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ABSTRACT
Majority of practical multivariate statistical analyses and
optimizations model interdependence among random vari-
ables in terms of the linear correlation among them. Though
linear correlation is simple to use and evaluate, in several
cases non-linear dependence between random variables may
be too strong to ignore. In this paper, We propose poly-
nomial correlation coefficients as simple measure of multi-
variable non-linear dependence and show that need for mod-
eling non-linear dependence strongly depends on the end
function that is to be evaluated from the random variables.
Then, we calculate the errors in estimation which result from
assuming independence of components generated by linear
de-correlation techniques such as PCA and ICA. The exper-
imental result shows that the error predicted by our method
is within 1% error compared to the real simulation. In or-
der to deal with non-linear dependence, we further develop a
target function driven component analysis algorithm (FCA)
to minimize the error caused by ignoring high order depen-
dence and apply such technique to statistical leakage power
analysis and SRAM cell noise margin variation analysis. Ex-
perimental results show that the proposed FCA method is
more accurate compared to the traditional PCA or ICA.

1. INTRODUCTION
With the CMOS technology scaling down to the nanome-

ter regime, process as well as operating variations have be-
come a major limiting factor for integrated circuit design.
These variations introduce significant uncertainty for both
circuit performance and leakage power. Statistical analysis
and optimization, therefore, has generated lot of interest in
the VLSI design community.

Existing work has studied statistical analyses and opti-
mization for timing [1, 2, 3, 4, 5, 6, 7, 8, 9] and power
[10, 11, 12, 9], and spatial correction extraction [13]. Most
of these papers assume independence between random vari-
ables when performing statistical analysis. In order to ob-
tain independence, most of the existing works use linear
transformations, such as principle component analysis (PCA)
or independent component analysis (ICA), to de-correlate
the data. However, when there is non-linear dependence be-
tween the random variables under consideration, both PCA
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and ICA cannot completely remove the dependence between
random variables. PCA can only remove linear correlation
between random variables but can not remove the high order
dependence Independent random variables must be uncor-
related, but uncorrelated random variables are not neces-
sarily independent. If we assume the uncorrelated random
variables are independent (as is done by most VLSI statis-
tical analyses techniques), errors in the statistical calcula-
tions can be significantly large. ICA tries to minimize the
mutual information between the random variables. When
I(X1, X2) exists, X1 and X2 are independent if and only if
I(X1, X2) = 0. Since it is still a linear operation, it cannot
completely remove the dependence between random vari-
ables.

In practice, the dependence between different variation
sources is rarely linear(e.g., Vth is exponentially related to
Leff ). Therefore, ignoring such non-linear dependences can
cause significant error in analyses. There are some existing
techniques for handling arbitrary dependence, such as Cop-
ula [14] and total correlation [15]. However, the complexity
of using Copula is exponentially related to the number of
random variables. Mutual information [15] and total corre-
lation [15] measures the dependence between random vari-
ables, however, it is not easy to apply them in the statistical
analysis. Moreover, there is little work in removing depen-
dence using such measures as is readily done using PCA for
linear correlation.

There exists some nonlinear algorithms to decomposed
nonlinear dependent variation sources to independent com-
ponents, such as nonlinear PCA [16] (or Kernel PCA) and
nonlinear ICA [17]. Applying such algorithm may com-
pletely (or almost completely) remove dependence between
variation sources and results independent components. How-
ever, such algorithms either express the variation sources as
a very complicate function of independent components or
even do not give close form formulas to express variation
source using independent components. Hence, such non-
linear algorithms are not easy to be applied in statistical
analysis and optimization.

In this paper, we analyze the impact of nonlinear depen-
dence on statistical analyses. Key contributions of this work
are as follows:

• We propose polynomial correlation coefficients as a sim-
ple measure of non-linear dependence among random
variables.

• We show that importance of modeling non-linear de-
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pendence strongly depends on what is to be done with
the random variables, i.e., the end function of random
variables that is to be estimated.

• We develop closed form expressions to calculate error
in estimation of arbitrary moments (e.g., mean, vari-
ance, skewness) of the to-be estimated function as a
result of assuming true independence of components
generated by PCA or ICA techniques.

• We develop a target function driven component analy-
sis algorithm (we refer to as FCA) which minimizes the
error caused by ignoring non-linear dependence with-
out increasing the computational complexity of statis-
tical analysis.

The methods developed in this paper can be used to check
whether linear de-correlation techniques like PCA will suf-
fice for particular analysis problem. To the best of our
knowledge, this is the first work to propose a systematic
method to evaluate the need for complex non-linear depen-
dence modeling for statistical analysis in VLSI design or
otherwise. We apply our error estimation formula to the
typical example from computer aided VLSI design: and
leakage analyses. Experimental result shows that the our
estimation is within 1% error of simulation. Further we give
two example applications of FCA algorithm: statistical leak-
age analysis and SRAM cell noise margin variation analysis.
The experimental results also show that the FCA is more
accurate than regular PCA or ICA.

The rest of the paper is organized as follows: Section 2
theoretically calculates the impact of high order correlation,
Section 3 applies the formulas to statistical leakage analy-
ses and presents some experimental results, finally Section 4
presents target function driven ICA algorithm to minimize
the error caused by ignoring non-linear dependence and Sec-
tion 5 concludes this paper.

2. ANALYSIS OF IMPACT OF NONLINEAR
DEPENDENCE

As discussed above, commonly used PCA and ICA tech-
niques cannot provide fully independent random variable
decomposition. In this section, we are going to study the
impact of non-linear dependence on statistical analyses. We
define the ijth order polynomial correlation coefficient be-
tween two random variables X1 and X2 as:

ρij =
E[Xi

1X
j
2 ] − E[Xi

1]E[Xj
2 ]q

E[(Xi
1 − E[Xi

1])
2] · E[(Xj

2 − E[Xj
2 ])2]

(1)

ρij ’s provide us with simple and good measures to esti-
mate the impact of nonlinear dependence. Note that −1 ≤
ρij ≤ 1 and that ρ11 is simply the linear correlation coef-
ficient. In rest of this paper, we assume that the ρij ’s are
known. In practice, ρij can be computed from the samples
of variation sources.

With the above definition, we will show how to evaluate
the impact of non-linear dependence on statistical analysis.
Let us consider the two random variable case first. Let f be
a polynomial function (or Taylor expansion of an arbitrary
function) of two random variables X = (X1, X2)

T :

f(X) =
X
ij

aijX
i
1X

j
2 (2)

Then

E[f(X)] =
X
ij

aijmij (3)

where mij = E[Xi
1 · Xj

2 ] is the ijth joint moment of X1 and
X2. If we ignore mij , then the error of mean estimation
will be ai,j(mi,j −mi,0m0,j). That is, the importance of the
ijth joint moment depends on the coefficient of the ijth joint
moment in the Taylor expansion, ai,j and mi,j − mi,0m0,j .
We define:

Qij = ai,j · √m2i,0 · m0,2j . (4)

Then the mean can be expressed as:

E[f(X1, X2)] =
X
ij

ρi,j · Qi,j (5)

where ρi,j is the ijth order polynomial correlation coeffi-
cient between X1 and X2 as defined in (1). From the above
equation, we find that the importance of the ijth order de-
pendence depends on Qi,j . The above equations illustrates
the two random variable case. 1

In practice, people usually apply principle component anal-
ysis (PCA) or independent component analysis (ICA) to ob-
tain principle components or independent components. As-
sume that

P = (P1, P2)
T = W · X (6)

are the principle components (or independent components)
obtained from PCA (or ICA), where W is the transform
matrix. Then the function f can be written as the function
of P1 and P2:

f(X) = f(W−1 · P ) =
X
ij

cijP
i
1P j

2 (7)

Because P is a linear combination of X, it is easy to obtain
the coefficients cij , from aij and the transform matrix W .

In practice, when high order dependence exists, P1 and P2

are not completely independent. In this section, we try to
estimate the error caused by ignoring the high order depen-
dence, we mainly focus on the most important character-
istics that people concern in statistical analysis, the mean,
variance, and skewness calculation.

We express mean of f as:

E[f(X)] = f(W−1 · P ) =
X
ij

ρp,i,j · T μ
i,j (8)

T μ
i,j = ci,j ·

q
mP

2i,0 · mP
0,2j .

where mP
ij is the ijth joint moment of P1 and P2, and ρP

ij

is the ijth order correlation coefficient between P1 and P2.
Since P is a linear combination of X, it is easy to obtain joint
moments mP

ij and correlation coefficients ρP
ij can be easily

calculated from the moments of Xi’s mij and the transform
matrix W . If we assume that these components are inde-
pendent, i.e., we assume all the ρP

ij to be zero, then total
error in mean estimation is:

Δμ =
X

i≥1,j≥1

ρP
ij · T μ

i,j (9)

1In this paper, we discuss the case of two variation sources
for simplicity and brevity. This method can be easily ex-
tended to multiple variation sources.
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Similar to the estimation of the error in mean, we may
estimate the error in variance calculation. We first estimate
the error of second order raw moment of f(·). f2(·) can be
expressed as a polynomial function of Pi’s as:

f2(P1, P2) =
X
ij

dijP
i
1P j

2 (10)

where the coefficients dij can be calculated from cij ’s. Then
we may estimate the error of the second order raw moment
of f(·):

Δ2 = E[f2] − E[f ′2] =
X

i≥1,j≥1

ρP
ij · T σ

i,j (11)

T σ
i,j = di,j · √m2i,0 · m0,2j . (12)

where f ′ is the function ignoring the dependence. Then
the error of variance calculation if high order dependence is
ignored is:

Δσ2 = Δ2 − 2μ′Δμ − Δ2
μ (13)

where μ′ is the mean calculated by ignoring the high order
dependence and Δμ is the error of mean calculation which is
calculated in (9). In practice Δμ is much smaller compared
to μ′, therefore, we have:

Δσ2 ≈ Δ2 − 2μ′Δμ (14)

With the error of variance, we may also calculate the error
of standard deviation:

Δσ =
p

σ′2 + Δσ2 − σ′ ≈ Δσ2

2σ′ (15)

Besides mean and variance, skewness is also an important
characteristic of statistical distributions. In order to esti-
mate the error of skewness calculation, we first estimate the
error of the third order raw moment Δ3 in a similar way as
(16):

Δ3 = E[f3] − E[f ′3] =
X

i≥1,j≥1

ρP
ij · T γ

ij (16)

T γ
ij = uij · √m2i,0 · m0,2j . (17)

where the coefficients uij can be calculated from cij . Then
the error of skewness can be calculated as:

Δγ =
E[f ′3] + Δ3

(σ′ + Δσ)3
− E[f ′3]

σ′3 ≈ Δ3

σ′3 (18)

3. CASE STUDY OF STATISTICAL LEAK-
AGE ANALYSIS

Statistical analysis is widely used in integrated circuit de-
sign. In the section, we apply our error estimation tech-
niques on the statistical leakage power analysis.

3.1 Single Cell leakage
Generally, the leakage variation of a single cell is expressed

as an exponential function of variation sources: [18, 11, 10]

Pleak = P0 · ec11X1+c12X2
1+c21X2+c22X2

2 (19)

where X1 and X2 are variation sources, P0 is the nominal
leakage value, cij ’s are sensitivity coefficients for variation
sources X1 and X2, respectively. Performing Nth order Tay-
lor expansion to the above equation, we have:

Pleak = P0

∞X
i,j=0

ai,jX
i
1X

j
2 ≈ P0

NX
i,j=0

ai,jX
i
1X

j
2 (20)

Now we have the to-be estimated function in a polynomial
form of variation sources. Then we may apply the method
in Section 2 to estimate the error of mean, variance, and
skewness when ignoring the high order dependence.

3.2 Full chip leakage
Full chip leakage power is calculated as:

Pchipleak =
X
r∈C

P r
leak ≈

NX
i,j=0

qi,jX
i
1X

j
2 (21)

qi,j =
X
r∈C

ar
i,j (22)

where C is the set of all circuit elements in the chip and
ar

i,j is the ijth order coefficient for the rth circuit element.
From the above equation, we can see that the full chip leak-
age can be expressed as the Taylor expansion of the varia-
tion sources. Therefore, we may estimate the error of mean,
variance, and skewness calculation as previously.

3.3 Experiments
In this section, we show experimental results on some

small benchmark circuits to validate our estimation.

3.3.1 Dependent variation sources generation
In our experiment, we assume two variation sources effec-

tive channel length Leff and threshold voltage Vth. Since
these two variation sources are dependent, to generate the
dependent variation sample, we assume the variation of gate
length Lgate and dopant density Nbulk are independent. 2

We first generate samples of Lgate and Nbulk then we use
ITRS 2005 MASTAR4 (M odel for Assessment of cmoS
Technologies And Roadmaps) tool [19, 20, 21] to obtain de-
pendent samples of Leff and Vth from the samples of Lgate

and Nbulk. By applying PCA (or ICA) to the samples of
Leff and Vth, we obtain the marginal distribution for each
principle component (or independent component).

In the experiment, we use the samples of Leff and Vth

with the exact dependence to perform Monte-Carlo simu-
lation to calculate the exact distribution of leakage power,
which is the golden result for comparison. We also assume
that each principle component (or independent component)
from PCA (or ICA) to be independent. Then we calculate
the leakage power under such assumption and compare the
result to that of the Golden case.

3.3.2 Experimental results
In our experiments, for Lgate and Nbulk, we assume a

Gaussian distribution with 3σ of 5% of the nominal value.
We use 10,000 Monte-Carlo simulations to calculate the golden
case leakage power. Since leakage power is mainly affected
by inter-die variation, in our experiment, we only consider
inter-die variation.

In the Table 1, we compare the result of Monte-Carlo
simulation (MC), the result after fitting (After fitting), and
result after applying PCA (PCA). Then we calculate the er-
ror caused by curve fitting (Fitting error), the error when

2Notice that in practice, Lgate and Nbulk can not be easily
measured in silicon. The only parameters we can measure is
Leff and Vth. That is, we can only extract the dependence
between Leff and Vth from the measured samples without
knowing the exact variation of Lgate and Nbulk.
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ignoring the nonlinear dependence (PCA error), and the er-
ror predicted by our algorithm above (predicted error). In
the table, we also compare the result for two different leak-
age models, linear model (Lin) and quadratic leakage model
(Quad). For the linear leakage model, we fit leakage power
as an exponential of the linear function of variation sources,
that is, no the square term in the power in Equation (19).

From the table, we see that, as expected, the linear leak-
age model leads to larger fitting error but almost does not
depend on high order correlation. However, the quadratic
leakage model has smaller fitting error, but there is error
(about 5%) of standard deviation if we ignore the non-linear
correlation. Moreover, we see that error predicted by our al-
gorithm (predicted error) is very close to the experimental
result (PCA error).

We also show full chip leakage analysis for a few ISCAS85
benchmarks in Table 2. In the tables, we compare the re-
sult of Monte-Carlo simulation (MC), the result of statisti-
cal leakage analysis (stat leak), and leakage after applying
PCA (PCA). Then we calculate the error of statistical leak-
age analysis (stat leak error), the error when ignoring the
nonlinear dependence (PCA error), and the error predicted
by our algorithm (predicted error). Notice that the statis-
tical leakage analysis error are caused by both curve fitting
and analysis algorithm. Similar to the single gate case, we
see that error predicted by our algorithm (predicted error)
is very accurate compared to the experimental result (PCA
error). From the tables, we see that the error caused by
non-linear dependence is less than 5% for full chip leakage
power analysis.

4. TARGET FUNCTION DRIVEN COMPO-
NENT ANALYSIS

In the previous section, we introduced the method to es-
timate the error caused by ignoring non-linear dependence
and showed that it dependents on the target function being
estimated. It is more important to reduce the error caused
by non-linear dependence. As discussed in Section 1, linear
operations can not completely remove the dependence be-
tween variation sources. However, due to simplicity of appli-
cation, linear operation is preferred. Therefore, in this sec-
tion, we try to find an optimum linear transform to minimize
the error of ignoring the non-linear dependence. s The pro-
posed algorithm, function driven component analysis (FCA)
decomposes dependent variation sources into components so
as to minimize error in estimation of certain statistical mea-
sures of the target function.

In the rest of this section, we first present our algorithm
and then apply it to statistical leakage analysis and SRAM
cell noise margin variation analysis.

4.1 FCA Algorithm
Let f(X) be a polynomial function (or Taylor expansion

of an arbitrary function) of an n-dimensional random vec-
tor X = (X1, X2, . . . Xn)T . The objective of the FCA is to
find an n × n transfer matrix W and independent compo-
nents P = (P1, P2, . . . Pn) = W · X to minimize the error
of f(WP ) when assuming all Pi’s are independent. In sta-
tistical analysis, the error of f(WP ) is usually measured
by mean, variance, and skewness. Moreover, because usu-
ally mean is the most important characteristic of statistical

Exact PCA ICA FCA
9 5.01 7.42 8.89

Table 3: Mean of f .

analysis, we try to match the mean of f(X). That is:

W = argΔμ=0 min Δ (23)

Δ = Δσ + εΔγ (24)

Δμ = μf − μf ′ (25)

Δσ = σf − σf ′ (26)

Δγ = γf − γf ′ (27)

where μf , σf , and γf are the mean, standard deviation, and
skewness of f(X), respectively, μf ′ , σf ′ , and γf ′ are the
mean, standard deviation, and skewness of f(WP ) when
assuming all Pi’s are independent, ε is the weight factor for
the skewness error. In practice, the value of ε can be set by
users. Because f(X) is a polynomial function of X, similar
to (9), (15), and (18), it is easy to find that μf , σf , and
γf can be expressed as a function of joint moments of Xi’s,
which are known, and μf ′ , σf ′ , and γf ′ can be expressed as
a function of joint moments of Pi’s. Considering P = WX,
the joint moments of Pi’s can be expressed as functions of
W and the joint moments of Xi’s. Hence, the error Δ can
be expressed as a function of W and joint moments of Xi’s.
Notice that joint moments of Xi’s are known, therefore (23)
becomes a non-linear programming problem. We use a non-
linear programming solver to obtain the transfer matrix W .

Notice that in practice the minimization objective Δ can
be any error that the users wants to minimize. In this paper,
we choose this type of Δ because we try to minimize the
error of variance and skewness.

Unlike the regular PCA or ICA, our FCA algorithm pre-
sented above tries to minimize the error for a target function
f . That is, for different target function f , we may have dif-
ferent transfer matrix W . In FCA, we need to obtain an
n×n transfer matrix W , that is, we need to solve a n2 vari-
able non-linear programming problem. However, for any
statistical analysis, FCA needs to be run only once. More-
over, FCA still uses linear operation to decompose the vari-
ation sources. Therefore, applying FCA does not increase
the computational complexity of the statistical analysis com-
pared to regular PCA or ICA.

In order to validate our algorithm, let’s first take a look at
the simple example we introduced in Section 1: Let S1 and
S2 be two independent random variables with standard nor-
mal distributions and X1 = S1 + S2, X2 = S1S2. Estimate
the mean of f(X1, X2) = X2

1 +X1X2 +X2
1X2

2 +X2
2 . Table 3

shows the exact mean, and the mean estimated after PCA,
fast kernel ICA [22], and FCA. From the table, we can see
that FCA is works better than PCA and ICA.

4.2 Experimental results
In order to validate the FCA algorithm, we show two ex-

amples of FCA in VLSI design: statistical leakage analysis
and SRAM noise margin variation analysis.

4.2.1 Statistical leakage analysis
de We first discuss statistical leakage analysis. Similar to

Section 3.3, we assume two variation sources, effective Leff

and Vth and we only consider inter-die variation for the vari-
ation sources. We generate dependent variation samples of
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Gate Fitting MC After fitting PCA Fitting error PCA error predicted error
type μ 3σ γ μ 3σ γ μ 3σ γ μ 3σ γ μ 3σ γ μ 3σ γ

Inv Lin 7.12 2.55 0.35 6.44 2.13 0.31 6.32 2.02 0.27 -0.68 -0.42 -0.04 -0.08 -0.11 -0.04 -0.11 -0.13 -0.03
Quad 7.12 2.55 0.35 7.15 2.61 0.36 7.05 2.49 0.31 0.03 0.06 0.01 -0.10 -0.12 -0.05 -0.12 -0.14 -0.04

Table 1: Cell leakage. Note: leakage value is in nW.

Gate Fitting MC Stat Leak PCA Stat Leak error PCA error predicted error
type μ 3σ γ μ 3σ γ μ 3σ γ μ 3σ γ μ 3σ γ μ 3σ γ

C17 Lin 430.2 120.3 0.28 415.3 113.3 0.25 413.2 109.2 0.23 -14.9 -7.0 -0.03 -2.1 -4.1 -0.02 -2.3 -3.9 -0.02
Quad 430.2 120.3 0.28 437.2 126.3 0.32 431.5 122.2 0.30 7.0 6.0 0.02 -5.7 -4.1 -0.02 -5.3 -3.8 -0.03

Table 2: Chip leakage. Note: leakage value is in mW.

Leff and Vth in the same way as Section 3.3.1. With the de-
pendent samples, we use FCA (PCA or ICA) to decompose
the variation sources and obtain the marginal distribution
of each component. Then we generate sample of each com-
ponent according to its marginal distribution. Assuming
the components are independent, we generate the samples
of Leff and Vth. Finally, we use these sample to run SPICE
Monte-Carlo simulation to obtain leakage power. We use
ITRS 65nm technology in the experiment and assume sup-
ply voltage to be 1.0V. For Lgate and Nbulk, we assume that
they follow Gaussian distribution and the 3-sigma value is
5% of the nominal value. Similar to Section 3.3, we consider
only inter-die variation in this experiment.

In order to validate the accuracy of FCA we define three
comparison cases: 1) samples generated from Mastar4 with
the exact dependence, which is the golden case for compar-
ison 2) samples generated from PCA, 3) samples generated
from fast kernel ICA [22].

Table 4 illustrates the mean, standard deviation, skew-
ness, 90%, 95%, and 99% percentile point of leakage of an
inverter. From the table, we see that the value obtained
from FCA is closer to the exact value than PCA and ICA. 3

Table 5 illustrates the exact error and the estimated error
(using the method in Section 3) of mean, standard deviation,
and skewness. From the table, we can find the the estimation
error is close to the exact error. Moreover, notice that in
FCA, we try to fit leakage power to a polynomial of variation
sources. Therefore, part of the FCA error comes from fitting
error.

μ σ γ 90% 95% 99%
Exact 762 253 1.65 1285 1321 1395
PCA 710 228 1.44 1210 1262 1315
ICA 713 219 1.29 1221 1268 1345
FCA 751 235 1.51 1235 1275 1363

Table 4: Inverter leakage power comparison. Note:
leakage value is in pW.

Exact error Est error
μ σ γ μ σ γ

PCA -52 -25 -0.21 -45 -28 -0.19
ICA -49 -34 -0.36 -42 -29 -0.24
FCA -11 -18 -0.14 0 -14 -0.11

Table 5: Estimated error for the inverter leakage
power. Note: leakage value is in pW.

.

3The run time for PCA and ICA is less than 0.1s, and the
run time for FCA is 0.4s. However, because FCA needs to
be run only once in the statistical analysis, such run time
overhead is a non-issue.

4.2.2 SRAM noise margin variation analysis
The second application example for FCA is the 6T-SRAM

cell noise margin (SNM). We use similar setting as the statis-
tical leakage analysis in Section 4.2.1. In order to highlight
the flexibility of FCA, in this experiment, we consider only
within-die variation. That is, each transistor has it’s own
variation. In this case, because there are 6 transistors in
an SRAM cell, there are 12 variation sources in an SRAM.
Notice that PCA and ICA provide the same transfer matrix
for Leff and Vth for all transistors, however because FCA
tries to handle 12 variation sources together, it may provide
different transfer matrix for different transistors.

Table 6 illustrates the mean, standard deviation, skew-
ness, 90%, 95%, and 99% percentile point of noise margin
of an SRAM. From the table, we find the same tread as the
leakage power case, that is, the value obtained from FCA is
closer to the exact value than PCA and ICA.

Nominal value 0.1678
μ σ γ 90% 95% 99%

Exact 0.1612 0.0312 0.0912 0.1215 0.1015 0.0821
PCA 0.1552 0.0335 0.0774 0.1242 0.1061 0.0867
ICA 0.1542 0.0331 0.0791 0.1261 0.1048 0.0859
FCA 0.1616 0.0307 0.0941 0.1226 0.1022 0.0841

Table 6: SNM comparison. Note: SNM margin is
in V.

With noise margin variation analysis, we may further es-
timate number of redundant SRAM cells needed to ensure
error correct SRAM array. We assume that the variation of
all SRAM cells in the array are independent and an SRAM
cell is faulty when the noise margin is less than a cut off
value. For non-ECC architecture, for simplicity, we calcu-
late the number of redundant SRAM cells needed to achieve
a certain percent yield. For ECC scheme, the number of re-
dundant SRAM cells depends on the coding. For simplicity,
we estimate the Shannon Channel limit [23], which is the
lower bound of the redundancy required to achieve no error
coding.

Figure 1 illustrates the percentage SRAM redundancy un-
der different cut off SNM value. In the figure, the x-axis is
the cut off SNM value, which is calculated as a certain per-
centage of the nominal value. The y-axis is the percentage
redundancy. For the non-ECC scheme, we assume that the
redundancy is to achieve 99% yield rate. 4 From the figure,
we see that FCA predicts the redundancy more accurate
than the PCA or ICA.

We also ran experiments for different variation settings.
In stead of assuming Lgate and Nbulk to be Gaussian. We

4This is just a simple estimation. In practice, because re-
dundancy is needed for each row and column of SRAM array,
the actual redundancy may be much higher.
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Figure 1: Redundancy for different cut off SNM. (a)
Redundancy for Non-ECC scheme to achieve 99%
yield rate. (b) Lower bound of redundancy for ECC
scheme to achieve no error coding.

assume that they follows skew-normal distribution [24]. Ta-
ble 7 illustrates the mean, standard deviation, skewness,
90%, 95%, and 99% percentile point of noise margin of an
SRAM under such setting. Figure 2 illustrates redundancy.
From the table and figure, we find that FCA works better
than PCA and ICA under different variation settings.

μ σ γ 90% 95% 99%
Exact 0.1723 0.0342 0.3214 0.1290 0.1120 0.0931
PCA 0.1758 0.0327 0.2856 0.1366 0.1177 0.0987
ICA 0.1742 0.0332 0.3102 0.1322 0.1172 0.0945
FCA 0.1736 0.0349 0.3156 0.1321 0.1147 0.0940

Table 7: SRAM cell noise margin comparison as-
suming Lgate and Nbulk to be with skew-normal dis-
tribution. Note: noise margin is in V.
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Figure 2: Redundancy for different cut off SNM as-
suming Lgate and Nbulk to be with skew-normal dis-
tribution. (a) Redundancy for Non-ECC scheme to
achieve 99% yield rate. (b) Lower bound of redun-
dancy for ECC scheme to achieve no error coding.

5. CONCLUSION
In this paper, we have proposed the first method to esti-

mate the error of statistical analysis when ignoring the non-
linear dependence using polynomial correlation coefficients.
Such a method can be used to evaluate the accuracy the
linear de-correlation techniques like PCA for a particular
analysis problem. As examples, we apply our technique to
statistical power analysis. Experimental result shows that
the error predicted by our method is within 1% compared
to the real simulation. We have further proposed a novel
target function driven component analysis (FCA) algorithm
to minimize the error caused by ignoring high order de-
pendence. We apply such technique to two applications of

statistical analysis, statistical leakage power analysis and
SRAM cell noise margin variation analysis. Experimental
results show that the proposed FCA method is more accu-
rate compared to the traditional PCA or ICA.
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