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Abstract—Short-loop process monitoring structures (usually
simple device I − V , C − V measurements made after M1
fabrication) are commonly put in wafer scribe-lines. These
test structures are almost always design independent and
measured/monitored by the foundry to keep track of process
deviations. We propose a design-dependent process monitoring
strategy which can accurately predict design performance based
on simple Ieff -based delay and Ioff -based leakage power
estimates. We show that our strategy works much better
(0.99 correlation vs. 0.87) compared to conventional design-
independent monitors. Further, we use the predicted delay
and leakage power for early yield estimation for pruning bad
wafers to save test and back-end manufacturing costs We show
that wafer pruning based on our approach can achieve upto
98% of the maximum achievable benefit/profit. We design the
measurement and prediction schemes so as to minimize data as
well as computation that needs to be kept track of during wafer
fabrication. Such design-dependent process monitoring can help
target process control/optimization effort, enable quicker yield
ramp besides saving test and manufacturing costs.

I. INTRODUCTION

Modern manufactured chips exhibit wide
power/performance spread which necessitates careful
screening. Frequency and power tests done after packaging
to screen defective chips are expensive and time consuming.
Moreover, the defective chips till this point have already
incurred large manufacturing and packaging costs. Therefore,
there is an incentive to prune bad wafers and chips during
early stages of manufacturing wherever possible using simple
wafer level tests.

An example of post-silicon diagnosis is shown in [6,19],
where delay values of ring oscillators (RO) are used as
references for delay defects screening. There is an inherent
error in the estimation because every critical path has different
sensitivities to process variations. A configurable critical path
monitor is introduced in [4], which tracks critical delay within
small error. Note that directly measuring path delays is not
applicable for early wafer pruning because measuring cannot
be done until all metal layers are fabricated.

In [8], parametric test structures are placed in scribe-lines
(i.e. empty space between dies) to detect process variations
for circuit performance evaluation without sacrificing wafer
area. The test structures are designed to be similar to the
circuit to ensure high correlation with critical path(s). Due
to area constraints, test structures placed in scribe-lines are
limited. Therefore, they are unlikely to capture all critical path

delays variation of a circuit, which have different sensitivities
to process variations.

Cho et. al. [9] measure electrical parameters from
manufacturing in-line benchmark structures (MIBS) to train
a neural network for product performance prediction. The
method is made capable of targeting multiple critical paths
and other specification constraints. Since the neural network
is trained or fitted based on a set of training data and output
performances, characteristics of target circuit are not modeled
explicitly. This can lead to unpredictable errors when process
variations are different from the chosen set of training data.

Alternatively, Liu et. al. [7] proposes a method to synthesize
a representative critical path for post-silicon delay prediction.
Although the synthesized critical path is designed to have
maximum correlation to all critical paths, it may fail to match
circuit performance variations. This happens whenever process
variation is not evenly distributed as predicted but amplified
by a particular process parameter.

In this work, we propose a design dependent approach of
accurately estimating circuit performance and leakage power
after the metal-1 stage of manufacturing. As opposed to
adding new test structures, we try to leverage existing process
monitoring I-V, C-V measurements which are very commonly
used in modern silicon foundries. We derive the design-
specific sensitivities of leakage power and delay of critical
paths to changes in off current (Ioff ) and effective drive
current (Ieff ) [10]–[13] respectively. These sensitivities help
in concisely modeling the behavior of the design to process
variations, which can then be used by the foundry for delay
and leakage power estimation. Our work is different from
the ring oscillator guided performance measurements. Though
ring oscillator guided testing strategies [6,19] are common,
we have not seen any work dealing with designing scribe-
line ring oscillators which is design specific. Moreover, due
to area constraints, only a small number of such ring oscillator
based test structures can be embedded in the scribe-lines.
In contrast, simple scribe-line based current and capacitance
measurements are almost universally done and in this work,
we attempt to use these measurements for delay prediction.

A. Device I-V and C-V measurement
In this paper, we assume that device parameters are obtained

from the compact scribe-line test structures (e.g. [3]). These
test structures are design independent and placed in scribe-
line and capable of measuring individual device currents



and capacitance. We assume that following parameters are
measured from scribe-line test structures 1:

• Ih=Ids at Vgs = Vdd, Vds = Vdd/2
• Il=Ids at Vgs = Vdd/2, Vds = Vdd

• Ioff =Ids at Vgs = 0, Vds = Vdd

• Cgate at Vgs = Vdd, Vd = Vs = 0

In reality, many sources can alter measurement values. For
example, random local (within-die) variation, voltage supply
and temperature fluctuations, probe contact resistance, etc
can induce uncertainties in measured values. To reduce the
uncertainties, it is common to have multiple devices under
test connected in parallel and carry out the measurement
repeatedly. We assume every measurement is repeated Ne

times and the scribe-line test structure has Nd devices
connected in parallel. Thus, only the sum of device currents
and capacitance of every chip are measured, i.e., the mean
Il,Ih,Ioff and device capacitance per unit width are obtained.

There are various practical scenarios where the proposed
methodology can prove beneficial. The computed design
specific sensitivities can be used for process monitoring and
optimization. As delay and leakage power estimation can be
done after metal-1, it can also be used for wafer pruning. In
this work, our contributions are the following:

• We propose a scribe-line based design dependent
approach for circuit performance and leakage power
estimation using Ieff and Ioff and present methods
for statistically incorporating within die variation and
measurement noise effects.

• We show how the above information can be used to
accurately identify bad wafers and help in wafer pruning
and yield estimation.

The overview of our approach is depicted in Figure 1.

Fig. 1. Overview of proposed approach.

Rest of this paper is organized as follows. In section II, we
discuss our Ieff current based path delay estimation model. In
section III, we describe our Ioff current based leakage power
estimation model. In section IV, we describe how our analysis
can be used for early wafer pruning. In section V, we present
the results using our detailed wafer level simulation setup. We
conclude in section VI.

II. DELAY ESTIMATION USING Ieff

Ieff is the average current that charges or discharges
a circuit node during a logic transition. The charging or

1The bias points are derived from commercial device data sheets.

discharging delay can be expressed as

delay ∝
CV

Ieff

, Ieff =
Ih + Il

2
(1)

where C is the node capacitance that is being charged (or
discharged), V is the voltage swing and Ieff is the effective
drive current. While Ieff cannot be physically measured,
several works propose approximations using device level I-
V characteristics [11]–[13]. In this work, we use Ieff from
[11], where Ih and Il are defined in Section I-A. Though
more complex models (e.g. [12]) can be used as well, our
experiments indicate that (1) suffices for our device models
and libraries.

A. Cell Delay Model
Using (1), we can express the propagation delay of a cell

type (c) (for example, INV, NAND etc) as

dcell(c) =
∑

t∈T

Kcell(c, t)CV

Ieff (t) (2)

where T is the set of all device types 2. Kcell(c, t) is the cell
and device type specific delay scaling coefficient, which is
fitted for different input slew and output load combinations.
We do not show the explicit dependence on slew and load for
notational convenience. Also, note that these coefficients are
specific to a rise or fall transition. This fact is implicit and
we do not show it for notational convenience. Expanding (2)
using Taylor series with respect to Ieff (t) for all t ∈ T and
ignoring the crossing and higher order terms, we get

dcell(c) = dcell 0(c)

−
∑

t∈T

Kcell(c, t)CV

Ieff 0(t)
(
∆Ieff (t)

Ieff 0(t)
−

∆I2
eff (t)

2I2
eff 0(t)

)
(3)

where dcell 0 and Ieff 0 denotes the corresponding quantity
under nominal process conditions. Kcell(c, t) is the sensitivity
of cell delay to Ieff (t) and these coefficients are fitted for
every cell using (3) by varying process conditions for different
input slew and output load points. This model fitting can be
done very efficiently as it can use existing process specific
timing libraries which are available for various corners. Since
most cells consist of single Vth devices, they have two non-
zero Kcell(c, t) coefficients out of four device types. In our
experiments, we do not have access to a sufficient number
of these libraries. Therefore, we fit the model using spice
simulations on individual cells.

B. Path Delay Model
The delay of path j under process variations can be

expressed as

dpath(j) = dpath 0(j) + ∆dpath(j)

2In this work, we consider design with four device types:
{high Vth, low Vth}×{ pmos, nmos }



where dpath 0(j) refers to nominal delay of path j. ∆dpath(j)
is the delay change due to process variation, which is equal
to the sum of delay changes of every cell in the path,

∆dpath(j) =

−
∑

i∈Gj

∑

t∈T

Kcell(i, t)C(i)V

Ieff 0(t)
(
∆Ieff (t)

Ieff 0(t)
−

∆I2
eff (t)

2I2
eff 0(t)

)

where Gj is the set of all cell instances which belongs to path
j The sensitivity of delay of path j to changes in Ieff (t) can
therefore be expressed as

Kpath(j, t) =
∑

i∈Gj

Kcell(i, t)C(i) (4)

Note that Kcell(i, t) is instance-dependent as input slew and
output load may vary with instance. The total path delay can
now be written as

dpath(j) = dpath 0(j)−

∑

t∈T

Kpath(j, t)V

Ieff 0(t)
(
∆Ieff (t)

Ieff 0(t)
−

∆I2
eff (t)

2I2
eff 0(t)

)
(5)

C. Handling Load Capacitance Variation
In (4), the path specific delay sensitivities to Ieff depend

on the nominal value of output load, which is seen by the
cells. However, with process variations, this output load also
changes. Therefore we scale the estimated delay by the ratio
of actual device capacitance to nominal capacitance. i.e.

d′path(j) =(dpath(j) − dpath−interconnect(j))
Cgate

Cnom

+

dpath−interconnect(j)
(6)

where Cgate is process variation affected capacitance
(measured by scribe-line monitors), Cnom is its nominal value
and dpath−interconnect(j) is total interconnect delay of a
critical path.

Figure 2 shows the benefits of the proposed design
dependent delay estimation technique as tested on C432
ISCAS85 benchmark. The delay estimated using (6) tracks the
actual delay well. The correlation coefficient is found to be
0.99 as against 0.87 for a design independent approach (in
which delay is estimated to be inversely proportional to the
mean Ieff of all device types). This is because the design
independent methodology is oblivious of the exact nature,
topology and the structure of the cells that make up the critical
paths in the design while our strategy effectively captures this
dependence in the Kpath(j, t) form.

D. Effect of Within Die Variation on Delay
Ieff values measured from test structures are typically

different from the ones on critical paths due to within die
variation. Since the variation is usually random, it is expressed
as a normally distributed random variable with zero mean
and standard deviation, N(0, σwd). The distribution can be
estimated by making multiple measurements per die or from
pre-existing characterization. Considering the first order term
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Fig. 2. Scatter plot (C432 Monte-Carlo timing simulations) that shows how
the delay estimated by (a) proposed delay model and, (b) a design independent
approach, compared with actual delay for an ISCAS85 C432 benchmark.

in (5) d′path(j), the path delays are rewritten in concise matrix
form as,

D =







d′path(1)
...

d′path(z)






+ W.Iwd, W =







w11 . . . w1n

...
. . .

...
wz1 . . . wzn






,

wji =

{

Kcell(i, t) if cell instance i is on path j
0 else

where z is the total number of paths, n is the total number
of cells. Every entry in Iwd is an independent normal random
variable, N(0, σWD). Performance of the circuit is given by

delaymax =
z

max
j=1

(d′path(j)). (7)

Since the path delays are correlated, we need to evaluate the
covariance of critical paths, (WWT ). Due to the large number
of critical paths and cells, keeping the entire covariance matrix
on test machines is not practical. To reduce the size of W,
we extract and use its v largest principle components (PC).
This reduces the total data size by a factor of v/n but some
correlation information is lost and the variance of each path is
less than the exact correlation value. To ensure that we do not
underestimate the variance of path delays, a residue term R is
introduced. This residue is assumed to be uncorrelated such
that it is unlikely to underestimate the path delay. Therefore,
the path delays can be expressed as

D =







d′path(1)
...

d′path(z)






+ W’.Iwd + R,

RT =[r1.ires 1, . . . , rz .ires z],

(8)

where W’ is the compressed matrix with v principle
components and ires are normal random variables. Each
residue element in R is given by

rj =

n
∑

i=1

wji −

v
∑

x=1

w′

jx,

where wjy and w′

jx are the entries of W and W’, respectively.
Though part of the correlation information is not captured,



Figure 3 shows that our method is efficient in reducing
pessimism in delay estimation in contrast to assuming that
all paths are completely independent. Moreover, this method is
flexible as it provides for a trade-off between accuracy and data
size by choosing a suitable number of principle components.
The size of correlation matrix is O(v * number of paths). Based
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Fig. 3. Comparison between delay distributions for circuit C432.

on (8), the delay of a critical path can be written as,

dj = d′path(j) + yj .iwd + rj .ires, (9)

where yj is jth row of W’, iwd and ires are independent
normal random variables. Equation (9) is in the canonical form
for tightness probability calculation to solve (7). By using
the method proposed in [5], the mean and variance of the
maximum of two or more timing quantities can be obtained.
Thus, we can express the maximum delay of z critical paths
as a normal distribution. We implemented the calculation
in [5] hierarchically. I.e., we recursively calculate maximum
delays of distinct critical path pairs. This reduces the error
in mean and variance estimation as the number of times
maximum operation is performed increases logarithmically
with the number of critical paths.

E. Dealing with Measurement Noise
The mean of measured Ieff for a chip is given as

Îeff =
1

Ne

Ne
∑

m=1

Ĩeff (m)

Nd

(10)

where Ĩeff (m) is the total Ieff from mth measurement.
Considering measurement noise,

Ĩeff (m) = (1 + Fm)

Nd
∑

s=1

[Ieff + Iwd(s)] (11)

where Ieff is the exact value, Iwd is the effect of within die
variation and Fm is measurement noise. Combining (10) and
(11),

Ieff ≈ Îeff (1 +

Ne
∑

m=1

Fm/Ne) −
1

Nd

Nd
∑

s=1

Iwd(s)

since
Ne
∑

m=1

Fm/Ne � 1.

Since Iwd and F are Gaussian random variables, Ieff is also
a Gaussian random variable with its mean and variance given

by

µIeff
= Îeff

σ2
Ieff

=
Î2
eff σ2

F

Ne

+
σ2

Iwd

Nd

where σ2
Iwd

and σ2
F are the variance of within-die variation

and measurement noise, respectively. Note that, the variance of
Ieff is inversely proportional to the number of measurements
and total devices in the test structure. In this paper, unless
otherwise mentioned, we assume 5 measurements are taken
every time (Ne = 5) and there are 10 devices in each test
structure (Nd = 10). We assume 3σ of measurement noise to
be 5% of nominal Ieff value. Iwd is obtained by running
Monte-Carlo simulation over variation ranges specified in
Table I.

F. Interconnect Delay Variation
The proposed model cannot handle the delay variation

because of variations in interconnect metal layers. The effect
of interconnect variation is however less pronounced due to
following reasons [20]:

• Delay change averages out across all metal wires in a
path.

• Width variation changes wire resistance and capacitance
of in opposite ways, thus reducing the net effect on RC.

Nonetheless, we include this effect in our experiments and
analyze the error incurred in estimation of delay because of
variation in interconnect metal layers.

III. LEAKAGE POWER ESTIMATION USING Ioff

A. Leakage Power Model
We model cell leakage power of an instance as linear

function of Ioff
3,

P (i) =
∑

t∈T

αc(t)Ioff (i, t)

where αc(t) is the leakage power fitting coefficient for cell
type (c) and device type (t). The full chip leakage power of a
design is therefore,

Pchip =
∑

t∈T

∑

c∈Γ

Nc
∑

i=1

αc(t)Ioff (i, t) (12)

where Nc is the total number of instances of cell type c in the
design, Γ is the set of all cell types and Ioff (i, t) is leakage
current of device type (t) in cell instance i.

B. Off Current Variation Model
To estimate leakage power variation, we use a similar

approach as that in [22] whereby Ioff is modeled as an
exponential function of variation sources.

Ioff (i, t) = Ioff 0(t)e
Y (i,t)

3In this paper, we only consider subthreshold leakage but the model can
be easily extended to consider gate leakage.



where Ioff 0 is the nominal Ioff and Y represents the impact
of variation sources. In this work, we assume Y to be the linear
combination of all variation sources and model it as a Gaussian
random variable with zero mean. Moreover, variation sources
are decomposed into inter-die and within-die variation:

Ioff (i, t) = Ioff 0(t)e
Yg(t)+Yr(i,t) (13)

where Yg denotes total inter-die variation and Yr is the total
within-die variation. Combining (12) and (13), we have

Pchip =
∑

t∈T

Ioff 0(t)e
Yg(t)

∑

c∈Γ

αc(t) · Nc · µr(t) (14)

Since Nc is large, we can approximate the sum of eYr ’s as the
sum of their mean [22], i.e.,

Nc
∑

i=1

eYr(i,t) ≈ Nc · µr(t)

where µr(t) is the mean of eYr(i,t). In this work, µr(t) is
obtained by running Monte-Carlo simulations. In practice,
foundry can use historical data to estimate µr(t).

C. Dealing with Measurement noise
Equation (14) shows that we need to know Yg to estimate

total leakage power which is derived from measurements. As
mentioned earlier, we take Ne measurements of the current of
Nd devices in test structures. Considering measurement noise
and within die variation, the mth measured Ioff is modeled
as

Ĩoff (m) =

Nd
∑

s=1

Ioff 0(t)e
Yg+Yr(s)(1 + Zm) (15)

≈ NdIoff 0(t)µre
Yg(1 + Zm),

where Z is a unitless scalar to model measurement noise. From
(13) and (15), the estimated value of Yg is given by

Ŷg = Yg +
1

Ne

Ne
∑

m=1

ln(1 + Zm) (16)

where Yg denotes the exact value. Since measurement noise
Zm is much smaller than 1, (16) can be simplified as

Yg = Ŷg −
1

Ne

Ne
∑

m=1

Zm

From the above equation, we observe that the exact inter-
die variation Yg is a random variable centered at Ŷg . Since
Zm’s are Gaussian random variables, Yg is a Gaussian random
variable given Ŷg is a Gaussian random variable. The mean
and variance of Yg is

µY g = Ŷg (17)
σ2

Y g = σ2
Z/Ne

Since each Yg(t) is a Gaussian random variable, eYg(t)

is a lognormal distribution. From Equation (14), we find
that Pchip is the sum of lognormal distribution. Thus, we
can apply Wilkinson’s approach [22] to approximate the

sum of lognormal random variables as another lognomal
random variable by matching the mean and variance. Note
that, the uncertainties in Yg(t) are caused by within-die
random variation and measurement noise, which are mutually
independent. Therefore, the mean and variance of Pchip can
be calculated as the sum of mean and variance of eYg(t).

IV. EARLY WAFER PRUNING ANALYSIS

Often, accurate circuit performance becomes available only
after dicing and packaging. Therefore, any failed chip at that
stage incurs losses due to unneeded fabrication, packaging and
testing costs. This can be avoided by using M1-testable scribe-
line test structures to do wafer pruning, which can save back-
end (layers beyond M2) processing costs in addition to wafer
sort test cost.

A. Passing Probability for a Chip
In previous sections, we have shown that given the measured

currents and capacitance, the distribution of delay and leakage
power can be estimated. Based on design specifications, the
probability of a chip meeting timing constraint is given by

Pr {chip delay ≤ Dspec} = Φ(
Dspec − µdelay

σdelay
).

where Dspec is the maximum allowed delay for a design, µdelay
and σdelay are the mean and standard deviation of maximum
delay distribution. On the other hand, the probability of a chip
meeting leakage power constraint is given by

Pr {Pchip ≤ Pspec.} = Φ[
ln(Pspec) − µL

σL

],

where µL and σL is the mean and varaince of ln(Pchip),
respectively. Given the measured values of every chip
(Ieff ,Ioff and capacitance), uncertainties in delay estimation
are due to within die variation and measurement noise while
uncertainty in leakage power estimation is only induced by
measurement noise (within die leakage power is modeled as
a mean shift). Since the measurements of Ieff and Ioff are
different, the probability distributions of the estimations are
independent. Thus, the passing probability of a chip is
Pr {Pchip = pass} = Pr {Pchip ≤ Pspec.} · Pr {chip delay ≤ Dspec}

(18)

Therefore, the expected number of good chips in a wafer can
be estimated as

EGw =
∑

all chips∈w

Pr {Pchip = pass} (19)

B. Cost Analysis
After fabricating Metal-1, current and capacitance values

are extracted. Then, we can decide to scrap a wafer or
continue back-end-of-line processes based on projected profit.
Let Mf and Mb be the front-end-of-line and back-end-of-line
manufacturing cost, Mt be the full-chip testing cost and Ms

the scribe-line testing cost per wafer,
Additional Cost =(Mb + Mt), and
Expected profit =Expected good chips × Chip price

− (Mf + Mb + Mt + Ms).

(20)

If the final number of working chips is close to the expected
number of good chips, it is profitable to continue processing



Fig. 4. The proposed critical delay estimation strategy. The left part of the
figure shows how the compressed design dependent parameters are computed,
while the right part indicates how delay is estimated using these parameters
at the foundry. The bottom part of the figure shows our simulation setup
for validation of our method. The corresponding flow for leakage power
estimation is similar and we do not show it for brevity.

the wafer as long as expected profit is larger than additional
cost. Ms is usually negligibly small compared to other costs.
Thus, we assume measurements are taken for every chip
rather than sampling the measurements using [14,15]. Note
that the cost for front-end process is not added in additional
cost because the process has been carried out and incurred
processing cost regardless of the decision.

V. EXPERIMENTS AND RESULTS

Figure 4 summarizes the proposed critical delay estimation
strategy. The left part of the figure summarizes the extraction
of Kcell library by doing Monte-Carlo Spice simulations for all
cells. Note that, this extraction can also be done using timing
libraries at various process corners. Using the Kcell library,
the design specific Kpath coefficients are computed for every
critical path. We consider all those paths with nominal delay
within 5% of the nominal critical path delay4. The designs are
synthesized using 45nm Nangate Open Cell library [21]. The
right side of the figure shows how these compressed design
dependent delay coefficients are used to estimate chip delay
during manufacturing after Metal-1. To verify the proposed
delay estimation method, we build an elaborate simulation
setup as shown in the bottom part of Figure 4. The variation
model used to generate the process variation samples on
the wafer/die is described in the next subsection. The wafer
diameter is 300mm and the chip dimensions are assumed to
be 10mmx10mm. 250 wafers with 657 chips are simulated
for every design and the expected number of good chips and

4Many improved critical path selection algorithms have been proposed in
literature. This is beyond the scope of our work.

good wafers is estimated using (18)5. In our experiments, the
timing constraint is taken to be 110% of nominal critical path
delay of the respective designs. The leakage power constraint
is taken to be 5X the nominal leakage power.

A. Variation Model
We model five independent variation sources for transistors

and they are summarized in Table I. Vth variations are modeled
by Gaussian distributed random variables with no spatial
variation [18]. Channel length is modeled as [16] to include
systematic across-wafer variation:

Dsys = ax2 + by2 + cx + dy + exy, (21)

where x and y represent the coordinates of a chip’s centroid.
The values of a, b, c, d and e are obtained by matching
systematic delay variation across wafer to 65nm silicon data6.
Other variation parameters indicated in Table I are extracted
from the same silicon data.

Interconnect variation is modeled as random Gaussian
distributed die to die variation [17]. In our experiments, this is
implemented by perturbing resistance and capacitance values
in LEF.

TABLE I
SUMMARY OF VARIATION PARAMETERS

Variation Source Wafer− Die− Die− Within−
Waferran% Diesys% Dieran% Dieran%

Channel length N(0, 2.13) ax2 + by2+ N(0, 1, 29) N(0, 1.56)
cx + dy + exy

Devices’ N(0, 6.4) − N(0, 6.08) N(0, 4.7)
Vth

Wire width − − N(0, 6.08) −

Wire thickness − − N(0, 10) −

B. Results
For wafer pruning analysis, we define wafer passing

threshold (WPT) as the minimum percentage of good chips
that a wafer should have in order to be considered a good
wafer. WPT can be derived from (20) such that a good wafer
always has a positive expected profit, i.e., a wafer passing
WPT is likely to have a larger profit compared to back-end-
of-line manufacturing cost. Therefore, we define βw as the
passing decision of the wafer w

βw = 0 if EGw < (WPT * Total Chips in Wafer)
= 1 otherwise

(22)

To quantify the quality of our wafer pruning approach, we
define Wafer Pruning Benefit (WPB) of a wafer as

WPBw = βw ∗ (AGw − WPT * Total Chips in Wafer)

WPB =

All Wafers
∑

w=1

WPBw

where AGw is the actual number of good chips on wafer w.
Note that, any wrong selection, either picking a bad wafer or

5We use 5 principal components for Ieff of each device type.
6For our model, a = 7.7e−4, b = 1.0e−3, c = −1.6e−2, d = −7.8e−3,

e = 1.6e − 4



TABLE II
COMPARISON OF TOTAL WPB OF DIFFERENT WAFER PRUNING

STRATEGIES. THE WPB IS NORMALIZED W.R.S TO THE IDEAL WAFER
PRUNING SETUP.

bench WPT = 25% WPT = 40% WPT = 50%
mark Dep% Indep% Dep% Indep% Dep% Indep%
c432 94.26 75.60 95.69 61.76 97.97 62.40

s15850 97.97 89.55 97.12 83.07 97.46 82.43
s38584 95.26 91.83 94.26 76.89 92.80 75.66

mips789 96.97 83.17 94.24 72.07 92.04 64.95
c432 (low Vth 99.84 88.20 99.88 73.94 99.59 73.26

device only)
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Fig. 5. Profit for benchmark design (a) c432, (b)mips789 using different
wafer pruning strategies. The profit is normalized to the total selling price
of all die assuming 100% yield. X-axis is the ratio between back-end-of line
manufacturing cost to the chip price. (Total number of wafers is 250.)

dropping a good wafer affects the total WPB. Picking a bad
wafer (false escapes) contributes to a negative WPB, while
dropping a good wafer (yield loss) does not increase the WPB.

In Table II, we compare the WPB values of our
method to design independent wafer pruning approach for a
combination of ISCAS85 and OpenCores benchmarks. The
design independent approach is implemented with delay and
leakage power model which has equal proportion of high Vth

and low Vth cells. The values in Table II are normalized
(expressed as percentage) to the WPB of the ideal wafer
pruning setup which is guided by the exact delay and leakage
power of every chip (AGw). From the table, we observe that
the total WPB of our approach is always above 90% while
the WPB for design independent approach ranges from 60%
to 90%. We also compare the net profit of different wafer
pruning approaches. Assuming the total manufacturing cost of
a chip to be 60% of chip’s selling price, we calculate the net
profit after wafer pruning for different split-ups between front-
end and back-end-of-line manufacturing costs. The results are
shown in Figure 5 for C432 and Mips789 benchmark designs.
From the figure, we observe that the net profit realized through
our strategy is very close to the ideal wafer pruning approach
and is always higher than the design independent methodology.
In Section II and III, we discussed the impact of test-structure
design on measurement noise. Table III shows that the WPB
of our strategy is insensitive to the measurement count as well
as number of devices in test structures.

VI. CONCLUSIONS
In this work, we have presented a novel approach for design-

dependent process monitoring. Such process monitors are on
wafer scribe-lines and can be tested after M1 fabrication. This
allows for early die performance and wafer yield estimation

TABLE III
C432 WPB FOR DIFFERENT MEASUREMENT/TEST STRUCTURE SETUP.

Ne Nd WPT = 25% WPT = 40% WPT = 50%
1 1 94.18 92.98 95.23
5 10 94.26 95.69 97.97

100 100 94.26 95.69 97.97

dependent on the current process snapshot (as opposed to long
term statistics). We use this for cutting short the production
of obviously bad wafers, where the wafer yield is too low to
cover manufacturing/test costs. The wafer pruning approach
based on our method can achieve upto 98% of the maximum
achievable benefit. The monitoring strategy is chosen so as to
minimize information exchange between the design and the
foundry as much as possible.
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