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Abstract—Discrete gate sizing is one of the most commonly used,
flexible, and powerful techniques for digital circuit optimization. The
underlying problem has been proven to be NP-hard [1]. Several (subop-
timal) gate sizing heuristics have been proposed over the past two decades,
but research has suffered from the lack of any systematic way of assessing
the quality of the proposed algorithms. We develop a method to generate
benchmark circuits (called eyecharts) of arbitrary size along with a
method to compute their optimal solutions using dynamic programming.
We evaluate the suboptimalities of some popular gate sizing algorithms.
Eyecharts help diagnose the weaknesses of existing gate sizing algorithms,
enable systematic and quantitative comparison of sizing algorithms, and
catalyze further gate sizing research. Our results show that common
sizing methods (including commercial tools) can be suboptimal by as
much as 54% (Vt-assignment), 46% (gate sizing) and 49% (gate-length
biasing) for realistic libraries and circuit topologies.

Categories and Subject Descriptors: B.7 [Integrated Circuits]:
Design Aids
General Terms: Algorithms, Design
Keywords: Gate sizing, benchmarking, dynamic programming

I. INTRODUCTION

The sizing problem in digital VLSI design seeks to tune the circuit
parameters of supply voltage, threshold voltage, gate-length and gate-
width to optimize a tradeoff of speed, area and power. The sizing
problem arises at all stages of the RTL-to-GDS implementation flow,
and even beyond (e.g. [2]). The classical problem of discrete gate
sizing is to assign a size (from a pre-characterized cell library) to
each gate in a combinational logic block, such that the block’s total
power is minimized, subject to a maximum delay constraint. Finding
the optimal gate sizing solution for a given digital logic circuit can
be NP-hard [1].

Fishburn and Dunlop proposed a fast greedy method, TILOS
[3], to minimize area while meeting delay constraints. Chan [4]
gives a pseudo-polynomial time slack-computation algorithm and
a backtracking algorithm for gate sizing. Previous methods have
also used mathematical programming techniques to do gate sizing:
linear programming (LP) [5]–[8], Lagrangian relaxation [9], [10], and
convex optimization [11]–[13]. Other methods include sensitivity-
based approaches [2], [14]–[16], dynamic programming (DP) [17],
[18] and heuristics guided by continuous programming [19]. Coudert
et al. [15] give a good comparison of the gate sizing algorithms
proposed during the early 1990s.

None of the previous methods in the literature (except in [20],
[21]) quantify their own suboptimality or focus on characterizing
and investigating the suboptimalities of existing algorithms. There
is no consistent benchmarking methodology when comparing sizing
heuristics. Results in [20] show that sensitivity-based and continuous
solution-guided approaches are not robust, as their suboptimality
varies widely (from 4% to 52%) when applied to different ISCAS-85
benchmarks having nearly identical sizes. A more rigorous approach
is needed to characterize and provide insight into the behavior of
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Fig. 1. Basic eyechart topologies.

different algorithms over different classes of input circuits. Subop-
timality studies of existing heuristics have already been performed
for other VLSI problems such as logic synthesis [22], placement
[23], [24] and optimal buffer insertion [25], [26]. However, to our
knowledge we are the first to investigate the suboptimalities of gate
sizing heuristics in a systematic way.

In this paper, we present a method to generate combinational logic
circuits (called eyecharts) which are combinations of the basic chain,
mesh and star topologies shown in Figure 1. These eyecharts, together
with their optimal solutions, can be used to benchmark gate sizing
heuristics. The idea is to test just gate sizing heuristics and not any
structural/logic optimization heuristics. Our contribution is especially
useful in benchmarking the heuristics which are often used during
post-layout optimization phase where gate sizing, Vt-assignment,
gate-length biasing are the main choices. We note that the basic
eyechart topologies in Figure 1 represent the common elements of
real circuits. For example, Figure 2 shows a half-adder circuit which
has similarities to a multi-output mesh topology. Our benchmarks
can be generated with various complexities and topologies (in terms
of fanout, logic depth, and the number of primary inputs (PIs) and
primary outputs (POs)) to study the behavior of existing algorithms
under such variations. This helps us identify the weaknesses of
existing algorithms and may help predict the behavior of a given
heuristic or algorithm for a given arbitrary circuit. Our experiments
show that the suboptimalities of popular sizing methods can be as
large as 54%.1

Fig. 2. The half-adder with buffers, with its corresponding graph shown on
the right, is similar to a multi-output mesh topology, which is an extended
version of the basic mesh topology, and is discussed in Section III.

The contributions of our paper are:
• a set of basic combinational logic topologies that we call

eyecharts;
• a method to size the gates in the eyecharts optimally using DP;
• a method to form arbitrarily large combinational logic circuits

by daisy-chaining the proposed basic topologies, while retaining
the ability to optimally size these circuits; and

1Without loss of generality, we only present the details for leakage
optimization in this work.



• experiments and results that show the suboptimality behavior of
commonly used gate sizing methods under varied topological,
delay/power modeling as well as optimization contexts.

The organization of our paper is as follows. Section II describes our
method to optimally solve the basic eyechart topologies. Section III
describes the method to construct and solve larger hybrid eyecharts
(formed by daisy-chaining basic eyecharts). Section IV describes
the details of our experimental setup for the suboptimality studies.
Section V reports the results of several suboptimality case studies
using five sizing heuristics (including two commercial tools).

II. SOLVING BASIC EYECHART TOPOLOGIES

In this section, we present a method to perform optimal sizing of
the basic eyechart topologies shown in Figure 1 using DP. Optimally
solving a chain topology entails allocation of a delay budget to each
stage such that the total power is minimized. Here, stage refers to the
level of the logic gate, with PIs at the first level or stage. The delay
budget assignment (without output load dependence) is essentially a
multi-stage allocation problem which can be solved optimally using
DP [27].

For an N -stage chain, the DP recursion is shown in Equations 1
and 2. We assume that a gate’s delay depends only on its size and
its total output capacitance. We assume that each gate has k discrete
sizes. Dmax denotes the maximum delay constraint, C(s) is the input
capacitance of an inverter of size s, pij and dij(C(s)) respectively
indicate the leakage power and delay (for an output capacitance C(s))
of the gate at stage i with size j. Let xi denote the cumulative delay
budget for stage i; then the total power (for an output load C(s))
through stage i is denoted by Pi,C(s)(xi).

P1,C(s)(x1) = min
j

{p1j} s.t. d1j(C(s)) ≤ x1, 1 ≤ j ≤ k, 1 ≤ s ≤ k (1)

min
j

{d1j(C(s))} ≤ x1 ≤ Dmax

Pi,C(s)(xi) = min
j

{pij + Pi−1,C(j)(xi − dij(C(s)))} s.t. dij < xi (2)

1 ≤ j ≤ k, 1 ≤ s ≤ k

min(xi−1) + min
j

{dij(C(s))} ≤ xi ≤ Dmax, for i ≤ 2 ≤ N − 1

and xN = Dmax

For any stage i, the optimal size for a given cumulative delay
budget is determined by an exhaustive local search among the
available gate sizes. This is done for all of the possible output loads
seen by stage i due to stage i+1. Stage i+1 is then solved optimally
by considering all of its gate size choices and the stage i’s optimal
size (for an output load equal to stage i + 1’s input capacitance)
for the range of cumulative delay budgets shown in Equations 1 and
2. It is easy to see that the problem has an optimal substructure.2
Dynamic programming therefore solves this sizing problem optimally.
Note that the principle of optimality holds only if the delay of
stage i depends only on the input capacitance of stage i + 1. This
“levelization” of the circuit graph is the key for preserving optimality.

We observe that for each stage, an optimal gate size entry exists
for all possible cumulative delay budgets and for all possible output
loads. The last stage’s cumulative delay budget table has only
one entry corresponding to the given PO load capacitance and the
maximum delay constraint (since optimal sizing uses the full delay
budget). A DP execution for a three-stage inverter chain, with the
delay model shown in Table I, is shown in Table II (CP denotes
cumulative power, OS denotes optimal gate size).

After constructing the table, the optimal size for each stage is found
by traversing the cumulative delay budget table backwards from PO
to PI and allocating a delay budget (and therefore a size) to each
stage. The bolded values in Table II show this.

The mesh and star topologies are optimally solved by first reducing
them to chains. This is shown in Figure 3 and Figure 4. A stages with

2Consider an n-stage chain not containing the optimal solution for n − 1

stages with the given output load. In that case, the solution can be improved
by substituting the optimal solution for stage n − 1.

TABLE I
DELAY TABLE FOR THE INVERTER USED IN THE NUMERICAL EXAMPLE.

Input Leakage Delay
cap power Load cap 3 Load cap 6

Size 1 3 5 3 4
Size 2 6 10 1 2

Fig. 3. Mesh to chain reduction. All values for B1 and B2 are assumed to
be twice and thrice, respectively, that of the values shown in Table I.

two or more gates is represented using a composite cell, to capture
the power and delay characteristics of all the gates in that stage. A
composite cell of a stage is a tabular representation that has power and
delay values for all the possible gate size combinations of all the gates
belonging to that stage, for all the possible output load combinations.
For example, if A1, A2, B1 and B2 each have two gate sizes, then the
composite cell of stage 3 will have 23{A1, B1, A2} × 22{B1, B2}
entries. Since each stage with multiple gates is enumerated for all the
possible output loads, we preserve optimality in this reduction even if
the gates belonging to a stage are non-homogeneous. The gate size
entry and the input capacitance entry of a composite cell is a vector
of gate sizes and input capacitances respectively, of each gate in that
stage. For a gate size of a composite cell, the power is the sum of the
powers and the delay is the maximum of the delays, of the individual
gates. An example of this is shown for stage 4 of the mesh topology
in Figure 3. The composite cell C4 represents the gate size vector,
power and delay values of the gates of stage 4.

Fig. 4. Star to chain reduction.

III. OPTIMAL SIZING OF HYBRID EYECHARTS

We generate large hybrid eyecharts by daisy-chaining the basic
chain, mesh and star topologies. In this section, we explain how to
optimally solve the hybrid eyecharts.

A. Hybrid Benchmarks Constructed with Basic Topologies

We solve a hybrid eyechart by reducing it to a simple chain using
a process similar to the one described in Section II. Figure 5 shows
a sample hybrid eyechart and its reduced chain equivalent. While
creating a hybrid eyechart, we mark each gate in the circuit with
a tag that indicates whether it belongs to a chain, mesh or star
structure. All the stages that belong to a mesh are reduced to single
cells using composite cell models. Starting from each PI, we build
cumulative delay budget tables for each stage until the star node in
the center (gate C in Figure 5) is reached. For each such PI chain,
the cumulative delay budget table of the last stage has cumulative
power values for different cumulative delay budgets for the whole PI
chain. Now, these PI chains in parallel can be represented using a
single composite cell, as with Chains 1 and 2 in the hybrid eyechart
of Figure 5. The entries for the power of this cell for each budget
will be the sum of the individual powers of each PI chain.



TABLE II
NUMERICAL EXAMPLE FOR A THREE-STAGE INVERTER CHAIN . THE

FINAL OPTIMAL SIZING SOLUTION IS SHOWN IN bold FONT.

Output Stage 1 Stage 2 Stage 3
cap Budget CP OS Budget CP OS Budget CP OS
3 1 10 2 3 20 2
3 2 10 2 4 15 1
3 3 5 1 5 15 2
3 4 5 1 6 10 1
3 5 5 1 7 10 1
3 6 5 1 8 10 1
3 7 5 1
3 8 5 1
6 2 10 2 4 20 2 8 20 1
6 3 10 2 5 15 1
6 4 5 1 6 15 2
6 5 5 1 7 10 1
6 6 5 1 8 10 1
6 7 5 1
6 8 5 1

Budget tables are built for each stage of the Chains 3 and 4 by
following the same steps taken for the PI side chains, allowing them
to be represented using a single composite cell. The whole circuit can
now be treated as a chain and solved using the DP recursion described
in Section II. To determine the optimal sizes for all the gates in the
circuit, the delay budgets allocated to each cell of the reduced chain
are applied to the corresponding PI/PO chains. The stages with only
one gate are assigned gate sizes directly from the cumulative budget
table, and the gate sizes for other stages are assigned from the entries
found in their respective composite cell tables.

Fig. 5. Hybrid eyechart reduced to a chain.

B. More General Eyechart Topologies

Topologies that are more complex than the basic eyechart topolo-
gies can also be solved. We illustrate this with a multi-output mesh
topology, as shown in Figure 6. This topology has two two-input
cells added in the last stage. A unique property of the three basic
eyechart topologies, unlike the multi-output mesh, is that a gate at
any stage i has inputs coming only from stage i − 1 and its fanout
goes only to gates in stage i+1. We treat the group of stages which
do not satisfy this unique property as a single stage and solve it
using local enumeration. For example, in Figure 6, stages three, four
and five are treated as a single stage (enclosed by a box), which
is enumerated. The rest of the circuit is solved using the method
described in Section II. Other similar topologies can be added (albeit
at the cost of optimization runtime) in the same way, which can make
our eyechart approach fairly flexible.

IV. IMPLEMENTATION DETAILS AND EXPERIMENTAL SETUP

A C++ program has been written which generates and solves these
eyecharts, and which also writes out their corresponding netlists,
parasitics and delay models in the industry-standard .v, .spef and .lib
formats so that they can be easily used with standard sizing tools. The
complexity of the DP recursion described in Section II is bounded
by O(P · N · B · kn), for a circuit with P PIs/POs, N stages, delay

Fig. 6. Multi-output mesh topology.

budget B, k sizes per gate and n gates per stage. Solving a hybrid
benchmark circuit with 10,000 gates takes approximately four hours.3

Delay tables are formed with delay entries for all possible output
load combinations, to avoid interpolation. This makes the number of
capacitance indices for the delay tables dependent on the maximum
fanout in the circuit. For example, if the library has three sizes per
standard cell and the maximum fanout in the circuit is three, then the
delay table would have nine capacitance indices. This ensures that
any combination of output loads will fall in the range of available
discrete capacitance entries in the delay table. To test the subopti-
malities of post-routing leakage optimization tools, we also insert
parasitic capacitances at different nodes. The values of the parasitic
capacitances are set to be integral multiples of a minimum constructed
gate capacitance so that the total load capacitance seen by a gate
has a corresponding index in the delay table. To preserve optimality,
we ignore some complexities (e.g., crosstalk, slew propagation, etc.),
which are handled by practical optimization engines.

We experimented with the following five different gate sizing
methods for suboptimality studies.

• Comm1, Comm2: Two well known commercial gate sizing and
leakage optimization tools. Unfortunately, we do not know the
internal details of these optimizers.

• LP: A linear programming-based slack allocation and sizing tool
which is an implementation of [7]. First, it optimizes the circuit
for maximum speed. Then, it uses power-delay sensitivities in
a linear programming-based slack allocation to maximize the
power savings. It uses a freely distributed linear programming
solver lp solve (http://lpsolve.sourceforge.net/5.1).

• GS: A greedy sensitivity-based sizing tool similar to [2], [16] but
with a TILOS [3]-like sensitivity function (∆power/∆delay).

• SBS: A sizing tool that uses the slack-based greedy sensitivity
metric (∆power/∆slack) proposed in [2], [16].

Note that all the above heuristics except LP use an incremental
timing engine in the optimization loop. Due to delay modeling
approximations, LP can sometimes violate timing constraints. We
pick the delay constraint values (by trial and error) that LP can
achieve and run the rest of the heuristics (as well as the optimal DP)
with those constraints. This ensures that all our comparisons are fair
in terms of suboptimality, but a practical LP-based optimizer will
need additional hooks to fix timing violations.

The following four types of delay and power tradeoffs with size
are investigated.

• LP-LD: Linear increase in power with size and a linear fit of
delay to size/load.

• LP-NLD: Linear increase in power with size and a nonlinear fit
of delay to size/load.

• EP-LD: Exponential increase in power with size and a linear fit
of delay with size/load.

• EP-NLD: Exponential increase in power with size and a non-
linear fit of delay to size/load.

In the EP-LD and EP-NLD models, we use the term “cell-variant”
to indicate that the cell swapping choices are Vt or gate-length
variants. We assume that the input capacitance of a gate remains
the same across Vt variants. For gate-length variants, the capacitance
increases linearly with gate-length. All the delay values were fitted
individually for each type of standard cell, using an industrial multi-
Vt 65 nm CMOS technology library. Table III gives a summary of

3Note that this runtime is not a huge concern since the DP method is not
intended for use in practical optimization, but only for benchmarking.



the characteristics of the four library models used in our experiments,
along with the corresponding optimization contexts.

Table III shows the RMS error of each of these fits. Power values
for all four library models are taken from the reference technology
library and hence do not involve fitting (except for the studies which
involve more number of sizes/variants than the listed default number).
The minimum delay budget for any benchmark is found by maximally
sizing all the gates in the design.4

TABLE III
SUMMARY OF LIBRARY MODEL CHARACTERISTICS.

Library RMS fitting Optimization context Default #
model error (delay) sizes/variants
LP-LD 8.43% Gate sizing 8

LP-NLD 0.3% Gate sizing 8
EP-LD 8.43% Vt , gate-length bias 3, 3

EP-NLD 0.3% Vt , gate-length bias 3, 3

V. SUBOPTIMALITY CASE STUDIES
In this section we present the results of a few interesting case

studies that compare the suboptimalities of the five optimization
heuristics outlined in Section IV. These studies are by no means
exhaustive and many other experiments are possible using eyecharts
as a diagnostic tool. All of the suboptimality values are calculated
as

Suboptimality% =
method power − optimal power

optimal power
× 100. (3)

Fig. 7. Daisy-chained individual topologies.

A. Dependence on Circuit Topology

Figure 7 illustrates large chain-, mesh- and star-only circuits
obtained by daisy-chaining the basic topologies. We fix the netlist
size at approximately 10,000 gates and perform the optimizations
with varying delay constraints. The average fanin/fanout depends on
the length of the mesh (three-stage, five-stage etc., mesh), maximum
fanin of the star-only cells, and total number of stages in the daisy
chain. The average fanouts (and fanins, due to symmetry) of chain-,
mesh- and star-only topologies used in this experiment and shown
in Figure 7 are 1, 1.875 and 1.95 respectively. Figure 8 shows the
suboptimalities for mesh and star topologies; these results indicate
that a mesh structure is more difficult to solve than a star structure.
With respect to circuit topology, designers should look out for mesh-
like topologies (i.e., with reconvergent fanouts) since none of the
tested heuristics perform well on them.

We also studied the impact of circuit size on suboptimality. We
varied the circuit’s logic depth and number of PIs/POs, while keeping
the topology of the hybrid eyechart the same as in Figure 5. The
corresponding results (on benchmarks with sizes ranging from 100
to 51,500 gates) show that the suboptimality is unaffected by the size
of the design, and hence for the rest of the studies, we use a hybrid
benchmark with 10,000 gates.

4Note that this may not be the fastest possible implementation for the case
of gate sizing, where the dependence of the circuit delay on individual gate
sizes is not necessarily monotone.
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Fig. 8. Suboptimality comparison of the daisy-chained mesh-only and
star-only topologies. The chain-only suboptimality results show that all the
compared methods have close to zero suboptimalities and hence are not shown.

B. Effect of Delay Modeling

We compare the delay models using a single hybrid benchmark
with 10,000 gates. This benchmark has a topology similar to the
sample hybrid eyechart of Figure 5 with a multi-output mesh topology
added at each of the POs. It has four PIs and five POs. 1,000 five-
stage mesh topologies and inverter chains are also inserted randomly
into the benchmark. INV, NAND and four-input AOI gates, each with
eight discrete gate sizes, are used.

We experimented with the LP-LD delay model and the suboptimal-
ity results are shown in Figure 9. Comm2 has the best suboptimality,
while LP performs much better than the three remaining optimizers.
This is expected since linear power-delay tradeoffs are better suited
for the LP-based slack-allocation engine. To evaluate the performance
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Fig. 9. Suboptimalities for LP-LD model.

of the chosen optimizers with realistic delay models, .lib models are
generated with the LP-NLD delay model. Figure 10 shows the cor-
responding suboptimality trends. Note that the delay dependence on
size is only weakly nonlinear in the 65 nm library used in this paper.
The performance of the LP and Comm2 methods suffers under the
nonlinear delay model while that of Comm1, SBS and GS improves,
especially with relaxed timing constraints. A possible reason is the
ability of Comm1, SBS and GS to exploit the nonlinearity. Without
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Fig. 10. Suboptimalities for LP-NLD model.

knowing the details of Comm1 and Comm2, one conclusion we can
draw is that even with the nonlinearity in the commercial delay tables,
linear programming is a good approach for linear power tradeoffs.

The non-monotone trends in the suboptimalities can be explained
using Figure 11. The suboptimality of any of the compared methods is
the least for both the smallest and the largest delay budgets, while the
optimal power decreases with increasing delay budget. This results
in the observed non-monotone behavior of the suboptimalities.

C. Effect of Library Granularity

We experimented with a varying numbers of gate sizes for the LP-
NLD model. For these experiments, the delay and power ranges are
kept the same as in Section V-B while the granularity in gate sizes is
increased. Figure 12 shows the corresponding trends in suboptimality.
It can be seen that the performance of Comm1 and Comm2 are
relatively unaffected while LP’s suboptimality improves noticeably,
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which is likely due to a smaller error in snapping the continuous
solution to a discrete one.
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Fig. 12. Suboptimalities vs. number of gate sizes for LP-NLD model with
1500 ps delay budget.

For the same experiment, Figure 13 shows the optimal power
values for different delay budgets with two, four and six gate sizes,
normalized to the optimal power values with eight gate sizes. Since
the delay range is the same for these experiments, higher granularities
create more gate sizing options for smaller delay increments. Hence,
a higher library granularity results in a lower optimal power, but the
difference is not very pronounced.
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Power values are normalized to corresponding optimal results for eight gate
sizes.
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Fig. 14. Suboptimalities for EP-LD model under different delay constraints,
using Vt variants only.

D. The Vt-assignment Context

We experimented with the EP-LD and EP-NLD library models
by varying the delay constraint for the case where each cell has
three variants. The corresponding results are shown in Figure 14 and
Figure 15 respectively. The minimum delay budget for optimization
is found by assigning low Vt variants to all of the cells. LP and
Comm2 perform relatively well for the smaller budgets but their
suboptimality increases for the larger delay budgets. Moreover, the
suboptimality difference between the LD and NLD delay modeling
is more pronounced for the LP optimizer.
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500 1000 1200 1300 1500 1800

1
2
3
4
5
6
7
8
9

10

Delay Budget(ps)

P
ow

er

 

 
2
4
6

Fig. 16. Optimal powers for varying delay budgets and different Vt

granularities. The powers are normalized to the corresponding results for eight
Vt variants.

Figure 16 shows the optimal power values for different delay
constraints for two, four and six Vt variants, normalized to the powers
with eight Vt variants.5 Since the delay range is the same for these
experiments, higher granularities create more Vt options for smaller
delay increments, resulting in lower optimal powers. These results
suggest a strong benefit in increasing the number of cell variants
when the power tradeoff is exponential, in contrast to the case in
Figure 13, which has a linear power tradeoff.

E. The Gate-length Biasing Context

Figure 17 shows the trends for gate-length biasing. Gate-length
variants have different input capacitance values as opposed to Vt

variants. In these results, all of the tools perform worse than the gate
sizing or Vt-assignment cases. This is especially true for LP whose
suboptimality rises to over 40% and it does not perform better than
the simple GS and SBS approaches. Iterative methods like GS and
SBS, which use a real static timing engine, perform better than LP
due to the near-quadratic dependence of the delay on the gate-length.
This near-quadratic dependence is due to the reduced drive strength
of the driver, and the increased input capacitance of the load, for an
increased gate-length.
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Fig. 17. Suboptimalities for EP-NLD model using gate-length variants only.

F. Observations

We summarize our main observations and conclusions below.
• All of the tools fare well on designs with low fanouts (i.e.,

designs that are topologically close to the chain eyechart).
• All of the tools fare poorly on designs with reconvergent fanouts

(i.e., designs that are topologically similar to the mesh eyechart).
• For gate sizing and Vt-assignment, linear programming-based

solvers can perform surprisingly well. Their solution quality

5We realize that more than three Vts are rarely used in practice. Neverthe-
less, we show the results with more variants to highlight what is achievable.



suffers significantly in the gate-length biasing context where the
delay is a strongly nonlinear function of the gate-length.

• The commercial tools do well in different optimization contexts
(but unfortunately we cannot offer more insight here). These
tools, as well as the sensitivity-based sizers GS and SBS, benefit
from not needing to fit a closed-form delay/power model to real
library data.

• The benefits of having a finer granularity in a library is much
more pronounced for exponential power tradeoffs (such as gate-
length biasing and Vt-assignment) than linear power tradeoffs
(as in the case of gate sizing).

• Local sensitivity-based heuristics like GS and SBS can be highly
suboptimal for large delay budgets due to their tendency to be
trapped in local minima (as we have seen with star or mesh
topologies).

VI. EXTENSIONS TO COMPLEX DELAY MODELS

Finally, we have also applied our approach to a slew-dependent
delay model. In this case, we assume that a gate’s delay depends on
the input slew and the load capacitance, while the output slew of a
gate depends only on its size and the load capacitance. Unfortunately,
in this case our method cannot guarantee optimality due to the need
to maintain the slew and load consistency while building the tables.
The method to solve a chain for the slew-dependent delay model is
the same as the method described in Section II, except that a 3D
budget table is used for each stage, with the input slew, the output
load and the delay budget as the three indices. We take the best of the
forward propagation (as in Section II with fixed PO load capacitance)
and the reverse propagation (i.e., fixed PI slew). For the mesh and star
structures, we first build composite cells for all the input slew and
output load combinations and then solve them in the same manner as
we solve a chain. Even though this method may not be optimal, the
experimental results in Figure 18 show that the existing methods used
for comparison are still considerably worse. We realize that a realistic
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Fig. 18. Suboptimalities for EP-NLD model with slew-dependent delay
model.

delay model has slew and signal integrity dependence. Nevertheless,
we believe that our work has made a significant contribution in
highlighting the huge suboptimalities of the sizing heuristics studied,
as well as the dependence of these suboptimalities on the circuit
topology and the delay-size and power-size tradeoffs. However, we
believe that our work is a significant contribution in highlighting
the huge suboptimalities of the compared sizing heuristics and the
dependence of the suboptimalities on the circuit topology and the
delay-size and power-size tradeoffs.

VII. CONCLUSIONS AND FUTURE WORK

We have described a method to generate arbitrarily large circuits
with known optimal solutions that can be used to benchmark and
diagnose the problems with sizing heuristics. The benchmarks and
the code can be downloaded from http://nanocad.ee.ucla.edu/Main/
DownloadForm. We have studied the optimization contexts of gate
sizing, Vt-assignment and gate-length biasing with two commercial
and three academic sizing heuristics. Our results show that these
heuristics can be suboptimal by as much as 54%. The context of gate-
length biasing has the worst suboptimality overall, with a minimum
suboptimality of 14%. Also, the presence of reconvergent fanouts in
a circuit topology results in a greater suboptimality compared to a

similar topology without reconvergent fanouts. We also note that lin-
ear programming-based methods perform well under most scenarios,
while local sensitivity (TILOS-like)-based heuristics perform better
under exponential power-size tradeoffs.

Ongoing studies include generating hybrid eyecharts according to
given fanin/fanout and path-length distributions that are derived from
real designs. We also plan to detect the presence of the basic eyechart
topologies in real designs and measure the similarity of the designs
to eyecharts with pre-characterized suboptimalities. This will enable
the estimation of suboptimality of a given heuristic on a given design,
possibly allowing optimization tools, which implement a collection
of sizing heuristics, to choose one at runtime.
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