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Abstract—Mask inspection has become a major bottleneck in the
manufacturing flow taking up as much as 30% of the total manufacturing
time [15]. In this work we explore techniques to improve the reticle
inspection flow by increasing its design awareness. We develop an
algorithm to locate non-functional features in a post-OPC layout with
100% accuracy without using any design information. Using this, and
timing information of the design (if available), we assign a minimum size
defect to each reticle feature that could cause the design to fail. The
criticality of various reticle features is then used to partition the reticle
such that each partition is inspected at a different pixel size and sensitivity
so that the false+nuisance defect count is reduced without missing any
critical defect. Up to 4X improvement in false+nuisance defect count is
observed with our technique resulting in up to 55% improvement in first
pass yield coming from reduction in nuisance defects and substantial
reduction in defect review load.

I. INTRODUCTION

A reticle (mask) is basically a stencil that determines what patterns
eventually print onto the wafer. The increasing aggressiveness of
various RET techniques like OPC, PSM, and scattering bar along
with decreasing feature sizes has increased the complexity of reticles
considerably [12]. Their increasing complexity has also increased
the burden of reticle inspection tools. In fact, mask inspection is
more challenging than mask writing itself [15]. High resolution reticle
inspection tools are required to detect every potential printable defect
in order to prevent yield loss. But this also produces a large number
of “nuisance” defects, i.e. defects that do not affect yield. As a result
post-inspection review of defects has become very time consuming.
The overall inspection flow has a considerable impact on mask cost
and turnaround time (TAT). Keeping mask cost in control is extremely
critical, especially for low volume SoCs. The problem is likely to
get worse for future patterning technologies (e.g. multi-layer EUV
lithography and nanoimprint templates). Hence there is a strong need
to improve the inspection flow.

A. Mask Inspection Primer
A comprehensive inspection of reticles must be done by the mask

shops before sending it to the fabs. The basic steps of inspection are
shown in Figure 1.

Fig. 1. Key steps of reticle inspection along with our contributions in circular
blocks

Initially the reticle is passed through an inspection tool (e.g. KLA-
Tencor’s Terascan [8] or NEC’s LM series [18]) which takes an image
of a die and compares it to a reference database or another die (die-
die or die-database modes). The difference between the two images
is found and if the intensity of the difference exceeds a predefined

threshold, the difference pattern is labeled a defect. The inverse of this
threshold is referred to as sensitivity. These tools can have a pixel size
as low as 55nm and can detect critical dimention(CD) defects as small
as 20nm on the mask at maximum sensitivity (minimum threshold)
[8]. Inspection tools generate a very large number of defects (100+)
most of which do not impact the final design. Defects can be
classified as shown in Figure 2. A false defect is an incorrect detection
reported by the inspection tool due to vibration, misalignment, optical
distortion, error in database rendering (die-database mode), etc. Real
defects are caused either due to misalignment or vibration of the mask
writer (CD defects) or contamination of the mask (contamination
defects). Inspection tools typically have different algorithms to detect
these two categories of defects and hence have different sensitivities
for these defects. Many real defects do not print on the wafer. Among
printable defects, some lie on non-critical regions of the design such
as dummy fill or redundant vias. Only a small fraction of the defects
reported by the inspection tool really matter. All the non-printable
and non-critical defects are also called nuisance defects. Reducing
the number of false+nuisance defects reported by the inspection tool
is essential to reduce inspection cost. Reducing nuisance defects is
particularly important to maskshops as it impacts first pass yield,
which is the fraction of total masks manufactured that can be shipped
without repair or detailed review.

Fig. 2. Various categories of defects reported by Inspection Tool

The next step in mask inspection is defect review where each defect
reported by the inspection tool is checked to find out if it really
matters. False, non-printable and non-critical defects are filtered out
during this step. Images of defects reported by the inspection tool are
analyzed using software tools [17], [19] or manually. Often defect
images need to be recaptured at a better resolution. For this the
inspection tool could be reused (Online Review) or an e-beam is
employed [16]. After pruning out a significant fraction of false/non-
printable/non-critical defects the mask is passed through an aerial
imaging tool (e.g. Carl Zeiss AIMS system [10]). AIMS is essentially
a hardware emulator of the wafer stepper that operates at the same
optical settings as the stepper and gives a very accurate estimate
of the printability of defects. Although extremely accurate, AIMS
is slow and cumbersome. Hence, minimizing the number of defects
that have to pass through AIMS tools is important in order to ensure
reasonable turnaround time. Defects which are found to be printable
by the AIMS tool are then either repaired or if they are unrepairable
the reticle must be replaced. The repaired or replaced reticle must



again go through this inspection cycle. Because of the manual steps
and use of AIMS tool, defect review is typically the slowest part of
reticle inspection.

B. Related Work
There has been considerable work to improve mask manufacturing

by using design intent. For instance, [6], [13] use electrical and
design metrics to reduce OPC runtime and mask write cost. These
approaches indicate that considerable benefit can be derived by using
design intent to reduce the inherent pessimism of various mask
manufacturing steps, including inspection.

The traditional approach to mask inspection discussed above does
not use any design information to assess the criticality of defects. It
assumes that all printable defects larger than a threshold size (say
10% of mask critical dimension) are critical. If design information is
available to maskshops and fabs, they might be able to avoid the
expensive process of repair/replacement of the mask due to non-
critical defects. Design information can also be used to reduce false
and nuisance defects reported by the Inspection tool. Communicating
design intent to the inspection tool in the form of additional control
layers has been suggested before [14], [22], [23]. Mask shops can use
design information to lower the inspection sensitivity of non-critical
regions in order to reduce the number of false+nuisance defects.
Hedges et al. [14] have shown that up to 100X reduction in nuisance
defect count is possible just by using variable sensitivity during reticle
inspection. Current inspection tools allow the user to define inspection
sensitivity on a per pixel basis. But memory requirements to store
this sensitivity information are impractical since a reticle can have up
to 1012 pixels. These approaches assume that maskshops know the
design criticality of the layout which is rarely the case. Driessen et al
[9] analyze a post-OPC layout to extract some non-critical features
in the absence of any design data. Stoler et al [21] extract some
criticality information as part of Manufacturing rule check(MRC).
Both these approaches focus on extracting assist features from the
layout which are a major source of nuisance defects.

C. Our Work
Key contributions of this work are as follows:
• We develop an graph based algorithm to locate non-functional

features (redundant and dummy features) in a post-OPC layout
(flat and 10X more complex than pre-OPC layout) in the absence
of any design information. Location of non-functional regions
can be used during defect review to prune out non-critical defects
and also for assigning minimum size defects as discussed below
and shown in Figure 1.

• We assign minimum defect size that impacts the design to each
feature of the reticle for both CD and contamination defects.
This is inferred using the timing slack of critical paths and
the location of non-functional features found using the method
mentioned above.

• Using the minimum defect size of each feature of a reticle,
we partition the layout using a scan-line based heuristic, where
each partition is assigned a different pixel size and CD and
contamination sensitivity to minimize false+nuisance defects.
Apart from sensitivity, pixel size can also be varied during
inspection since most tools have multiple pixel sizes for scanning
the reticle. Although inspecting different regions of reticle at
different pixel size can reduce false+nuisance defects, it does
require multiple scans of the reticle in current generation tools,
increasing inspection runtime.

Remaining paper is organised as follows. Section II discusses the
non-functional feature finding problem. Section III and IV describe

the criticality assignment and partitioning problems, respectively.
Results are covered in Section V. Section VI concludes the paper.

II. NON-FUNCTIONAL FEATURE FINDING

A. Problem Formulation
Given a post-OPC layout identify non-functional features of the

layout.
Although we focus only on redundant vias and dummy fill in

this work other non-functional features such as spare cells, non-
tree routes and assist features can also be found using our graph
based methodology . We assume that the layout has only rectilinear
shapes, and that floating dummy fill in different metal layers are not
connected through a via. This is consistent with most commercial fill
synthesis tools 1.

B. Solution
We fracture the layout into rectangles, use a scan-line based

algorithm to construct a neighborhood graph for these rectangles
which is then reduced. This reduced neighborhood graph (RNG) can
then help identify dummy fill and redundant vias. The various steps
are detailed below.

1) Algorithm Steps:
• Fracturing Polygons: The rectilinear polygons are fractured into

rectangles using a simple horizontal slicing method [11]. The
rectangles are then stored in different sets based on their layer.
For example, a rectangle corresponding to a Metal 2 shape is
stored in two sets, M2V1 and M2V2. A set MiVj corresponds
to all rectangles belonging to same/adjacent metal or via layers.

• Neighborhood Graph Construction: The new layout with frac-
tured polygons is used to construct an undirected Neighborhood
Graph, G(V, E) in which every rectangle of the fractured layout
corresponds to a vertex and edge (u, v) ∈ E if the two
corresponding rectangles are physically in contact with each
other in the layout.
A scan-line based one-pass, optimal algorithm is used to solve
the rectangle intersection problem as described in [20]. The
problem is reduced to two subproblems, an interval query and
a point query. Interval tree and range tree are two “semi-
dynamic” tree datastructures that are used to solve this problem.
We shall refer to these two sets of trees as scan-line trees. A
separate scan-line is used for each set MiVj but there is a
single graph for the entire layout. Both these trees can perform
INTERSECTSEARCH, INSERT and DELETE operations in
O(log(m)), where m is the number of nodes in the tree, which
depends linearly on the number of rectangles 2.

• Edge Contraction: All neighboring vertices of the Neighborhood
Graph that correspond to rectangles of the same layer are
merged. At the end of this operation each vertex has an edge
only to vertices belonging to an adjacent layer. Hence, a vertex
corresponding to Metal 2 in RNG will have edges only to
vertices of Via 1 or Via 2 and so on.

• Graph Analysis: Floating fill is identified by looking for isolated
vertices. Cycles in the RNG correspond to redundant vias which
can be identified using DFS. Double and even multi-cut vias can
be identified by scanning the reported cycles and identifying the
set of vias connected to the same pair of metal layer vertices in
RNG.

1Future work can extend this to grounded fill and via fill as well.
2INTERSECTSEARCH returns all rectangles stored in the scan-line tree

that intersect the input rectangle and constructs edges in the neighborhood
graph between the input and all returned rectangles



2) Runtime Optimization Techniques:
• Routing-aware scan-line: The routing direction of each set of

rectangles, MiVj can be found by taking the larger of the
average length and width of all rectangles in the set. If the
routing direction is X(Y) we define y(x) coordinates of the
rectangles as scan-line events so that the average duration for
which a rectangle needs to be stored in the tree reduces, thus
improving INTERSECTSEARCH time.

• Shape Simplification: Before fracturing the polygons into rect-
angles, we perform shape approximation on the post-OPC poly-
gons to reduce the number of rectangles created after fracturing.
We create two sets of buckets for the coordinates of each
polygon. Each point is included in two buckets, one in x-
direction and another in y such that x(or y) coordinate of each
point in a bucket is within a certain threshold distance of others.
All the x(or y) coordinates of a bucket are then changed to the
average x (or y) coordinate of the corresponding bucket. This
approach reduces small deviations along a straight line as shown
in Figure 3 and hence reduces rectangle count.

Fig. 3. Shape simplification for a distored T-shape

Algorithm 1 summarizes the entire algorithm. Figure 4 illustrates
the complete algorithm for a sample double via. The scan-line based
graph construction is the slowest operation in this algorithm. The total
number of events are 2N , where N is the number of rectangles in the
layout. Each scan-line tree operation can be completed in O(log(m)),
where m is number of events in the tree which can be O(N) at worst.
Hence the algorithm runtime is O(Nlog(N)).

Fig. 4. Illustration of various steps of Redundancy-finding algorithm

III. CRITICALITY ASSIGNMENT

A. Problem Formulation
Given the timing of critical paths and non-functional features

identified in Section II, find the minimum size defect at each location
in layout which can cause failure.

For poly layer, we use timing slack of various paths to assign
minimum size defect for each polysilicon shape corresponding to
a transistor pair (PMOS+NMOS) on the critical path. Location of
redundant vias is used to assign minimum size defect for via layer
and location of dummy fill for metal layer.

Algorithm 1 Non-functional feature finding
Require: Shapes of all metal and via layers, S.

1: for all Shape s ∈ S do
2: SHAPE-SIMPLIFICATION(s)
3: Set of rectangles, Bs = FRACTURE(s)
4: Store Bs in set MiVj corresponding to shape layer
5: end for

//EVENT DEFINITION
6: Find routing direction R of each rectangle set, MiVj

7: if Routing direction R is X(Y) then
8: Store bottom(left) and top(right) of each rectangle in set

as separate events in Eij .
9: end if

//SCAN-LINE
10: for all Events e ∈ Eij for each set Eij do
11: if e is bottom(left) then
12: INTERSECTSEARCH(Scan-line Tree, e.rect)
13: INSERT(Scan-line Tree, e.rect)
14: else
15: DELETE(Scan-line Tree, e.rect)
16: end if
17: end for

//EDGE CONTRACTION
18: Edge Contract G(V, E) to obtain RNG G(V ′, E′)

//GRAPH ANALYSIS
19: Mark all isolated vertices as dummy fill
20: Find cycles in G(V ′, E′) using DFS to detect redundant vias

TABLE I
IMPACT OF DIFFERENT DEFECT TYPES IN POLY LAYER

Type Gate Length Design Impact
Intrusion Decrease Open/Delay Decrease
Extrusion Increase Short/Delay Increase
Pinhole Decrease Open
Pindot No change None

B. Solution
On the basis of geometry, reticle defects are classified as pindots,

pinholes, intrusion and extrusion. Intrusion and extrusion are con-
sidered CD defects. Pindots and pinholes are usually classified as
contamination defects. Apart from size, type and location of defect,
CD impact on the wafer also depends on the type of reticle (bright-
field or dark-field), type of resist (positive or negative) and mask error
enhancement factor (MEEF) at the defect location. In this section, we
will develop a method of estimating CD impact of reticle defects for
poly, metal and via layers only. Phase defects are not considered since
defect data from a commercial maskshop suggests they are rare. We
use a square approximation for defects in our analysis (as do most
critical analysis methods).

In this section, we denote the size of a square defect by a and
the minimum detectable defect size by amin. Wmin and Smin are
the width and spacing design rules (DR) of the corresponding layer,
respectively 3. DfCD

min and DfCon
min are the minimum size CD and

contamination defects that really matters for design functionality.
1) Poly: Poly layer printing typically uses bright-field masks with

positive photoresist. Their impact is illustrated in Figure 5 and
described in Table I.

Our evaluation of minimum defect size must take timing criticality

3For simplicity and pessimism we use minimum DR rules instead of using
exact design values.



Fig. 5. Impact of various defect types on poly reticle

TABLE II
IMPACT OF DIFFERENT DEFECT TYPES IN METAL LAYER

Type Wire Width Design Impact
Intrusion Decrease Open
Extrusion Increase Short
Pinhole Decrease Resistance Change
Pindot No change None

of different cells into account apart from the possibliliy of open
or shorts. For each transistor, we find the timing slack of the
corresponding cell from the design timing report. Assuming that at
most K defects lies on a critical path 4, we can evaluate the minimum
defect size that changes the delay of the transistor and hence the
path delay by less than Tslack/K. The formula for deriving the
maximum gate length deviation, δLcritical is derived in Equation (1).
using basic transistor model and first order approximations where the
various parameters are shown in Figure 5.
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√

(Tslack − αcycle)/K

Delaynom
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= amin if Tslack < αcycle

where αcycle is taken as 1% of the design cycle time. The delay
margin for each transistor is chosen to guardband against later
variations. Hence, transistors on extremely critical paths which have
slack less than 1% cycle time are assigned the minimum detectable
defect size

To guardband against process variations downstream we set the
minimum defect size as 20% the width (opens) and spacing (shorts)
dimensions. We assume that pinholes do not have any parametric
impact and can only cause an open if they are bigger than the gate
length.

DfCD
min =

min(0.2Wmin, 0.2Smin, δLcritical)

MEEF

DfCon
min =

0.2Wmin

MEEF
(1)

2) Metal Layer: Bright-field masks with negative resist are typi-
cally used to make trenches for depositing copper (dual damascene
process). The impact of various types of defects is shown in Table
II.

Dummy fill do not have any design impact and can be assigned a
large DfCD

min and DfCon
min . Delay impact of metal layer mask defects

4A critical path typically consists of only 20-30 transistors and hence the
area occupied by a critical path is very small compared to the area of the
chip.Therefore K > 1

TABLE III
IMPACT OF DIFFERENT DEFECT TYPES IN VIA LAYER

Type Via Width Design Impact
Intrusion Increase Short
Extrusion Decrease Open/Resistance Increase
Pinhole None Metal Short
Pindot Decrease Resistance Increase

is negligible. Hence for a metal layer shape, DfCD
min and DfCon

min can
be evaluated as follows:

DfCD
min =

0.2min(Wmin, Smin)

MEEF

DfCon
min =

0.2Smin

MEEF
(2)

3) Via Layer: Dark-field masks with positive resist are typically
used to print via layer. Impact of various defect types on via layer is
summarised in Table III and shown in Figure 6.

Fig. 6. Impact of different defect types on Via Reticle

Note that regions where the non-fill shapes on adjacent metal
layers overlap must be assigned minimum detectable defect size of
the inspection tool for contamination defects since even the smallest
pinhole defect could cause a short. 20% change in via area is taken as
the constraint to assign defect size for CD and contamination (pindot)
defects. Redundant vias will have a larger DfCD

min and DfCont
min .

We can write the minimum size defects Dfmin for a set of mXn
redundant vias (m = 1, n = 1 for single via) as follows:

DfCD
min =

0.2max(m, n)min(Wmin, Smin)

MEEF

DfCont
min =

0.2max(m, n)Wmin

MEEF
DfCont

min = amin for metal intersect regions (3)

Note that since the value of MEEF varies considerably with optical
process paramaters, we must take the largest value across the focus-
exposure process window in these calculations. Current inspection
tools support adaptive thresholding where the threshold value is dy-
namically changed by the tool depending on online MEEF estimation
[8]. Hence, we take MEEF=1 in our experiments instead of relying
on a lithography simulator to compute it.

IV. PARTITIONING

A. Problem Formulation
Given the minimum size defect for each feature on a reticle,

partition the reticle such that each partition has length and breadth
greater than a predefined value and is assigned a pixel size and
sensitivity (CD and contamination) such that no critical defects are
missed and the number of false+nuisance defects reported by the
inspection tool are minimized.

In order to solve this problem we need to find the minimum
detectable defect size as a function of sensitivity and pixel size.
The resolution of any digital imaging system scales linearly with
pixel size. Also, increasing the sensitivity helps in detecting smaller



features. Hence, for an inspection with pixel size, p and sensitivity
s, we shall model this as shown in Equation (5) for both CD
and contamination defects. Current inspection tools are capable of
inspecting a 20nm defect (on the mask) which corresponds to 5nm
on the wafer (MEEF=1) at a pixel size of 55nm and sensitivity of
100 [8]. Hence Kc ≈ 9 5.

Dmin = Kc
p

s
(4)

The total number of false defects (noise) reported by the inspection
tool is a function of pixel size and sensitivity. Largest component of
image noise, photon noise depends linearly on the density of pixels on
the sensor and is hence, inversely proportional to the square of pixel
size. To model other noise sources as well, we assume that noise is
proportional to p−α, where p is the pixel size. Since, false defects are
essentially noise, we can model light intensity falling on a pixel as a
gaussian function, and hence the number of false defects as a function
of threshold (inverse of sensitivity) is a complementary error function
[2]. The model for false defects as a funcion of pixel size and two
sensitivity levels (SCD and SCon) is shown in Equation (6). KCD ,
KCon, σCD, σCon and α depend on the inspection tool. We used
commercial maskshop’s inspection data from over 800 reticles with
inspection area ranging from 8000 − 15000mm2 , pixel size ranging
from 72−250nm, and sensitivities ranging from 75−100 to fit these
parameters and got α = 2.35, KCD = 489.38, KCon = 489.38,
σCD = 0.01 and sigmaCon = 0.01 if the area is taken in mm2 and
pixel size in nm.

FD =
A

pα
(KCDerfc

(

1

σCDSCD

)

+ KConerfc
(

1

σConSCon

)

) (5)

Number of nuisance defects depends on the design and the total
number of real defects, which are the non-nuisance defects . Assum-
ing that the defect distribution for a reticle follows the same negative
binomial distribution as wafer defects, we can derive a model for the
total number of real defects for a reticle of area A, inspected with
pixel size p and a single sensitivity s using the following equation.

RD =
∑

DefectTypes

∫

∞

Dmin

K2

Dα
dD

=
∑

DefectTypes

K2

α − 1

(

Kc
p

s

)α−1

= T CD
(

p

SCD

)βCD
−1

+ T Con
(

p

SCon

)βCon
−1

(6)

where the constants were fitted using the same maskshop data
described above to obtain T CD = 0.0002555, βCD = 1.3,
T Con = 0.00008208 and βCon = 0.88.

Current inspection tools can take DNIR (Do Not Inspect Regions)
as inputs. DNIR rules specify that a DNIR region can be as small as
one pixel but there is forty pixel band in each direction that is not
inspected. For our partitioning problem this essentially means that
a partition must have dimentions of at least 80 pixels (recall that
multiple pixel sizes are implemented as multiple scans with DNIRs).
For simplicity we assume the same partition for both pixel size and
sensitivity and use the largest pixel size in our experiments to define
minimum dimension of a partition. Based on the above discussion,
our problem can be stated more precisely as:

5Kc is slightly different for CD and contamination types of defects but we
assume a constant value for simplicity.

Given a reticle with minimum size defect for each feature, create
a partition with rectangular blocks each of width Wj and height Hj

assigning a pixel size pj , and sensitivities SCD , SCon such that the
following function is minimized:

F = FalseDefects + γTotalDefects (7)

and the following constraints are obeyed:
• Minimum dimension constraint:

min(Wj , Hj) > Lmin (8)

• For any feature with min. size defect DCD and DCon lying in
the jth block of the partition:

DCD > Kc

pj

SCD
, DCon > Kc

pj

SCon
(9)

where γ is a weighting factor that we can choose and Lmin is the
minimum dimension constraint.

B. Solution
We use a scan-line based approach which consists of alternatively

moving horizontal and vertical lines across the reticle and placing
them at the location which minimizes the cost function 6. This
procedure is done for a finite number of iterations. The number
of iterations is chosen such that increasing them does not have a
significant improvement in the cost function. The minimum unit by
which the scan-lines are moved is equal to the minimum dimension
constraint for the partitions ensuring that Equation (8) is obeyed
by construction. The change in cost if a line is introduced at a
particular position is calculated incrementally to improve runtime.For
a particular position of a new scan-line, we only need to look at the
neighboring lines in each direction and calculate the cost function
for that region. Figure 7 gives an illustration of this idea. The
current partitioning has blocks P1-9. When a new vertical scan-
line is introduced, P2, P5 and P8 are split into two blocks and the
improvement in cost function can be evaluated as shown below.

δCost = Cost(P2A) + Cost(P2B) − Cost(P2)

+ Cost(P5A) + Cost(P5B) − Cost(P5)

+ Cost(P8A) + Cost(P8B) − Cost(P8) (10)

Fig. 7. Incremental Cost Evaluation for Partitioning

The cost of any single partition block can be computed by finding
the minimum size defect inside the block, finding sensitivity for each
pixel size (only a small number of discrete pixel sizes are available
in the inspection tool) to minimize Equation (10).

The runtime for this method is O(WchipNiter/Lmin), where
Wchip is chip size, Lmin is the moving distance of the scan-line
and Niter is the number of iterations.

6This method bears some resemblance to the DNIR placement algorithm
proposed in [7]



TABLE IV
SHAPE SIMPLIFICATION RESULTS

Design Name # Gates Area (um2) # Rect-
angles
(before)

# Rect-
angles
(after)

AesCipher (8-Metal) 15467 102494 2512023 1012226
Mips (6-Metal) 11577 59461 2876871 1721828
Nova (6-Metal) 43156 268594 13243201 8041773

TABLE V
EXPERIMENTAL RESULTS FOR REDUNDANCY FINDING

Design
Name

# Double
Vias

# Dummy
Fill

Runtime
(min.)

Memory Us-
age (MB)

AesCipher
(8-Metal)

131464 97772 8 910

Mips
(6-Metal)

44004 67341 5 1190

Nova
(6-Metal)

209623 303792 79 4814

V. EXPERIMENTAL RESULTS

A. Non-functional Feature Finding
We implement our neighborhood graph based algorithm to identify

redundant vias and dummy fill in C++ using OpenAccess (OA)
API [1]. Layouts of some benchmark circuits implemented in 45nm
Nangate OpenCell library along with insertion of double vias and
dummy fill was done in Cadence Encounter [3]. OPC was performed
on the generated GDSII files using Mentor Calibre [4].

The size of the post-OPC benchmark circuits that we considered
along with improvement in rectangle count due to shape simpli-
fication are shown in Table IV. The threshold for bucketing was
taken as 20nm, which is less than the minimum metal width for
45nm Nangate Design. Around 50% reduction in number of shapes
is observed. Table V summarizes the results of redundancy finding.
Runtime ranges from 5 minutes to 1 hour 19 minutes for the designs
considered. The number of redundant vias and dummy fill reported
by our approach are verified with the number obtained from DEF file
of the corresponding design. Double vias are reported with almost
100% accuracy by our approach and there is less than 1% error in
dummy fill due to some outliers. The runtime of this algorithm can
be improved by partitioning layout into smaller blocks and using a
separate graph for each region. The algorithm can also be parallelized
easily by running the critical graph construction step for each set
MiVj in parallel. These techniques are left for future work.

Table VI shows the percentage non-critical regions for two bench-
marks which indicates the potential benefits that can be derived from
design-aware inspection of metal and via layers. For metal layers,
dummy area is reported as a percentage of the total die area. Higher
metal layers typically have less congestion after routing and hence
have a greater percentage of dummy area.

B. Criticality Assignment & Reticle Partitioning
For assigning minimum size defect to each layout feature, we

use the design rules from Free PDK [5]. Timing analysis was done
on the post-routed design using Cadence Encounter [3]. Using this
criticality assignment, reticle partitioning was implemented in C++.
From the fitting results of false and nuisance defects, it is clear that
false defects are typically 10-20X the nuisance defects. But nuisance
defects are more important to maskshops as they help improve first
pass yield. Hence, we took γ = 10 for our cost function in these
experiments. Only two pixel sizes, 72nm and 90nm, were used in
our experiments. The minimum dimension constraint was taken as

TABLE VI
LAYER BY LAYER NON-CRITICAL REGIONS

Design Via
Layer

# Vias % Re-
dundant

Metal
Layer

% Dummy
Area

Mips

Via1 71724 23 Metal1 3.6
Via2 72467 78 Metal2 6.4
Via3 29970 65 Metal3 8.7
Via4 12642 36 Metal4 10.9
Via5 4850 46 Metal5 12.9

Metal6 20.5

Nova

Via1 266215 22 Metal1 1.8
Via2 324409 80 Metal2 4.5
Via3 125926 75 Metal3 5.5
Via4 37474 49 Metal4 9.9
Via5 10992 64 Metal5 15.9

Metal6 25.4

2um, which is slightly larger than dimension of 80 pixels at 90nm
pixel size. The number of iterations for the scan-line was taken as
500.

Table VII shows the false and total defect count values evaluated
on the basis of our fitted equations after partitioning compared to
the case where inspection is done at a single value of pixel size and
CD and contamination sensitivities for the entire reticle. Experiments
were done for all metal, via and poly layers on two designs, for
which the non-functional features have also been reported. Note that
the reduction in real defects (non-false defects reported by inspection
tool) is due to the decrease in nuisance defects since the partitioning
problem is constrained to not miss any critical defect. Since the
designs we consider are very small compared to real reticle sizes,
we scaled up the values by 1000X to obtain defect count comparable
to realistic size reticles. Note that up to 4X improvement in both
false and nuisance defects is observed for higher via layers. The
initial value of false and real defect count for Via1-3 and Via4-5
are the same due to similar minimum width design rule. Via layer
show the most reduction in defect count due to a large number of
redundant vias, some of which are arrays with more than 10 vias.
The improvement is smaller in lower via layers due to metal intersect
regions that need to be inspected at high resolution for pinhole defects
as discussed in Section III(B). Since lower metal layers are dense,
such regions occupy a large fraction of reticle area. The improvement
in poly layers is not very substantial because in the designs we used
a large fraction of cells had very low slack and hence inspection
resolution could not be lowered in most regions of the reticle. Metal
layers, due to their larger sizes, have the smallest number of false
and nuisance defects initially and the improvement is due to dummy
regions. Note that the metal/via layer processing does not require any
explicit timing information while poly layer leverages it heavily.

For evaluating the first pass yield improvement due to design-aware
inspection, we implemented a Monte Carlo simulation for both Mips
and Nova where real defects were randomly placed on all the reticle
corresponding to metal, via and poly layers. Minimum defect size
placed was 7nm which is the smallest detectable feature size at 72nm
pixel size inspection. Defect size distribution was taken as K/r3 for
a defect of size r, where K is found by taking the maximum defect
size of 150nm. Spatial distribution of the defects was uniform. If
a reticle were inspected in a design-unaware fashion, no reticle will
pass without repair/replacement. With this setup, we iterated over
10000 reticles and we find number of reticles R which do not report
any defect with the design-aware inspection. This gives the first pass
yield as R/10000. Results for the average first pass yield of the two
designs for each reticle is shown in Figure 8.



TABLE VII
EXPERIMENTAL RESULTS FOR PARTITIONING

Design Layer Before After
Name # False # Real # False # Real

Mips

Poly 14.35 1.63 4.90 1.11
Via1 15.23 1.43 10.46 1.10
Via2 14.97 1.35 9.79 0.93
Via3 14.97 1.35 8.38 0.827
Via4 14.70 0.88 6.22 0.42
Via5 14.70 0.88 2.91 0.21
Metal1 1.06 1.20 0.98 1.11
Metal2 0.52 1.10 0.44 0.92
Metal3 0.52 1.10 0.39 0.82
Metal4 0 0.49 0 0.36
Metal5 0 0.49 0 0.33
Metal6 0 0.49 0 0.23

Nova

Poly 69.32 9.04 32.44 6.63
Via1 137.5 11.3 54.5 5.3
Via2 67.51 6.10 51.14 4.97
Via3 67.51 6.10 37.93 4.00
Via4 66.34 3.99 16.1 1.32
Via5 66.34 3.99 4.09 0.43
Metal1 4.79 5.42 4.56 5.17
Metal2 2.36 4.97 2.07 4.36
Metal3 2.36 4.97 2.01 4.23
Metal4 0 2.21 0 1.77
Metal5 0 2.21 0 1.37
Metal6 0 2.21 0 0.65

Fig. 8. First Pass Yield with design-aware inspection. The number of defects
sprinkled are µ + σ and µ + 3σ derived from the reticle inspection statistics
we have available from a commercial maskshop. Note that the yield is zero
for the conventional design-unaware inspection strategy in all these cases.

VI. CONCLUSION

In this work we developed a comprehensive design-aware mask
inspection flow:

• Proposed and implemented a graph based algorithm that finds
non-functional features (dummy fill and redundant vias) in a
post-OPC layout with almost 100% accuracy.

• We formulated a method to assign a minimum size defect to
each feature of a reticle.

• We developed a scan-line partitioning algorithm to inspect
different regions of the layout with different pixel size and
sensitivity and up to 4X reduction in nuisance and false defects
was observed along with up to 55% improvement in first pass
yield coming from reduction in nuisance defects.

One key assumption in this work is that maskshops have com-
plete mask set data for a design which is unrealistic for merchant
maskshops. In the future, we shall explore methods to derive non-
functional features and assign criticality when only a few layers are
available. We shall also study the tradeoffs of tuning only sensitivity
versus tuning both pixel size and sensitivity during inspection. Use
of larger pixel sizes will also be explored. We will also explore a

multi-level scan-line approach to speed up partitioning. Finally, we
plan to test our approach in an actual commercial maskshop.
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