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Abstract—Number of cores per multi-core processor die, as
well as variation between the maximum operating frequency of
individual cores, is rapidly increasing. This makes performance
binning of multi-core processors a non-trivial task. In this paper,
we study, for the first time, multi-core binning metrics and
strategies to evaluate them efficiently. We discuss two multi-core
binning metrics with high correlation to processor throughput
for different types of workloads and different process variation
scenarios. More importantly, we demonstrate the importance
of leveraging variation model data in the binning process to
significantly reduce the binning overhead with a negligible loss
in binning quality. For example, we demonstrate that the
performance binning overhead of a 64-core processor can be
decreased by 51% and 36% using the proposed variation-
aware core clustering and curve fitting strategies respectively.
Experiments were performed using a manufacturing variation
model based on real 65nm silicon data.

Index Terms—Multi-core, Binning, Performance, Process Vari-
ations

I. Introduction
Performance (or speed) binning refers to test procedures to

determine the maximum operating frequency of a processor.
It is common practice to speed bin processors for graded
pricing. As a result, even in the presence of manufacturing
process variation, processors can be designed at the typical
“corners”, unlike ASICs, which are designed at the worst-case
corners. Binning a processor also sets the expectations for the
consumer about the performance that should be expected from
the processor chip.

In the case of uniprocessors, the performance of a processor
is strongly correlated with its frequency of operation. As a
result, processors have traditionally been binned according to
frequency [8]. However, for chip multiprocessors, the appro-
priate binning metrics are much less clear due to two main
considerations.

1) If binning is done according to the highest common
operating frequency of all cores (one obvious extension
to the uniprocessor binning metric), good performance
correlation of the binning metric would only be observed
when the maximum operating frequencies of all cores
are very similar. We speculate that this assumption will
not hold true in the future based on the following
observations.

• The transition from multi-core to many-core would
mean several tens to hundreds of cores on a single

die. In this case, all the cores are unlikely to have
similar maximum safe operating frequencies.

• With scaling, technology process variation is in-
creasing. There is no obvious process solution to
variability in sight. ITRS [16] predicts that circuit
performance variability will increase from 48% to
66% in the next ten years. Moreover, many-core
die sizes may scale faster than geometric technol-
ogy scaling [10], facilitated by future adoption of
450mm wafers and 3D integration. As a result, core-
to-core frequency variation is likely to increase in
coming technology generations.

2) The second reason why binning metrics may need to
be re-evaluated for multi-core processors is that a good
binning metric should not only correlate well with the
maximum performance of the chip (in order to maximize
producer profits and consumer satisfaction), but should
also have acceptable time overhead for the binning
process. As we show in this paper, different binning
metrics have different binning overheads, and therefore,
the tradeoff between correlation to performance and
timing overhead should be evaluated carefully.

In the simplest and most general form of speed binning,
speed tests are applied and outputs are checked for failure at
different frequencies [29]. The testing may be structural or
functional in nature [5], [8], [9]. The total test time depends
on the search procedure, the number of speed bins, and the
frequency distribution of the processor. To the best of our
knowledge, this is the first work discussing speed binning in
the context of multi-core processors.

In this paper, we make the following contributions.
• We explore, for the first time, speed binning in the context

of multi-core processors.
• We propose two multi-core binning metrics and quantify

their correlation with absolute performance as well as
their testing time overheads for various kinds of work-
loads.

• We demonstrate that leveraging data from the process
variation model can have a significant impact on binning
efficiency and propose several variation-aware binning
strategies.

Our results show that variation-aware binning strategies can
reduce testing time significantly with little or no degradation



in performance correlation.

II. Modeling Variation
An accurate, physically justifiable model of spatial variabil-

ity is critical in reliably predicting and leveraging core-to-
core variation in the binning process. Though most design-
end efforts to model spatial variation have concentrated on
spatial correlation (e.g., [14], [15]), recent silicon results
indicate that spatial dependence largely stems from across-
wafer and across-field trends [12]. [6] assumes the source
of core-to-core variation to be lithography-dependent across-
field variation. Though a contributor, across-field variation
is smaller compared to across wafer variation [11] (even
more so with strong RET and advanced scanners). In light
of these facts, we use a polynomial variation model [4] for
chip delay, similar to those proposed in [11], [12], [13],
having three components: (1) systematic (bowl-shaped) across
wafer variation1; (2) random core-to-core variation (arising
from random within-die variation); and (3) random die-to-die
variation (e.g., from wafer-to-wafer or lot-to-lot variation).

Vd(x,y) = A(Xc + x)2 +B(Yc + y)2 +C(Xc + x) (1)
+D(Yc + y)+E(Xc + x)(Yc + y)+F +R+M

where Vd(x,y) is the variation of chip delay at die location x,y;
Xc,Yc are the wafer coordinates of the center of the die ((0,0)
is center of wafer); x,y are die coordinates of a point within
the die; M is the die-to-die variation and R is the random
core-to-core variation. A,B,C,D,E,F are fitted coefficients for
systematic across-wafer variation. We use a fitted model as
above based on real silicon data from a 65nm industrial
process [4]2. The goal of the binning process is to accurately
classify a chip into one of n bins (where n is decided based
on business/economic reasons) in light of the above variation
model.

III. Binning Metrics
Traditional uniprocessor binning strategies, which sort chips

according to maximum operating frequency, may fail to ade-
quately characterize multicore processors, in which within die
process variation given by Equation 1 can be substantial. In
this section, we propose and discuss two simple binning met-
rics that recognize the frequency effects of process variation.
We assume that individual cores are testable and runnable at
independent operating frequencies [22], [23], [24], [25], [26],
[27] though our discussion and analysis would continue to
hold in other scenarios.

A. Min-Max and Σ f
Min-Max stands for the minimum of the maximum safe

operating frequencies for various cores of a chip multipro-
cessor. The min-max metric is computed using equation 2,
where n represents the number of frequency bins, m represents

1Example physical sources of across-wafer bowl-shaped variation include
plasma etch, resist spin coat, post exposure bake [4].

2For this model, mean = 4GHz, σbowl = 0.128GHz, σR = 0.121GHz, σM =
0.09GHz.

the number of processor cores, and fi j is a successful test
frequency or 0 if core j fails the ith test.

min-max = min[max[ fi j|
n
i=1]|

m
j=1] (2)

The second binning metric that we evaluate is Σ f . While
frequency represents the primary means of increasing the
performance of uniprocessors, new conventional wisdom dic-
tates that the performance of multiprocessors depends on
increasing parallelism [17]. Thus, ranking processors accord-
ing to maximum attainable aggregate throughput represents a
fitting binning strategy. Ideally, aggregate throughput should
be maximized when every core operates at its maximum
frequency. Consequently, we calculate the Σ f metric using
equation 3.

Σ f =
m
∑
j=1

max[ fi j|
n
i=1] (3)

B. Correlation to Throughput
In terms of correlation of the metric with the throughput

of the chip, min-max is conservative and therefore, should
demonstrate good correlation only for workloads with reg-
ular partitioning (parallel or multi-threaded workloads) in
which the load is distributed evenly between all cores. For
other workloads that have inherent heterogeneity (multi-
programmed workloads), Σ f should demonstrate good correla-
tion, especially when runtimes are designed to take advantage
of the heterogeneity inherent in systems and thread character-
istics. In fact, for multi-programmed workloads, the magnitude
of miscorrelation between actual throughput and Σ f depends
on the extent of disparity between the workloads that run on
various cores. One drawback of Σ f is that it may increase the
binning overhead, although we show in this paper that utilizing
knowledge of variation trends can help to keep the overhead
in check.
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Fig. 1. Correlation of min-max and Σ f to throughput for multi-programmed
and multi-threaded workloads.

Figure 1 compares the correlation of min-max and Σ f to
actual throughput for multi-programmed and multi-threaded
workloads using Monte-carlo simulations on 100,000 dice,
each die being a 64 core processor in 65nm technology on a
300mm wafer (please refer to section V for further details on
experimental setup). It is evident that Σ f is a better metric for
multi-programmed workloads while min-max performs better



for multi-threaded workloads for moderate to large number
of bins. This is because the performance of multi-threaded
benchmarks depends on the speed of the slowest executing
thread (because of thread synchronizations in the benchmarks)
which is nicely captured by min-max. Also, the correlation
of Σ f and min-max to the throughput of multi-programmed
and multi-threaded workloads respectively, converges to 1
asymptotically with the number of bins. This is because,
finer binning granularity leads to more precise estimation of
maximum core frequencies. Conversely, when the number of
bins is small, we observe rather poor performance correlation
for the metrics.

To compare the two metrics, consider the asymptotic case
of very large n and m and completely random core-to-core
variation (i.e., A, B, C, D, E, F, M all equal zero in equation 1).
In this simplified case, Σ f converges to m×mean f requency
while min-max converges to (E(Mini=1...∞ fi) = 0, i.e., for
multi-programmed workloads, we expect the min-max to be
a progressively worse metric as the number of cores in a die
increases or the variation increases.

C. Binning Overhead
The binning overhead depends on the specific testing

methodology that is used. On one extreme lies the case where
individual cores are tested one at a time and on the other
extreme is the case where all cores are tested simultaneuosly
in parallel. While the latter reduces test time compared to the
former, it results in higher power consumption of the circuit
during test. With ever increasing number of cores within a
multiprocessor, parallel testing of all cores leads to very high
test power. Hence, testing is usually performed by partitioning
the design into blocks and testing them one at a time [2], [1],
[3]. For our work, we assume that cores are tested one at a
time. Note that the analysis is also extensible to cases where
a group of cores are tested together in parallel.

To calculate the binning overhead for min-max on a proces-
sor with n frequency bins and m cores, we use binary search3

(i.e. frequency tests are applied in a binary search fashion) to
find fmax for every core. However, the search range will reduce
progressively. The worst case arises when fmax for every core
is 1 bin size less than the fmax found for the previous core.
In this case, the worst-case number of tests that need to be
performed can be computed as (log(n!) + m− n) (assuming
m ≥ n). The best case binning overhead for min-max would
be m tests.

To fully evaluate the Σ f metric, the maximum operating
frequency of each core must be learned. Using binary search,
this process performs, at worst, m× logn tests4. The best case
is still m tests. We will show the average case runtime results
of both these testing strategies using monte-carlo analysis.

3In this work, we assume that if a core works at a certain frequency, it is
guaranteed to work at all lower frequencies. This stems from the specific case
of using binary search in conjunction with the minmax metric. The constraint
can be easily avoided by adding one more test per core (i.e., testing it at the
minmax frequency)

4Note that this expression and the expressions corresponding to min-max
ignore the bias introduced in binary search by the probability distribution of
the frequencies themselves.

It should be noted from the above discussion that the
binning overhead for Σ f is always equal to or higher than
that of min-max and this remains true even when simple
linear search (i.e. frequency tests are applied in a simple
linear fashion, which is the case with most industrial testing
schemes) is used instead of binary search. Moreover, the
disparity between binning times for min-max and Σ f is never
higher for binary search than for linear search. For min-max,
the worst case overhead is on the order of n2 and the best
case is m tests. For Σ f , the worst case number of tests is on
the order of m× n and the best case is m tests. This is also
shown in Figure 2 by performing Monte-Carlo simulations on
a 64 core multi-processor in 65nm technology with a 300mm
wafer. In this work, we use binary search for comparing test
time overheads of various binning strategies but as explained
above, our proposed analysis and results will hold for linear
search as well.
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Fig. 2. The increase in overhead because of linear search for frequency
binning is higher for Σ f than min-max.

IV. Using the Variation Model to Reduce Binning
Overhead

The binning metrics described above, as well as the bin-
ning strategies for those metrics, are agnostic of the process
variation model. The overhead of binning using those metrics,
however, depends strongly on the process variation model. In
this section, we advocate the use of variation-aware binning
strategies. We argue that the overhead of binning can be con-
siderably reduced by making the binning strategies variation
model-aware. The maximum safe operating frequency ( fmax)
of a core can be strongly predicted (i.e. mean with standard
deviation around it) based on the process variation model.
Therefore, the process variation model can give a smaller
frequency range within which the search should be performed.

A. Curve Fitting
We propose curve fitting as a technique for reducing testing

time overhead by trimming the range of frequencies at which
a core must be tested. The curve-fitting strategy involves
using the variation model (equation 1) to approximate the
expected frequency (in GHz) as well as the standard deviation
(=

√

(σ 2
M +σ 2

R)) of a core, given its location within a die and
die location within the wafer. Therefore, we can identify the
center (= mean) as well as the corners (= +/-kσ ) of a new,



tighter search range. If the core falls outside of this range
(decided by k), we assign the core to the lowest frequency bin.
Curve fitting reduces both the average and worst-case testing
time for each core.

B. Clustering
Another strategy for reducing the binning overhead can be

to create a hybrid metric which incorporates the advantages of
each of the original metrics – namely, the low testing overhead
of min-max and the high performance correlation of Σ f . This
behavior can be achieved by clustering the cores in a chip
multiprocessor and then using min-max within the clusters
(low binning overhead advantage) while using Σ f over all
clusters (high correlation to maximum throughput advantage).
To further reduce the overhead of binning, a process like curve
fitting can be applied, where the process variation model is
used to identify the search range for fmax of a core. We refer
to this combination of clustering and curve fitting as smart
clustering

In order to improve the performance correlation within
the cluster and minimize the binning overhead (especially
when across-wafer variations are high), clusters can be chosen
intelligently to minimize frequency variation (and hence loss
of correlation) within a cluster. To this end, the cluster size can
be set to be inversely proportional to the spread of frequency
mean (calculated from the bowl-shape in equation 1) within
the cluster. In general, the dice close to the center of the bowl
(typically close to the center of the wafer) will see large cluster
sizes, while clusters are smaller for the dice closer to the edge
of the wafer. We do not evaluate variable clustering in this
paper due to the relatively low across-wafer variations that
our current process variation models suggest.

V. Methodology
We model chip multiprocessors with various numbers of

cores on the die for different technologies. Each core is a
dual-issue Alpha 21064-like in-order core with 16KB, 2-way
set-associative instruction cache and data cache. Each core (1
mm2 at 65nm) on a multiprocessor has a private 1MB L2
cache (0.33MB/mm2 at 65nm). We assumed a gshare branch-
predictor [7] with 8k entries for all the cores. The various
miss penalties and L2 cache access latencies for the simulated
cores were determined using CACTI [18]. We model the area
consumption of the processors for different technologies using
the methodology in [19].

We considered two types of workloads – multi-programmed
workloads and multi-threaded workloads. Table I lists the ten
benchmarks used for constructing multi-programmed work-
loads and the three multi-threaded benchmarks. The bench-
marks are chosen from different suites (SPEC, IBS, OOCSB,
and Mediabench) for diversity. The parallel applications (CG,
FT, MG) are chosen from the NAS benchmark suite and run
to completion. The class B implementations have been used.

Multi-programmed workloads are created using the sliding
window methodology in [21]. For multi-programmed work-
loads, the performance of a multiprocessor is assumed to be
the sum of the performance of each core of the multiprocessor,

TABLE I
Benchmarks used

Program Description
ammp Computational Chemistry (SPEC)
crafty Game Playing: Chess (SPEC)
eon Computer Visualization (SPEC)
mcf Combinatorial Optimization (SPEC)

twolf Place and Route Simulator (SPEC)
mgrid Multi-grid Solver: 3D Potential Field (SPEC)
mesa 3-D Graphics Library (SPEC)
groff Typesetting Package (IBS)

deltablue Constraint Hierarchy Solver (OOCSB)
adpcmc Adaptive Differential PCM (MediaBench)

CG Parallel Conjugate Gradient (NAS)
FT Parallel Fast Fourier Transform (NAS)
MG Parallel Multigrid Solver (NAS)

derated by a constant factor. The methodology is accurate
for our case, where each core is assumed to have a private
L2 cache and a memory controller [19]. The methodology
was shown to be reasonable for our benchmarks even for
processors with shared L2 [19], due to the derating factor.

After fast-forwarding an appropriate number of instruc-
tions [20], multi-programmed simulations are run for 250
million cycles. As mentioned before, parallel applications are
run to completion. The frequency of each core is determined
by the variation model. Simulations use a modified version of
SMTSIM [21].

VI. Analysis of Results

In this section, we compare the binning metrics and the
various evaluation strategies in terms of their overheads as
well as their correlation to throughput. We run Monte-Carlo
simulations using 100,000 dice. Unless specified otherwise,
each die is a 64-core processor (256 mm2) in a 65nm tech-
nology 300mm wafer, binned using 8 frequency bins. Curve
fitting and smart clustering use a search range of ±3σ (where
σ accounts for the random die to die and within die variations),
while Σ f and the baseline clustering approach search the
entire frequency range for fmax. We use the process variation
model as described by Equation 1, with σbowl = 0.128GHz,
σR = 0.121GHz, σM = 0.09GHz, based on a fitted model from
a 65nm industrial process.

A. Dependence on Number of Bins

Figure 3 shows how binning overhead and throughput
correlation vary with the number of frequency bins for multi-
programmed (Fig. 3(a)) and multi-threaded (Fig. 3(b)) work-
loads. Using 100,000 data points (processor dice), we calculate
correlation between the average of the maximum throughput
of the various workloads on a processor (where cores run at
different frequencies dictated by the variation model) and the
value of the metric when following a given binning strategy.
Note that performance of a thread often does not vary linearly
with frequency due to pipeline hazards, memory accesses, etc.,
so it is unlikely that correlation will be 1 for any binning
metric.

There are several things to note in these graphs.
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Fig. 3. Correlation of various binning metrics to actual throughput and
their binning overhead for (a), multi-programmed benchmarks and, (b) multi-
threaded benchmarks, with varying number of bins.

• First, Σ f achieves significantly better correlation to
throughput than min-max for multi-programmed work-
loads. This is not surprising, considering that the through-
put of a thread often depends on the frequency of the core
it is running on, and for multi-programmed workloads,
every thread execution is independent. min-max fails to
account for variation in frequency (and therefore, average
throughput) between individual cores.

• While the correlation of min-max to throughput suffers
for multi-programmed workloads, min-max actually sur-
passes Σ f for multi-threaded benchmarks as the number
of bins increases. This is due to the fact that synchro-
nization in the parallel benchmarks causes performance to
be constrained by the slowest thread, since faster threads
must wait at synchronization points until all threads have
arrived.

• Correlation is especially low for a small number of
frequency bins. This is because the binning process picks
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(b) multi-threaded

Fig. 4. Correlation of various binning metrics to actual throughput and
their binning overhead for (a), multi-programmed benchmarks and, (b) multi-
threaded benchmarks, with varying number of cores in the multi-processor.

an overly conservative frequency as fmax for a die in
that case. Even the relative performance of min-max (as
compared to Σ f ) worsens as the number of frequency
bins is decreased.

• In terms of binning overhead, min-max is significantly
faster than Σ f , especially for large number of bins (70%
faster for 32 bins). This is because while Σ f involves
doing binary search over the full frequency range (over
all frequency bins) for every core, min-max progressively
reduces the search range and requires very few tests
per core, on average. minmax and Σ f have comparable
overheads for small number of bins since the search range
is reduced.

• The graph also shows that curve f it (the approach of
using variation model aware curve fitting to approximate
Σ f ) has performance correlation to throughput that is
equivalent to that of Σ f . This is because a range of
6σ (±3σ ) is searched for curve f it, which is often big
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Fig. 5. Correlation of various binning metrics to actual throughput and
their binning overhead for (a), multi-programmed benchmarks and, (b) multi-
threaded benchmarks, with varying number of cores per cluster. This just
affects clustering and other plots are shown for reference.

enough to allow the discovery of the true fmax of a core.
In terms of binning overhead, curve f it is significantly
faster than Σ f (36% for our baseline architecture). This
is because the range of frequencies that are searched
for curve f it is directed by the variation model and is
therefore, relatively small. Overhead is greater than that
for min-max because of the need to estimate the fmax for
every core.

• Clustering-based strategies (the approach of using clus-
tering to approximate Σ f ) result in a smaller binning
overhead than curve f it (26% for the baseline, results
are shown for a cluster size of 16). Clustering that relies
on the variation model to reduce the search range for
fmax of the cores (smart clust) is faster than the naive
approach that performs search over the full range for all
cores (6% improvement in test time for the baseline case).
In terms of correlation to throughput, clustering-based
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(b) 64 frequency bins

Fig. 6. Correlation of various binning metrics to actual throughput and
their binning overhead for (a), 8 bins and, (b) 64 bins, with varying search
range. Here, σ refers to total standard deviation of die-to-die and core-to-core
variation. This just affects variation-aware binning strategies and other plots
are shown for reference.

strategies lie between Σ f and min-max for both types
of workloads. This is not surprising, considering that
clustering represents a hybrid between the two schemes.

B. Dependence on Number of Cores
Figure 4 shows how correlation and binning overhead

change with the number of cores on the processor dice. The
results are shown for 16 frequency bins. There are several
things to note from these graphs.

• For multi-programmed workloads, the correlation to
throughput increases with the number of cores for both
clustering-based strategies. Better correlation with more
cores is a result of having a fixed cluster size, which
results in a larger number of clusters per chip (note that
with more clusters, the granularity of clustering becomes
finer). To confirm this, we also performed experiments
to see how the correlation and binning overhead change
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(b) multi-threaded

Fig. 7. Correlation of various binning metrics to actual throughput and
their binning overhead for (a), multi-programmed benchmarks and, (b) multi-
threaded benchmarks, for different process variation scenarios.

when the number of cores per cluster (and, therefore,
the number of clusters) is changed for a fixed sized chip
(with 64 cores). Figure 5 shows the results. We indeed
observe that the binning overhead of clustering decreases
with increasing number of cores per cluster. Similarly, the
correlation to throughput decreases for multi-programmed
workloads with increasing cores per clusters.

• Interestingly, the roles of the metrics are reversed for
multi-programmed and multi-threaded workloads. While
Σ f and curve fitting do well for multi-programmed
workloads, min-max and clustering do better for multi-
threaded workloads. This reversal can be explained by
the fact that Σ f and curve fitting (a close approximation)
characterize the maximum throughput of a die, which is
strongly correlated to performance for multi-programmed
workloads. However, when workload performance corre-
lates more strongly to the performance of the weakest
core, min-max wins out. Since clustering uses the min-

max metric as its backbone, trends for clustering are
similar to those for min-max.

• As the number of cores per cluster increases, we see an
interesting difference between the two types of cluster-
ing for multi-threaded benchmarks. For clustering that
bounds the search range based on perceived variation
(smart clust), throughput correlation levels off and begins
to decrease as the number of cores per cluster becomes
large. This is because the limited search range may not be
wide enough to capture the variation range in a large clus-
ter. However, when the entire search range is considered,
correlation continues to increase even as the number of
cores per cluster increases. This is because performance
is correlated to the performance of the slowest core on
the die for our multi-threaded benchmarks, and larger
clusters result in less over-estimation of performance for
a processor running such benchmarks.

C. Dependence on Search Range for Variation-Model Aware
Approaches

Figure 6 shows how performance correlation and binning
overhead change as the search range is varied for 8 and 64 fre-
quency bins (we only show the results for multi-programmed
workloads as multi-threaded benchmarks behave similarly).
Both techniques that rely on the variation model to come
up with aggressive search ranges (curve f it and smart clust)
have better correlation as the search range is increased. The
improvement is higher for larger number of frequency bins.
For example, when moving from 2σ to 3σ , correlation to
throughput for curve fitting improves by 30% for 64 bins
but just by 6% for 8 bins. However, the increase in binning
overhead is also higher for a larger number of bins. Therefore,
unless the variation is large enough to justify an increase in
the bin count, fixed search range of 2σ or 3σ is good enough.

D. Dependence on Nature of Variations
In Figure 7, we show the effect that the nature of variations

has on binning metrics and their evaluation. The four cases:
baseline (incorporates all variation model components), only
inter-core random, only inter-die random, and only across-
wafer systematic (i.e., the bowl-shaped variation) all have
the same variance. As within-die (i.e. core-to-core) variation
increases, the correlation of min-max to the throughput of
multi-programmed workloads decreases, since it grossly un-
derestimates throughput (because it takes the minimum fmax of
all cores). However, for multi-threaded workloads, Σ f shows
poor performance correlation when inter-core variation dom-
inates, since it overestimates the throughput of the processor.
Therefore, increase in random core to core variation magnifies
the difference between the two metrics with the workload types.
This implies that in such a variation scenario, choice of metric
will strongly depend on the expected workload type. Note that
variation-aware binning strategies that use the variation model
for prediction (i.e., curve fitting) achieve maximum reduction
of binning overhead in cases where there is systematic varia-
tion (baseline and only across-wafer systematic).



VII. CONCLUSION

In this paper, we have studied for the first time, speed
binning for multi-core processors. We have compared two
intuitive metrics – min-max and Σ f – in terms of their
correlation to actual throughput for various kinds of work-
loads as well as their testing overheads. Furthermore, we
have proposed binning strategies which leverage the extent of
variation (clustering) as well as the partially systematic nature
of variation (curve fitting). From our analysis, we conclude
the following

• In terms of correlation to actual throughput, Σ f is an
overall better metric except for two cases where min-max
performs well: 1) multi-threaded benchmarks, with large
number of bins (larger than 8) and, 2) multi-threaded
benchmarks when within-die variations are dominant.
However, min-max has a significantly lower binning over-
head than Σ f (lower by as much as 70%).

• Clustering based strategies which are a hybrid of Σ f and
min-max reduce the binning overhead by as much as 51%
with a small loss (5% points for 8 bins) in correlation to
throughput.

• Variation-model aware strategies help in reducing the
binning overhead significantly with the same correlation
to throughput as Σ f . Variation aware curve fitting reduces
the binning overhead by as much as 36%.

Our overall conclusion is that uniprocessor binning methods
do not scale well for multi-core processors in the presence of
variations. Multi-core binning metrics and testing strategies
should be carefully chosen to strike a good balance between
goodness of the metric and time required to evaluate it. Most
importantly, the efficiency of speed binning can be improved
significantly by leveraging process variation knowledge to
optimize the binning procedure.

In some cases, power and memory/cache size are also
important binning metrics. For low power embedded ap-
plications where power is an equally important metric as
performance, the same notion of binning can be employed to
categorize processors. The variation model can be used to bin
processors based on power dissipation. The concept of voltage
binning [28] [29] can be extended for multicore processors by
making use of similar techniques as suggested in this paper.
This is part of our ongoing work on efficient characterization
of multicore processors.
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