IV. The paper
is concluded with a summary in Section V.

II. PROBABILISTIC LAYOUT AND CONGESTION
ESTIMATION

Our approach relies on layout estimation, rather than actual
generation, to enable early exploration of a wide range of
design rules. We first estimate the device layers of cell
layouts to predict contact-points locations and area of front-
end layers. For this estimation, the design-rules exploration
framework of [8] was used. The framework employs layout-
topology generation methods that were shown to be fast and
accurate [9], which makes it well suited for our approach. For
more details, the reader is referred to [9]. The next step is to
estimate the layout for back-end layers used within the cells
(i.e., M1 in our experiments).

A. Background
At the design level, many techniques exist in literature

to probabilistically estimate congestion without performing
actual routing. All the approaches [10–13] effectively smear
a net across its possible routes and, then, compute congestion
for each tile in the design grid based on the probabilistic
contributions of each net that can pass through that tile. A
minimum spanning-tree (MST) is also used to break multi-
pin nets into constituent two-pin net-segments.

Probabilistic congestion estimation techniques have been
shown to successfully guide design optimization choices at

(a)

(b)

Figure 2. Example of possible wiring solutions with single-trunk Steiner-tree
topology for a three-pin net using (a) horizontal trunks and (b) vertical trunks.

various stages of physical design, including placement [10–
12] and logic-synthesis [14, 15]. Our novel approach extends
and improves upon Steiner heuristic called the single trunk
Steiner tree (STST) [16], leveraging it for wiring and con-
gestion estimation at the standard-cell level. Due to its linear
computation time (as compared to O(nlogn) or more com-
monly O(n2) for MST based approaches) the STST has been
previously used for wirelength estimation [17–19], with [17]
enhancing it to provide a O(nlogn) approximation, which is
on average within 6% of the optimal. We show that our STST
based approach allows for fast, yet accurate congestion/wiring
estimation as well as prediction of the usage of specific layout
shapes and patterns in standard cells. The advantages of using
probabilistic STST-based wiring are:

1) The runtime for computing each probabilistic route is
O(N), where N is the number of pins on the net. Does
not require breaking multi-pin nets into constituent two
pen nets, avoiding expensive computations such as MST,
RST, RSMT, etc.

2) Each route computation is independent of the other,
hence can be easily parallelized if needed.

3) Allows for prediction of local usage of specific pat-
terns and shapes, which is key to predicting multiple-
patterning coloring conflicts.

B. Probabilistic wiring-solution generation
Once the front-end layers are created and contact locations

are determined, we generate a number of possible wiring
solutions for each net (unlike [9], where the wiring of each net
is estimated with a single solution). For each cell layout, the
generation of wiring solutions undergoes the following steps.

1) Create a grid.
2) Pick a net that is not yet processed.
3) Enumerate possible wiring solutions following a single-

trunk Steiner tree topology.
4) Update track utilization for each involved tile.
5) Repeat steps (2) to (4) until all nets are processed.
The grid consists of tiles sized in terms of the number

of horizontal and vertical wiring tracks. The tile size is
configurable; a large tile size would lead to fast running time
but coarse-grained congestion estimates; while a small tile size
would lead to fine-grained congestions estimates at the cost of
running time. In our experiments, we used a tile size of two
vertical tracks and two horizontal tracks3.

In step (3), we enumerate possible wiring solutions for
the net that follow a single-trunk Steiner tree topology. In
general, only wiring solutions within the net’s bounding box
are considered as in the example of Figure 2. When a bounding

3If the width (height) of the cell is not an exact multiple of the computed
tile-width (tile-height), then the tiles in the last column (row) have smaller
horizontal (vertical) track capacities as compared to the rest of the grid.



Figure 3. Example of DR violation and associated extra track utilization.

Table I
SPACING RULES IN VERTICAL AND HORIZONTAL DIRECTIONS

CONSIDERED IN OUR MODELING OF RULE VIOLATIONS
IMPACT ON WIRING CONGESTION.
Tip-to-tip min spacing
Tip-to-side min spacing
L-shape outer corner to tip min spacing
L-shape inner corner to tip min spacing
L-shape to side min spacing
T-shape inner corner to tip min spacing
T-shape side to tip min spacing
T-bend side to side min spacing
Cross inner corner to tip min spacing

box is too small only few solutions will be generated. Having
just a few solutions, a single one in the extreme case, makes
those almost fixed rather than potential solutions. To solve this
problem, any bounding box with a number of rows/columns
falling below a threshold is expanded by a fixed factor (i.e., we
allow detours for such nets). For nets having bounding boxes
with very skewed aspect ratio, we ignore wiring solutions with
common trunks along the shorter direction as such solutions
have very poor wirelength (see Figure 4). Each possible
solution for a net is assumed to be equally probable (e.g., the
probability of each wiring solution in the example of Figure 2
is 1

6 ).
After the possible wiring solutions for the net are generated,

we determine in step (4) the track utilization in the horizontal
and vertical directions for all tiles in the bounding box. Here,
track utilization is the occupied track length multiplied by
the probability of occurrence. Consider the center tile in
the example of Figure 2. The occupied track length in the
horizontal direction is roughly 2.5 times the tile-width and the
probability of occurrence for each occupied track segment is
1
6 . The track utilization in the vertical direction is calculated
similarly and has the same value in this example.

C. Feature distribution and design-rule violations

Once all nets have been processed (by repeating steps (2) to
(4) for all nets), we determine the distribution of the different
features including tips, line segments, and L and T-shapes. The
probability of a feature occurrence at a particular location is
the probability of its corresponding wiring solution.

Given the distribution of features, design-rules violations
are identified and their effect is modeled as extra track
utilization. To illustrate, consider the example design-rule
violation shown in Figure 3. Here, the minimum L-shape-to-
tip spacing rule, SL−to−tip, is violated. To account for this
violation, the utilization is updated to include the amount with
which the rule is violated (i.e., the shaded region in Figure 3)
multiplied by the probability of pattern occurrence (i.e., the
two shapes occurring simultaneously). The spacing rules that
are considered for violation checking in our method are given
in Table I.

(a): Wire length of 12 units. (b): Wire length of 21 units.

Figure 4. Example of an unbalanced net and two of its possible solutions:
(a) a typical horizontal trunk-based solution and (b) a pessimistic vertical
trunk-based solution.

Figure 5. Comparison of the estimated cell area of our approach with that
of actual cell-layouts using the same design rules.

(a): NOR3_X4 cell. (b): FA_X1 cell.

Figure 6. Comparison between actual and predicted congestion.

D. Modeling of congestion and its impact on area
Congestion is the ratio of occupied to available track-length

and is reported for each tile and in the horizontal and vertical
directions separately. The occupied track length is modeled as
the sum of the utilization and track length blocked by wiring
in the orthogonal direction. And, the available track length is
inferred directly from the tile size.

An over-congested tile (congestion greater than 1) indicates
a problematic region for completing the wiring successfully.
Such regions are very likely to necessitate a layout-area in-
crease. For cells with over-congested tiles, the total congestion
overflow is calculated. The extra track-length requirement is
fulfilled by increasing the cell area. Since the cell height
is fixed, the cell width is increased with the minimum cell
unit-widths to meet the requirement. Lastly, congestion in
over-congested tiles is updated to the value 1 and the total
congestion overflow is distributed equally among the newly
added tiles.

E. Method validation
The accuracy of our layout estimation approach is verified

with comparison with real cell-layouts. The layout estima-
tion method is run for the entire Nangate 45nm Open Cell
Library [20] (110 cells) using the same design rules (i.e.,
FreePDK 45nm process [21]). A comparison of the estimated
and actual cell areas, depicted in Figure 5, show an absolute
error of less than 2% on average and a runtime of 38 minutes
in real time (on a single CPU)4. A comparison of the number

4Though the grid-based congestion estimation is fairly accurate, we use the
approach in [8] for estimating the actual impact of design rules on area since
it gave better accuracy for area estimation (1% vs 2% for Nangate).



Figure 7. Percent difference between our wirelength estimates and that of
FLUTE.

Figure 8. Overview of our machine learning based approach for conflict
prediction.

of tiles in each congestion-interval for two standard cells5

is reported in Figure 6. Our approach does a good job of
identifying areas with high congestion, more specifically the
number of tiles with high congestion, which matter the most
for our DP conflict prediction.

Our method was also compared to FLUTE [22], a rectilinear
Steiner minimal tree routing algorithm. Our wirelength esti-
mates, obtained by averaging across all generated solutions,
and runtime are compared with that of FLUTE for nets in the
Nangate library [20]. Figure 7 summarizes the results. Our
approach leads to 11.94% higher wirelength on average and
has 44X faster runtime compared with FLUTE.

III. DP CONFLICT PREDICTION USING MACHINE
LEARNING

A machine-learning approach is used to predict DP conflicts
in cell layouts as well as at cell boundaries in the design.
Artificial neural networks (ANN) have been shown to work
well for prediction problems [23]. As a result, we develop
an ANN-based classifier, more specifically a feed-forward
back-propagation multi-layer perceptron, and use it to predict
whether a layout, with a given set of design rules, will have
a DP native-conflict (essentially requiring layout redesign).

A. Overview
An overview of our machine learning-based approach for

predicting the presence of DP native conflicts in the layout is

5With 0.2 intervals, i.e., with the same form of input to the machine learning-
based conflict predictor.

Table II
LAYOUT DESCRIPTORS INVESTIGATED TO BUILD THE

MACHINE-LEARNING MODEL.
Descriptor Details
Tile horizontal congestion # of tiles at each congestion-interval
Tile vertical congestion # of tiles at each congestion-interval
Tile overall congestion # of tiles at each congestion-interval
Tile wiring property # of tiles with 1D, 2D, and no wiring
Layout congestion vertical, horizontal, and overall congestions
Tile tips # of tiles at each tip-interval
L / T-shapes # of tiles at each L/T-shape-interval
Highly packed tiles # of tiles w/ high congestion and # of tips
Min same-color spacing Side-to-side, tip-to-side, & tip-to-tip rules

depicted in Figure 8. The machine-learning model is calibrated
(as well as tested) using the estimated layouts and congestion
maps obtained from the method described in Section II.
Characteristics of the estimated layout – as well as DP coloring
rules – are given to the model as inputs and are referred to as
layout descriptors. These descriptors are carefully chosen so
as to correlate well with the existence of DP conflicts.

The model’s target data, which is the real-known data that
the prediction is compared with in the training and testing
of the model, is the actual presence/absence of DP conflicts
in real layouts. The identification of DP conflicts in real
layouts was performed using the golden method of odd-cycle
detection in the conflict graph. Specifically, color violations
were detected using Calibre SVRF [24] and conflict-graph
construction and a depth-first search algorithm were imple-
mented in C++ with OpenAccess database to detect odd cycles
in the real layouts. The Neural Network Toolbox in MATLAB
was used in the development of the ANN model [25].

DP conflicts may occur within cell-layouts but also at the
interface between cells post-placement. As a result, for the
training and testing sets of our model, we use layouts of stan-
dard cells as well as layouts of the interface between different
cells, which are taken from post-placement benchmark designs
and are referred to as cell-boundary layout snippets.

The training of the model was performed using cell layouts
from Nangate 45nm Open Cell Library [20] and cell-boundary
snippets from benchmark designs synthesized using the same
library. The testing of the model was performed on a different
set of layouts for cells of the same library and cell-boundary
layout snippets from different benchmark designs.

B. Input layout descriptors

Layout descriptors resulting from our layout/congestion
estimation method include forms of the following layout
characteristics.

• Horizontal wiring congestion.
• Vertical wiring congestion.
• Number and location of tips.
• Number and location of L and T-shapes.
An exhaustive set of layout descriptors, summarized in

Table II and inferred from the above characteristics, is in-
vestigated and training is repeated with various combinations
of descriptors. The descriptors set was pruned depending on
the trend of training accuracy.

The descriptors are fused together into a single input vector
for each training/testing layout. Based on training accuracy it
was observed that horizontal congestion, vertical congestion
and tips had good influence on the prediction accuracy. L and
T-shapes were excluded from the feature set because they did



Table III
SUMMARY OF THE PROPERTIES OF THE ANN MODEL

Number of layers 3
Number of neurons 50
Number of inputs 19
Supported min same-color spacing rules S2S, T2S, T2T
Training-range of min same-color spacing rules 80-150nm
Training error 8.7%

not affect the training accuracy6.

C. Training the classifier
Efficient training of an ANN depends on various factors

such as the nature of the data set and the topology of the
network. The basic ANN structure has three types of layers:
input, hidden and output. Using multiple hidden layers, or even
a single hidden layer, with too many neurons results in an
increased risk of convergence to a local minimum (over-fitting)
and, hence, poor performance on unseen samples. The number
of neurons was chosen, by first starting with a large number
and gradually reducing to a point where best possible results
were obtained.

The model is cross-validated during training so that it is
generalized across variations in the training patterns and over-
fitting is avoided. The Levenberg-Marquardt algorithm [26, 27]
has been shown to be most efficient in attaining a good mean
squared error [28] and, as a result, was used for training our
model.

For robust training, we ensured that all the input features
have nearly same order of magnitude to avoid input features
with larger magnitudes from dominating the learning process.
For the model to perform well on unseen data and to avoid any
learning bias, the selection of cells and cell-boundary snippets
layouts for use in the training was made at random. And, for
the same purpose, almost the same number of positive (layouts
with conflicts) and negative (layouts without conflicts) samples
were used in the training. It is important to note that, if the
frequencies of layouts with/without conflicts differ widely in
a certain technology, either the number of samples of each
type (i.e., positive/negative) can be modified or samples can
weighted according to the relative frequencies to improve the
model’s accuracy.

The tile size also has an impact on DP conflicts. A small tile
size implicitly ignores long-range conflicts; whereas, a large
tile size will have inaccuracy due to ignoring the inherent
locality of conflicts. Different tile sizes were examined and
a tile size of two tracks in each direction showed best results.

The properties of the model are summarized in Table III7.
In practice, the minimum side-to-side (S2S), tip-to-side (T2S),
and tip-to-tip (T2T) same-color spacing rules may have un-
equal values. As a result, the model was designed to support
different values for these rules, which are inputs to the model.

D. Testing and approach validation
To obtain the ANN outputs in binary form8, a thresholding

function is applied. The discrimination threshold was varied
to obtain the Receiver Operating Characteristic (ROC) curve
for the model. Figure 9 shows a comparison between ROC-
curves of our model, random guess, and a multivariate linear

6One explanation for this is that including both horizontal and vertical
congestion already captures the same information given by L and T-shapes.
7We use hyperbolic tangent-sigmoid for the hidden-layer activation function
and a linear function for the output-layer activation function.
8Originally, outputs are decimal numbers because a linear function is used
for the output activation function.

Figure 9. ROC curve for our ANN model compared with those of linear
regression and random guess.

Table IV
RESULTS OF TESTING THE ANN MODEL ON CELL LAYOUTS.

True positives 1270
False negatives 271
Positives detection rate 82.5%

False positives 283
True negatives 1138
Negatives detection rate 80%

regression-based model. The area under the ROC curve is a
measure of the accuracy of the classifier. It can be clearly seen
that our classifier performs significantly better than random
guess and the regression-based classifier.

The ROC curve manifest the trade-off between true and false
positive rates. If the discrimination threshold is chosen so as
to operate in P2 region, then the ANN model over-predicts DP
conflicts; if the model operates in P0 region, DP conflicts will
be under-predicted. A reasonable trade-off was chosen for the
testing, more specifically 82.5% true and 20% false positive
rates (i.e., region P1).

The testing results of the ANN model are shown in Table IV.
The model achieves a positives-detection rate of 82.5% and a
negatives-detection rate of 80%.

IV. DP DESIGN-RULE EXPLORATION

In this section, we use our methodology to explore design
rules, especially DP rules, and study their effects on DP
compatibility of layouts. It is important to note that the results
presented in this section show the strength of the methodology
but are not necessarily generalizable. Design rules, layouts,
and DP-conflicts have complex interaction, therefore, the
results will strongly depend on the precise rule values, layout
styles and the library architecture.

DP-compatibility of the cell library does not guarantee DP-
compatibility of the design after cell placement. To study the
general compatibility of layouts with DP, the compatibility
metric should involve some notion of DP conflicts at cell-
boundaries in addition to DP conflicts in standard-cell layouts.
Furthermore, because DP conflicts in cells are typically harder
to fix than conflicts at cell-to-cell interfaces (which may be
fixed in many cases by cell-placement perturbation), the two
types of conflicts should be weighted when forming the metric
for the overall DP-compatibility of the design. Hence, we use
the following metric:

Design Conflicts = α× CC + (1− α)× CB, (1)

where α is the weighting factor, CC is the fraction of
conflicting cells in the library, and CB is the fraction of
conflicting cell-boundaries in the benchmark design. For our
experiments, we use a weighting factor α of 0.5. Nevertheless,
the weighting factor can be adjusted in accordance with the
relative importance of conflicts within cells and conflicts
across cell boundaries.



Figure 10. Design Conflicts for range of tip-to-side same-color spacing rule.

Table V
BENCHMARK DESIGNS USED IN OUR EXPERIMENTS AND THEIR

CORRESPONDING NUMBER OF CELL INSTANCES AND UNIQUE CELL
TYPES.

Circuit Description Cell instances Cell types
mips processor core 19868 73
tv80 processor core 6429 72
or1200 processor core 3077 55
des cryptography core 1475 28

A. Testing setup
Our design-rule exploration experiments are performed on

the M1 layer in Nangate 45nm standard-cell library [20] with
FreePDK 45nm design rules [21] (65nm for the minimum
spacing in M1). Although we have used a 45nm setup, we
correspondingly scaled the minimum same-color spacing rules
for DP to make the experiments realistic.

For our baseline experiment, we use a cell-height of 10
M2-tracks, 1D polysilicon (poly), and local interconnect (LI)
to perform gate-to-gate connections9. Our methodology, lay-
out/congestion estimation followed by the machine-learning
model, is run to predict the presence of DP conflicts in M1
layouts. For evaluating design area, we use four benchmark
designs from [29] synthesized using Nangate 45nm Open Cell
Library [20] and the area evaluator of [8]. Descriptions, cell-
instance counts, and number of cell-types for all four design
are given in Table V. Prediction of DP conflicts in cell-
boundary layout snippets were performed for the same bench-
mark designs. Since our experiments are performed on the
M1 layer and Nangate library has wide horizontal M1 power
rails (enough to prevent conflicts between features across the
rails), post-placement DP conflicts spanning multiple cells
may only occur at the vertical interface between cells. In our
experiments, we limit the analysis to cell-boundary snippets
at vertical interfaces between cells and we use a snippet size
of Cell Height × 8 M1 Pitches, i.e., four M1 tracks from
each side of the interface. For performing experiments on
different layers or different types of power rails, however, the
layout snippets will need to include snippets at the horizontal
interface between cells as well.

B. DP design-rule exploration
Three spacing rules may have a significant impact on DP-

compatibility: side-to-side, tip-to-side, and tip-to-tip minimum
spacing rules. With DP, each of these rules has two versions:
minimum same-color spacing and minimum design rule in
the layout (equivalent to minimum different-colors spacing).
Among all three rules, tip-to-side spacing is of particular
interest for exploration; tip-to-tip spacing hardly occurs in M1

9Although LI is not needed at 45nm, we investigate its effect on reducing
M1 complexity and, consequently, DP-compatibility.

(a): Average area across all designs

(b): worst-case design area

Figure 11. Design Conflicts and area of benchmark designs for range of
tip-to-side design rule.

layouts (for logic) and side-to-side spacing is usually a pre-
defined target for the technology.

Our first experiment consists of investigating the minimum
tip-to-side same-color spacing rule10. In Figure 10, Design
Conflicts is plotted as a function of the rule value. As expected,
we see an increase in conflicts as we increase the same-color
rule value. The plot identifies a range of rule values with high
impact on DP conflicts, namely values from 90 to 120nm,
and another range with small impact on DP conflicts, namely
values from 120nm to 180nm. Such information can be used to
guide efforts on the process-development side to enhance the
DP-compatibility of layouts. For example, pushing the rule
value from 1.7× to 1.5× the minimum side-to-side spacing
design rule (i.e., from 110nm down to 90nm) would more
than double Design Conflicts. It is worth noting that the plot
shows imperfect monotonicity. This limited noise is due to the
fact that the machine-learning model does not make perfectly
accurate predictions and few incorrect predictions may cause
such noise when the total number of cells in the library is
limited (110 cells for Nangate).

In another experiment, we study the conflict/area trade-
off with changing the minimum tip-to-side design rule. For
a same-color spacing fixed at 130nm (2× min spacing for
all three same-color rules) and for each rule-value, Design
Conflicts and the benchmark-designs area are depicted in
Figures 11. Interestingly, a non-linear trend is observed in
both cases for conflicts as well as design areas, which reveals
optimization opportunities. For example, increasing the tip-
to-side rule from the original value of 65nm to 80nm can
reduce Design Conflicts by 3% with almost no area increase.
Furthermore, 9% reduction in Design Conflicts is observed
when the tip-to-side design rule is increased to 100nm but the
area overhead in this case is 4.7% on average.

The proposed methodology is also applied to study the ef-
fects of other design rules (layout styles) on DP-compatibility.

10This rule affects the coloring of tip-to-side patterns and should not be
confused with the minimum tip-to-side design rule, which defines the spacing
of tip-to-side patterns in the layout.



Figure 12. Design Conflicts and design area for 8-track, 10-track, and 12-
track cell-heights.

Figure 13. Design Conflicts and design area by using: local interconnects
(LI) to perform poly-to-poly connections, LI to perform connections of only
neighboring poly gates, and no LI.

In one experiment, we vary the cell-height while keeping all
other design rules fixed and using a same-color spacing of
130nm. Three cell-heights were investigated: 8, 10 (baseline),
and 12 M2 tracks. Results, depicted in Figure 12, show that
a 10-track cell-height for Nangate library seems to be a good
compromise between area and DP-compatibility.

A study of different local interconnect (LI) schemes is also
conducted using our methodology. Assuming polysilicon is
one-dimensional, three cases were investigated: LI replaces
M1 to perform gate-to-gate connections (if possible), LI re-
places M1 to perform short connections of neighboring gates
only (i.e., “Limited LI”), and “no LI” where all gate-to-gate
connections are performed on M1. The results depicted in
Figure 13 show that DP-conflicts as well as area are insensitive
to the LI scheme. An important conclusion is that adding a
horizontal LI layer, to wire poly and relax the M1 layer, does
not bring any noticeable benefits with this particular process
(i.e., FreePDK 45nm process [21]).

V. CONCLUSIONS

We presented the first work on early evaluation and explo-
ration of multiple patterning rules intended for speeding up the
rules-development cycle. The proposed methodology consists
of a novel layout/congestion estimation method and a machine-
learning based DP-conflict predictor. The methodology was
used to explore DP and layout rules and investigate their
effects on DP-compatibility and layout area. Although the
focus of this paper is on DP, the methodology is more general
and can be applied to explore rules of other layout-restrictive
technologies, such as multiple patterning, self-aligned double
patterning, and directed self-assembly. Essentially, all that
is needed is a layout conflict checker to train the machine
learning model. Our ongoing work also explores using the
same methodology to assess the impact of “blocking” usage
of certain layout patterns.
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