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ABSTRACT
Design rules (DRs) are the primary abstraction between design and manufacturing. The optimization of DRs to achieve
the correct tradeoff between scaling and yield is a key step in developing a new technology node. In this work we propose
a design-of-experiments based framework to optimize DRs, where layouts are generated for different DR values using
compaction. By analyzing the impact of DRs on layout scaling, we propose a novel Boolean minimization based approach
to reduce the number of layouts that need to be generated through compaction. This methodology provides an auto-
mated approach to analyze several DRs simultaneously and discover area-critical DRs and DR interactions. We apply this
methodology to middle-of-line (MOL) and Metal1 layer design rules for a commercial 20nm process. Our methodology
results in 10 − 105× reduction in the number of layouts that need to be generated through compaction, and demonstrates
the impact of MOL and Metal1 DRs on the area of some standard cell layouts.

1. INTRODUCTION
The resolution limits of 193nm lithography coupled with the delay of production ready Extreme Ultraviolet (EUV) lithog-
raphy has necessitated the need for several process innovations to ensure scaling. This includes multiple patterning, use of
restricted DRs and the introduction of local interconnect layers. These changes have had a significant impact not just on the
manufacturing process but on circuit design as well. Design rules (DRs) provide a seamless abstraction of the capabilities
of the manufacturing process to circuit designers in the form of geometric constraints on circuit layout shapes. Simulta-
neously, DRs serve as a target that the foundry needs to meet by tuning process parameters. The number and complexity
of design rules has been growing rapidly with each technology node, with page count of design rule manuals increasing
by 2× with each technology node.8 Apart from significant impact on chip area and manufacturing yield, these DRs affect
electrical metrics like power, delay and crosstalk. DRs also influence the behaviour of placement and routing tools during
physical design.

Design Rule optimization is the process of determining the precise DR values for a new technology node. It is an
extremely critical part of ramping up a new technology node and it typically involves several iterations between the foundry
and early technology adopters. On the foundry side, DR values are determined by evaluating critical test structures, either
through process simulation or test wafer runs. This approach allows the foundry to analyze each rule separately and
determine the resolution limits of the process. On the other hand, circuit designers generate standard cell layouts, either
manually or through automated layout generation tools such as Progenesis1 to evaluate the design impact of various design
rules. But optimizing hundreds of DRs simultaneoully for several different layout patterns is a computationally intractable
problem. As a result, DR optimization is a slow and ad-hoc process. Hence, there is a strong need to develop a systematic
and automated approach to optimize DRs.

Several previous works have looked at methods for design rule optimization. Most approaches focus on lithography
simulation based analysis to explore design rules. For example, Zhang et. al.10 analyzed test structures to determine the
minimum resolvable design rule values by simulating test structures. Similarly, Chang et. al.5 explored metal layers DRs
by evaluating both parametrized test structures and real layout features using an inverse lithography tool. Ho et. al.,7 on
the other hand, performed full chip lithography simulation to first find hot-spots which are then used to improve the design
rule set. Lithography simulation based approaches cited above do not evaluate the design impact of DR values, either with
respect to their impact on chip area or any electrical metric like performance, power and signal integrity. Capodieci et. al.4

suggested a more comprehensive approach based on automated generation of standard cell layouts that analyzes the impact
of DRs on layout area, manufacturing yield, performance and even mask cost. Unfortunately, the slow and cumbersome
nature of layout generation limits the approach to analyzing only one rule at a time for a few critical DRs. Ghaida et. al.6



proposed a novel approach to evaluate several DRs and layout topologies by developing a fast layout and yield estimation.
But the approach only “estimates” layouts and hence suffers from limited accuracy. This prevents the usage of such a
framework to determine precise DR values.

In light of the limitations of previous approaches to co-optimize several design rules simultaneously with respect to
both design and process metrics, we propose a systematic and hierarchical framework to co-optimize DRs illustrated in
Figure 1. This framework first explores several different DR rules and layout styles using a fast layout and yield estimator
to find the some good candidate solutions. For each of these candidate DR sets and layout styles, standard cell layouts are
generated either through automatic layout generation tools or through manual layout design. This is the slowest step of the
proposed framework. Finally, for each of these standard cell layouts, layout compaction can be used to perturb DR values
and analyze the impact on compacted layouts. This paper focuses on the last step of the DR optimization framework in

Figure 1. Hierarchical framework for design rule optimization.

Figure 1, compaction-driven fine-tuning of DRs. More specifically, we focus on the area impact of DRs. The description
of our compaction-based method is covered in Section 2. To reduce the number of layouts that need to be generated for this
compaction-driven DR optimization, we propose a novel Boolean minimization based experiment reduction methodology
in Section 3. The methodology is applied to a commercial 20nm DR set in Section 4. Finally, we conclude this work in
Section 4.

2. COMPACTION-DRIVEN DESIGN RULE OPTIMIZATION
Layout compaction or migration is the process of perturbing an existing layout to achieve the minimum possible area while
adhering to the set of input design rules. A layout compaction tool allows a convenient framework to explore DRs. Starting
with a DRC-clean input layout, we can perturb a chosen set of DR values and generate minimum area output layouts which
are DRC-clean with respect to the perturbed design rule values. This framework is illustrated in Figure 2. These output
layouts, which we shall refer to as variant layouts, can then be analyzed to evaluate the impact of DR value changes on
design and process metrics. In this work, we only analyze the impact of DRs on area.

A compaction based approach to explore DRs, using the framework illustrated in Figure 2, has several advantages.
It allows us to analyze the impact on relevant metrics when multiple DR values are changed simultaneously. Hence DR
interactions can be accurately estimated. Since it only moves layout shapes, it is significantly faster than layout generation.
The primary drawback of this approach is that it is useful only when the change in DR values is not very large. This is
because in such a scenario, a different layout topology may be required to achieve minimum area, a solution that compaction
cannot discover.



Figure 2. Design rule optimization using layout compaction.

3. EXPERIMENT REDUCTION METHODOLOGY
Consider a case where we need to analyze a set of k design rules (d1, d2, . . . dk) each with m different levels using the
compaction based approach of the previous section. If we were to use a naive approach, we would need to generate mk

variant layouts. Even for analyzing just 10 design rules each with 5 levels, we would need to generate 510 variant layouts
through compaction, which is clearly intractable. In order to reduce the intractable number of “experiments” (variant
layout generation and analysis) that need to be performed in case of a naive compaction based approach, we propose a
novel experiment reduction methodology in this section. A brief overview of the various steps of our experiment reduction
methodology are as follows:

1. Choose a set of k DRs, d1, d2, . . . dk that need to be optimized simultaneously.

2. Two-level Experiment: Considering only two values per DR, dmin

i
and dmax

i
, 2k variant layouts are generated using

compaction, Area of each of these variant layout is computed.

3. Boolean Minimization: Find minimal Boolean expression for each unique area value, which prunes out DRs and
their interaction terms that do not affect area.

4. Multi-level Experiment: Perform a fine-grained analysis of the area-critical DRs and DR interaction terms only to
model area as a function of DRs.

In the following we describe each of these steps in detail, with formal quantification of the reduction in experiment size
achieved as a result of our approach.

3.1 Two-level Experiment
Once a set of DRs are chosen for analysis, only two discrete values are considered for each DR, dmin

i
and dmax

i
in this step.

The lower value dmin

i
is taken as the default value in the design rule manual (DRM). The higher value, dmax

i
is taken as

20% higher than the DRM value. The choice of 20% as the upper limit of DR value change is arbitrary. A large DR value
change is unacceptable since compaction based DR optimization makes sense only for small DR value changes, as pointed
out earlier in Section 2. Very small DR value changes, on the other hand, may leave little room for DR value optimization.
We, therefore, generate 2k variant layouts for each input layout, corresponding to all the different combinations of DR
values. The area of each of these variant layouts is measured. The result of this two-level experiment can be represented
as a table with k+1 columns and 2k rows. The first k columns consist of DR values for the k DRs being analyzed and the
last column is the area of the corresponding variant layout.



3.2 Boolean Minimization
The key observation underlying the method of Boolean minimization for reducing experiment size, using just the two-level
experiment, is that the relevant metric, area, is a monotonic function of DR values. This implies that whenever any DR
value is increased, the layout area either increases or remains unchanged. This monotonicity allows us to prune out DRs
and their interaction terms that do not affect area with only a two-level experiment, by using Boolean minimization.

The first step to analyze the 2k × (k + 1) tabular result obtained from the two-level experiment in Section 3.1 is to
abstract all the DRs as Boolean variables, i.e. for each DR di, i.e. replace dmin

i
by FALSE and dmax

i
by TRUE. Then find

the number of distinct area values among all the 2k experiment results. Suppose T unique area values A1, A2 . . . AT are
obtained. The two-level experiment table is then scanned to find all the variant layouts which have the same area value At.
We can then write a Sum-of-Products form Boolean expression for At with each DR di represented as a Boolean variable
bi. This Boolean expression is then minimized to obtain a minimal Boolean expression corresponding to At. A sample
Boolean expressions is illustrated in Equation 1. This procedure is repeated for all the area values A1, A2 . . . AT to get T
minimal Boolean expressions corresponding to each unique area value.

At → b̄1b̄2 . . . ¯bk1
bk1+1 . . . bk2

+more minterms (1)

The set of T minimal Boolean expressions we obtain for each unique area value of the two-level experiment provides a
compact and insightful overview of how design rules affect layout area. It also provides a precise means of determining
which DRs or DR interaction terms actually impact area. For example, suppose we analyze a set of three DRs d1, d2 and
d3. A sample solution set with three unique area values A1, A2 and A3 along with the Boolean expression before and after
minimization is shown in Equations 2-4. The minimized Boolean expressions here imply that DR b1 does not affect area,
and DR b3 is area-critical only if DR r2 has value greater than dmin

2 .

A1 → b̄1b̄2b̄3 + b̄1b̄2b3 + b1b̄2b̄3 + b1b̄2b3 → b̄2 (2)
A2 → b̄1b2b̄3 + b1b2b̄3 → b2b̄3 (3)
A3 → b̄1b2b3 + b1b2b3 → b2b3 (4)

Similarly, for a general minterm as shown in Equation 1, r1 = (k − k2) DRs do not matter, i.e any value (low or high) of
these DRs does not change the layout area. This assumption is valid due to the monotonic nature of area with respect to
DRs. Hence, all the following types of cases can be eliminated from the complete experiment: (d1, . . . , dk1

) at minimum
level (dk1+1, . . . , dk2

) at maximum level and any non-minimum value for the rest of the variables. Hence, a total of
mr1

− 1 cases are eliminated from the multi-level experiment. If there are a total of n minterms corresponding to different
area values (each area value can have multiple minterms) and minterms have r1, r2 . . . rn don’t care variables, then the
total number of experiments that need to be run is shown in Equation 5 and 6.

numExpTwoLevel = 2k (5)
numExpMultiLevel = (mk

−mr1
−mr2

− . . .−mrn + n− 2k) (6)

An important observation here is that some of the DRs will not be present in any of the T Boolean expressions. This
means that such DRs are non-critical for scaling, i.e. changing these increasing these DR values by 20% will have no
impact on the area of the layout under consideration. The reduction in number of experiments achieved by not perturbing
such non-critical DRs is already accounted for in Equation 6. Clearly, a significant advantage of the Boolean minimization
approach is that it provides a quick visual interpretation of DRs that actually matter.

3.3 Multi-level Experiment
The last step of our approach is to generate variant layouts only for the critical DRs and DR interaction terms as determined
by the Boolean minimization approach discussed in the previous section. But instead of considering only two levels for
these DR terms, multiple levels ranging from dmin

i
to dmax

i
are considered for each DR, with the minimum allowable step

size. The minimum allowable step size is typically the grid size of the layout, which in our experiments is 1nm. Once
variant layouts are generated for the relevant cases with a grid-size granularity, layout area can be modeled as a function
of DR values. Conventional regression based fitting could be employed, but it is unlikely to work well due to the discrete



nature of change in area with DR values. If the number of experiments that need to be performed in the multi-level stage
is not too large, a look-up table based model could be used.

Note that in the worst case scenario r1 = r2 = . . . rn = 0. As a result, no reduction in experiment size is obtained
from this approach and a total of mk experiments will have to be run. Hence, this approach does not guarantee reduction in
experiments but relies on the fact that for most layouts, only a small subset of DRs and interactions actually affect layout
area.

3.4 Further Experiment Reduction: Ignoring Neighborhood Interactions
In addition to the limitation that the Boolean minimization based approach does not guarantee experiment reduction, this
approach cannot handle an arbitrarily large number of DRs. This is because 2k variant layouts need to be generated in the
two-level experiment initially, which increases exponentially as the number of DRs, k, increases. In order to reduce the
number of experiments in the two-level experiment, we need to make simplifying assumptions. In this work, we assume
that only the interaction of DRs of non-neighboring layers can be ignored. Suppose we have l layers, L1, L2, . . . Ll each
with kL1

, kL2
, . . . kLl

rules where L1 and L2 are neighbors, L2 and L3 are neighbors and so on. Since only neighboring
layers interact, we can construct separate binary factorial experiments for each set of interacting rules. Then the reduction
achieved by splitting a single large factorial experiment to multiple smaller factorial experiments is as shown in Equation
7.

∆Runs = 2kL1
+kL2

+...kLl − (2kL1
+kL2 + 2kL2

+kL3 + . . . 2kLl−1
+kLl ) (7)

4. EXPERIMENTAL RESULTS
Sagantec iDRM3 is used as the compaction engine of our DR optimization framework. The tool allows us to generate
DRC-clean variant layouts when DR values are perturbed through layout compaction. The methodology was evaluated
for 20nm design rules which are currently under development at GlobalFoundries. A total of 16 DRs corresponding to
local interconnect and Metal1 layers are perturbed to generate variant layouts using the compaction tool. In addition to the
these perturbed DRs, 52 additional DRs corresponding to polysilicon, active, local interconnect, contact and Metal1 layers
are coded into the compaction tool. These DRs are not perturbed during our analysis but are treated as constraints during
compaction. Transistor sizes are kept fixed during compaction to prevent any performance impact. MOL and Metal1 layer
DRs are chosen for analysis because these layers are undergoing significant changes at 20nm. Local interconnect layers
are being introduced at 20nm, while Metal1 will be double patterned. Hence, analyzing the design impact of DRs of these
layers is extremely critical for rule development.

Seven different standard cell layouts, which were DRC-clean with respect to rule values in the DRM, were analyzed
using this methodology. The Boolean minimization was performed using an existing MATLAB implementation of Quine-
McCluskey algorithm.9 Area of variant layouts was computed using Mentor Calibre.2 For analyzing the 16 DRs, 216
variant layouts need to be generated for the two-level experiment. The experiment reduction method we proposed in
Section 3.4 is used to reduce the number of experiments required ( This simplification assumes that since MOL and Metal1
layers are not neighbors, their DRs do not interact.). Hence, the rule set to be analyzed is split into two groups: One group
for MOL layers and another for Metal1 layer. Note that DRs corresponding to the contact layer, which connects MOL and
Metal1, are included in both these groups. We shall present results for these two groups of DRs separately.

4.1 Middle-of-Line DR Analysis
A total of 9 DRs corresponding to local interconnect and contact layers are considered here. Without our experiment
reduction methodology, each of these DRs must be perturbed in steps of 1nm (grid size) to accurately model area as a
function of these DR values. A total of 3 × 107 variant layouts per standard cell layout would be required to perform
this analysis. Using our experiment reduction approach, only 512 variant layouts need to be generated for the two level
experiment for each standard cell. These results are then analyzed using our Boolean minimization based approach. Let
us observe the result after Boolean minimization for one standard cell, OAI22. After generating 512 variant layouts and
computing the area of all the layouts, we found that there are 8 unique area values. Binning all the tabular entries for
each area value and performing Boolean minimization, a minimal Boolean expression for each area value is obtained as
shown in Equation 8-14, where the area values shown is normalized. From these equations, we can see that only three rules



Table 1. Summary of Boolean minimization for MOL layer DR analysis of 20nm standard cell layouts
Cell Name # Critical Rules Max. Area Increase (%) # Multi-level Experiments Required

CKBF2 0 0 0
NAND2 2 1.1% 22
NOR2 2 1.4% 14

MUX21 2 1.7% 13
MUX22 2 0.7% 22
OAI22 3 7.8% 286
SDFFQ 0 0.0% 0

are area-critical, d2, d4 and d9. Another observation from Equation 1 is that when d2 = dmin
2 and d9 = dmin

9 , all cases
where d4 varies from dmin

4 to dmax
4 can be ignored without losing any accuracy in modeling area. With these reductions,

perturbing each of these three critical rules in steps of 1nm from dmin to dmax, would require 286 variant layouts in the
muli-level stage.

1.000→ d̄2d̄9 (8)
1.020→ d̄2d̄4d9 (9)
1.022→ d̄2d4d9 (10)
1.042→ d2d̄4d̄9 (11)
1.051→ d2d4d̄9 (12)
1.069→ d2d̄4d9 (13)
1.079→ d2d4d9 (14)

The results after Boolean minimization for all the standard cells are summarized in Table 1. For two standard cells,
CKBF2 and SDFFQ, there is no impact on cell area for the two-level experiment. This implies that increasing the DR
value of all the 9 MOL rules considered by 20% will not increase their cell area. For all the other standard cells that were
analyzed, only 2 − 3 DRs are area-critical. The number of experiments that need to be performed in the multi-level step
are shown as well.

For the two-level experiment, area of a standard cell variant layout is maximum when all the 9 DRs that are perturbed
have a value 20% higher than the default manual value. We report the percentage difference between the area of this
variant layout and the nominal unperturbed layout and report it in Table 1. Notice that only one standard cell, OAI22, has
a significant change in area during this analysis. Hence, we focus on this standard cell for the multi-level experiment. 286
more variant layouts are generated for the OAI22 standard cell, where relevant DR values are perturbed in steps of 1nm.

The results for the multi-level experiment for OAI22 layout is summarized by the scatter plot in Figure 3, with area
on the y-axis and sum of the three area-critical DRs on the x-axis. Since only 286 data-points are required to completely
model area of the OAI22 cell as a function of the three area-critical DRs, a look-up table is used instead of any regression
or machine learning based model.

The sum of DR rules can be considered as a rough metric that tracks the improvement in manufacturing yield with DR
value change. With this approximation, we can plot the optimum design-process tradeoff using the look-up table based area
model, as shown by the curve in Figure 3. For a full chip design with several different standard cells, a weighted sum of the
area of different cells can be used, with weights assigned based on their usage in the design. In our case, since OAI22 is the
only standard cell with a significant area change1, the full chip design-process tradeoff curve would be a scaled version of
this plot. Overall, these results show that for the set of standard cell layouts that we analyzed, MOL layer DRs do not affect
scaling significantly. This implies that MOL DRs can be relaxed without any area penalty for all the standard cell layouts
we considered (except OAI22). It also suggests that DRs that actually limit scaling actually lie in other critical layers that
we have not analyzed so far, either front-end polysilicon and active layers, or Metal1.

1Less than 2% area change for 20% DR value change in all the other standard cells is insignificant and hence not modeled.



Figure 3. OAI22 cell area versus sum of 3 area-critical DRs.
Table 2. Summary of Boolean minimization for Metal1 layer DR analysis of 20nm standard cell layouts

Cell Name # Critical Rules Max. Area Increase (%) # Multi-level Experiments Required
CKBF2 1 0.6% 17
NAND2 0 0.0% 0
NOR2 1 0.3% 17

MUX21 1 0.6% 17
MUX22 1 0.8% 17
OAI22 0 0.0% 0
SDFFQ 8 1.6% 103181503

4.2 Metal1 DR Analysis
Similar to our analysis method for MOL design rules, 9 Metal1 DRs are analyzed here. Since this layer is double patterned,
we focus primarily on different spacing rules, especially those related to line-end, in our analysis. These DRs are typically
considered very critical for ensuring native conflict-free layouts without incurring an area penalty. A total of 512 variant
layouts are generated in the two-level experiment, which is followed by Boolean minimization. The results after this step
are summarized in Table 2. Note that without our experiment reduction approach, a total of 2 × 109 variant layouts need
to be generated, since each of the 9 rules that are considered must be varied in steps of 1nm between dmin

i
and dmax

i

As we can clearly see from the maximum area increase values in Table 2, Metal1 DRs do not significantly affect the
area of any of the standard cells that we analyzed. This behaviour is similar to the results obtained for MOL DRs. This
somewhat surprising result indicates that both Metal1 and MOL DRs can be relaxed without any penalty on the area of the
standard cell layouts considered here. These result also suggest that polysilicon and active layer DRs are the real limiters
for area reduction.

One observation from Table 2 is that for SDFFQ cell layout, the number of variant layouts that need to be generated
during the multi-level experiment is very large. This shows that although our method typically provides a significant
reduction in experiment count, it does not guarantee a tractable number of variant layouts that must be generated in the
multi-level step, as pointed out earlier.

5. CONCLUSIONS AND FUTURE WORK
In this work, we proposed and implemented a novel methodology to simultaneously co-optimize several different design
rules using layout compaction to generate layouts by perturbing DR values. We proposed a novel Boolean minimization
based approach to reduce the number of layouts that need to be generated via compaction to accurately model standard cell



area as a function of DRs. Our methodology allowed us to automatically discover area-critical DRs and DR interactions,
which can potentially help guide rule development during early technology ramp. To demonstrate our methodolody, it is
applied to a commercial 20nm DR set for MOL and double patterned Metal1 layers. Our results indicate that for most of
the standard cell layouts we analyzed, MOL and Metal1 DRs are not area-critical. This suggests that front-end DRs are the
area-critical rules that need to be improved in order achieve better scaling.

Although this work focuses on only the area impact of DRs, the methodolody needs to be extended to capture other
key metrics that are affected by DR change, especially manufacturing yield. In the future we plan to address this limi-
tation by developing a process metric that can accurately capture the yield of different variant layouts generated through
layout compaction. Once area, yield and other relevant metrics are accurately modeled, the goal of automated design rule
optimization can be realized.

In addition to developing a process metric to estimate manufacturing yield, approximate experiment reduction methods,
which allow further experiment count reduction with only a limited accuracy loss, are being explored.
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