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ABSTRACT

In response to the increasing variations in integrated-circuit
manufacturing, the current trend is to create designs that take
these variations into account statistically. In this paper we try
to quantify the difference between the statistical and deter-
ministic optima of leakage power while making no assumptions
about the delay model. We develop a framework for deriving a
theoretical upper-bound on the suboptimality that is incurred
by using the deterministic optimum as an approximation for
the statistical optimum. On average, the bound is 2.4% for a
suite of benchmark circuits in a 45nm technology. We further
give an intuitive explanation and show, by using solution rank
orders, that the practical suboptimality gap is much lower.
Therefore, the need for statistical power modeling for the pur-
pose of optimization is questionable.

I. INTRODUCTION

Statistical optimization via circuit sizing has been a ac-
tive research topic over the last decade. The realization
was that the traditional corner-based optimization (see
[18]) may be too pessimistic [24], and the trend was to
incorporate more and more statistical data into the opti-
mization process.

There are many papers that explore the benefits of
adding statistical delay data into the optimization pro-
cess [16, 19, 21, 9, 11, 22, 10], and there are also a num-
ber of papers that also use a statistical power measure
[23, 9, 15, 5, 26]. However, to the best of our knowledge,
there is no publication that shows the benefits of using
the statistical power measure alone.

This brings up an interesting question: How much of
the improvement should be attributed to the use of a sta-
tistical delay model, and how much should be attributed
to the use of a statistical power model? This question is
part of a growing skepticism over the benefits of statistical
optimization, and whether they outweigh its costs. Adopt-
ing statistical analyses and optimization involves consid-
erable overhead in terms of engineering effort as well as
turn-around times. It requires an almost complete over-
haul of process modeling, circuit simulation and requires
modifying the algorithms for statistical optimization. It
is therefore important to do a thorough cost-benefit anal-
ysis of statistical optimization compared to conventional
deterministic optimization methods.

The related question of statistical delay optimization vs.
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deterministic delay optimization has already been studied
[17, 12, 6]. In [17], the claim is made that corner- or
scenario-based optimization is still the most practical be-
cause:

1. Intra-die effects are still small
2. There is usually not enough information to do a full-blown
statistical analysis

3. The gains of using a full-blown statistical analysis are
small.

In [6] the authors quantify the difference between cor-
ner based methodologies and full statistical optimization
methods. They find that with a 5% variation in stage
delay, the full-blown statistical analysis and optimization
gives a mere 2% improvement, and a 12% variation gives a
6% improvement over a statistical worst-case corner that
employs a guardband. In [12], the tradeoff between yield
and circuit delay, and the improvements in slack are ex-
amined. Significant improvements are shown for a set of
benchmark circuits.

In this paper we focus on the amount of improvement
that can be made by using a statistical power measure as
an objective for gate sizing and l.g and V;, assignment,
when compared to the deterministic power measure. The
key contributions of the paper are as follows.

o We develop a mathematical programming based frame-
work to estimate the suboptimality gap between different
power measures.

e For the common case of discrete gate sizing, we give an
intuitive explanation of the suboptimality using solution
rank orders.

e We show that the deterministic power measure is a good
approximation for the statistical power measures, which
means that the deterministic power measure can be used
in place of the statistical power measures with very similar
optimization results.

It is important to mention that this is independent of
the model for the delay. This paper does not give judge-
ments on the difference between statistical delay optimiza-
tion and deterministic delay optimization, or the differ-
ence between static timing analysis and statistical static
timing analysis. The delay is only used to generate exam-
ples for the suboptimality bounds.

The rest of the paper is organized as follows. The follow-
ing section outlines the leakage power measures and mod-
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TABLE I
NOTATIONS

symbol |meaning

width of gate i / vector of gate widths
i1 length of gate i / vector of gate lengths

v, , Ut [threshold voltage of gate ¢ / vector of threshold voltages

= . . 2.3 —

Z ‘adjusted gate widths’ z; = w;e®li THAlig= 7%
Lyia |Within-die variation random variable

Lgtq |Die-to-die variation random variable

els used in this paper. Section III develops the mathemati-
cal framework to estimate the suboptimality gap incurred
from using the deterministic power measure in place of
the statistical power measures. Section IV gives a simpler
explanation of the suboptimality gap using rank orders.
Section V compares the results of statistical optimization
with the corresponding deterministic optimizations. Fi-
nally we conclude with ongoing work in Section VI.

II. STATISTICAL POWER

In this paper uppercase bold symbols represent random-
variables (e.g., X), and uppercase non-bolded symbols
represent matrices (e.g., P) or commonly used constants
(e.g., Vaa). Vector quantities will have arrows above them
(e.g., Z), and scalar quantities will be lowercase non-
bolded (e.g., p). The principal symbols are summarized
in Table I.

A. Models

In this paper, the length of the gate is assumed to be the
source of power variations. The leakage random variable
is modeled as a lognormal random variable, as in [20]:

P, = E kiwiealfﬁ-ﬁlie—vvti em(ALdtd-l-ALi,wid) (1)

The random variables ALgtq and ALj; yiq are assumed to
be zero-mean Gaussian random variables that describe the
variation of the gate lengths. In this paper, or,,,, = 1nm
and oy, ,, = 0.5nm which is a good representation of the
variation in 45nm.

The dynamic power random variable (ignoring short cir-
cuit current), is given by:

Py =) cawi(li + ALaa + AL wia) (2)
The total power random variable is the sum of the random
variables (1) and (2).

B. Measures of statistical leakage power

In this paper we will cover the statistical measures in
Table II. The measures are given in terms of the “adjusted
gate widths”, z;:

2 = wieﬂcngrﬁlie*’Y'Uti
which incorporate the effect of [ and v; into an equivalent
gate width. In the table, S denotes a covariance matrix,

TABLE II
MEASURES OF STATISTICAL LEAKAGE POWER

symbol |expression

Do kizi

Pm(+) Zkizienf(aii,w
Pao() |2 kizie®" TLana

meJ(') pm(E) +rVZTSz

measure

deterministic|pg(+)

2
2
mean iatoLaea)/

3o-quantile?®

mean+30

“For inter-die variation only

where the 7, /" entry of S contains the covariance of gates
i and j, for z; = z; = 1.

Figure 1 plots the sensitivities of measures 1 to 3 for the
different gates of the 45nm Nangate Open Cell Library
v1.2 [3]. Note that the 3o-quantile is used when there is
only inter-die variation. When intra-die variation is also
present, the mean+30 measure is used instead.

The power measures above have useful mathematical
properties. Measures 1 to 3 above are linear in z;, and
are thus concave and convex in z;. Also, all the measures
above are convex in 2.

C. Why do we expect the optimizations to be similar?

The statistical power and deterministic power are not
similar. For example, the statistical leakage power can be
larger than the deterministic leakage by 10% to 100%. It is
natural to expect that the influence of these measures will
also be different, and that optimizing statistical power will
yield different results compared to deterministic power.

In optimization however, it is not the magnitude of the
power, but the relative magnitude — if the statistical power
is a scaled version of the deterministic power, then the
optimums will be the same. To see this mathematically,
we examine the optimality condition for an optimum x*:
x* is optimal if for any feasible z* + Ax,

f@*) < fa* + Aa).

However, this condition will also hold for any positive scal-
ing of f(z).

Although the values of the statistical power and the de-
terministic powers may be quite different, the trends are
similar — the mean power is larger for all of the gates, as
is the quantile power, etc. For example consider the top
plot in figure 1, which shows the power vs. size sensitivi-
ties for the combinatorial cells in the Nangate Library [3].
The different sensitivities all follow the same trend. This
suggests that the optimizations will be similar as well.

To see why this happens for statistical power, we take
as an example the 3o-quantile power expression:

P30 (Zi) = E ePmAba 2.

If the n; are all equal, then the effect of variation will
be seen equally for each gate and the objective will be a
scaled version of the deterministic power:

P30 (7)) = 3nALlaw Z kiz;

= ?1Abap, (7).
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Fig. 1. The top plot shows the power vs. size sensitivities of the
combinatorial logic cells in Nangate. The general pattern of each of
the sensitivities vary similarly, suggesting that the optimizations
will be similar as well. The bottom plot shows the modeled scaling
factors e37iALdtd for the combinatorial logic cells in the Nangate
cell library. Although there is a significant difference in scaling
values, the trend is not large enough to make a significant
difference on the optima.

The actual case is a middle ground — the values of
e3miAlawa are different for different gates (see the bottom
plot in Fig 1). However, in section III we will see that the
effects are not large enough to make a large difference in
the optimized powers.

III. SUBOPTIMALITY BOUNDS

The central question in this paper is whether the de-
terministic power solution z7; is a good approximation for
the statistical power optimum x%. This generally requires
information about the space of timing-feasible solutions
(7), which is difficult to describe, and is highly problem
dependent, making it hard to give an exact answer. How-
ever, there is a way to solve a simpler problem with very
little assumption on the structure of 7.

In this section we consider the following question: sup-
pose we approximate the solution to the statistical power
optimization problem:

minimize  p, (W)
subject to W €T

(statistical power)
(timing constraint
& discreteness)

(size bounds on W)

(S)
weB

using the deterministic power optimum, @}, which is the
solution to the problem:
minimize  pg(w)
subject to we T

(deterministic power)
(timing constraint

& discreteness)

(size bounds on ).

D)

weRB
How good of an approximation will this be, and what is a
bound for the suboptimality of this solution?

In the following, we will describe a method for creating
suboptimality bounds. First a simple set 7’ is constructed
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that contains 7. Optimizing the statistical power over this
simpler set will return a lower bound on the statistical
power optimum. This lower bound is then compared with
the statistical power of the approximate solution, p(w}),
to bound the accuracy of the approximation. This is de-
scribed in detail below.

A. Relaxed constraints, enclosing sets and lower bounds

The difficult part of w, I and v; optimization is the
timing constraint and the discreteness constraint; the sta-
tistical power measures in Table II are easy to minimize.
Thus, to find a quick lower bound, we must first relax
the timing constraint with a looser constraint. In other
words, we would like to relaz the constraints, by enclos-
ing the timing feasibility and discreteness condition in a
simple, convex set.

Relaxing the constraints of a problem turns the result-
ing solution into a lower bound for the true solution. For

example, consider the sets 7o C 7; C ... C 7 and the
sequence of problems:
(P;) minimize pg(w)
subject to W € T;
weBCR"™

If the optimal solution of problem (P;) is w}, then we have
the property that:

ps(ulg) = ps() > ...

In other words the optimal value for the relaxed problem
is a lower bound for the original problem.

The intuition for this is the fact that the constraints in
the relaxed problem enclose the constraints on the orig-
inal problem. Thus, the optimal solution in the original
problem is also feasible for the relaxed problem. In the
process of solving the relaxed problem, the solver is free
to choose a better point in the larger space, making the
resulting optimum a lower bound for the original problem.

B. Linear functions, optimum solutions and enclosing sets

For certain classes of functions, it is easy to find a simple
set that encloses the optimum. The following analysis will
derive a set using the properties of linear functions, but
the results also hold for more general functions.!

The key to finding an enclosing set for the constraints is
to start with an optimal solution and leverage the fact that
any other feasible point cannot be better. For example, if
w} is optimal for problem (D), then

Vit € (TNB): palih) < pald). (3)
For linear functions, the inequality on the right side can
be rewritten in a simple form. This is because any linear

1 Specifically, equation (4) holds whenever pg () satisfies:
{@ | pa(@”) < pa(@)} C {@ | 0 < Vpa(@*)" (@ — @)}

This includes concave functions and functions that are convex and
non-decreasing along its gradients.
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function f(x) can be expressed in the form f(z) = f(xo)+
sT(z — x0) where s = Vf(x):2

F@*) < f@”) + 5" (@ — 2¥)
0< sl (z—a¥)

Applying this to (3) with s = Vpg (@) shows that

(TAB)CT ={G|0<s (G-} (4)
This gives the relaxed problem:
minimize  pg(w)
subject to W € T’ (5)
weBCRY

C. Creating lower bounds for related problems

The above analysis seems a little circular — the optimum
is required to create a lower bound for the optimum. How-
ever, the utility emerges when we use the same enclosing
sets to find lower bounds for related problems.

Suppose the solution for problem (D) is known, and
we would now like to find the a lower bound for problem
(S), which has a different objective function, but identical
constraints. This can be done by leveraging the solution
w? for problem (D) to compute a simple, enclosing set for
the constraints, as in the subsection above. The relaxed
problem is then solved:

minimize  p, (W)
subject to we T’ (6)
weBCR"

and the solution @’ can be used as a lower bound on the
true optimum w} (ps(w') < ps(Wy)).

Using this lower bound, we can now find a bound for
how well the deterministic solution approximates the so-
lution for the statistical problem. The suboptimality gap
between this approximation @}, and the true optimum,
Wy is bounded by:

ps (W) — ps(@')
ps(w;)
Smaller values indicate that @} is a good approximate

solution for w}, and larger values indicate that it is a bad
approximation. For example, if

650 < 5%

dso = 100 -

Tk

then o is a 5% approximate solution for wj. In other
words, using W in place of the real optimum @}, costs at
most 5% (it is suboptimal by at most 5%).

This process also works with optimization over w, I; and
v¢. This is exactly similar to the above example, with w
replaced by z, the adjusted gate widths.?

A surprising fact is that no properties of p(w) are as-
sumed. It may be non-convex and non-linear. The only
assumption is that the problem (6) is solvable.

2Note that s is constant over x
3This gives the problem:

minimize  ps(2)
subject to 0 < Vpd(f:;)T(E— E:kl) (7
Zmin < Z < Zmaz

TABLE III
SUBOPTIMALITY (ds0) FOR LEAKAGE OPTIMIZATION

Pm Pm3o

1 2 3 4 | avg 1 2 3 4 | avg

c432 |[.19%(.29%|.38%|.39% |.31% ||2.6%|5.3%|7.7%|8.5%| 6%
c499 ||.18%(.19%|.08%|.06% |.13%||2.1%|1.7%|.98%|1.2%|1.5%
c880 || 2% [.23%.24%|.19%|.22% ||1.7%|2.5%| 3% |2.6%|2.5%
c1355|[.18% | .2% |.17%| .1% |.16%||2.1%|1.7%|1.2%|1.2%|1.5%
c1908|(.23% |.24%|.23% |.24% | .23% || 2% |3.9%|4.1%|4.3%|3.6%
¢26701|.22%|.16%|.156%|.16%|.17%||2.8%(2.1% | 2% | 2% [2.2%
¢3540|| .2% |.23%.23%|.23%(.22%||1.2%(1.7%|2.6%|2.6%| 2%
cb315||.17%|.17%|.16%|.15%|.16% || 2.7%|2.7% |2.5% | 2.5% | 2.6 %
c6288|| .2% [.19%|.23%|.22%|.21% || 2% |1.5%|1.8%|1.1%|1.6%
c7552|[.19% | .17%|.15% | .15% | . 17% || 2.2%|1.2%|1.7%|1.1%| 1.5%
alu 21%|.18%|.19% | .17%|.19%||1.9%|2.7%|2.5%| 1.2%|2.1%

TABLE IV
SUMMARY OF CORRECTION ERRORS

Leakage Power

Pm Pm3o
variables|| min | max | avg. min | max | avg.
w .004%1.03%| .01% || .07% |.65%|.19%
w, vt .009%.08%| .02% || .15% |1.8%|.46%
w, vg, I [|.016%|.14% | .04% || .36% [3.5%|.86%

Total Power (kswitcn = -001)
w, vr, 1 [|.005%].10%].024% | .077% | 3.3% | .08%

D. Experiment

The ISCAS ‘85 benchmarks and a 128-bit Arithmetic
Logic Unit, ALU [1], were synthesized using the Encounter
RTL compiler with the Nangate Open Cell Library v1.2,
which uses the 45nm technology node. The library was
fitted using the models in Section II, and the powers were
averaged over the different input combinations. These
designs were synthesized to four different speeds — the
maximum speed, the minimum speed, and two speeds in-
between. The fastest speed is labeled (1), and the slower
synthesized speeds have higher cardinality (e.g., the slow-
est speed is (4)). The design variables in this example are
the gate widths. The suboptimality for each circuit (dso)
is computed and the results are presented in Table III.

The computed suboptimalities are small. The worst

Here, zmin and zmax are the minimum and maximum values of Z.
For example, for the it" entry, they are:

— Al o FBli max ,— 7Vt max
Zi min = Wi min€ » maxe i and

2
Zi,max — ’wi,maxeali’mir‘Jrﬁli’mi“eiryvti*“‘i“.

Interestingly, the actual values of [, @ and v¢ do not play a direct
role in the optimization above. They affect the optimization by
determining a range for the values of z;. In fact, the corresponding
values of w;, I; and v+ may not be unique; it is only important
that there is a least one combination of w;, {; and v; that satisfies

2
2 = wieali +ﬁliefwvti .
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Fig. 2. Rankings of 10,000 randomly generated widths, lengths
and v; for the ¢432 circuit. The x-axis is the deterministic power of
a point, and the y-axis is the statistical power. The power
measures align well, indicating that smaller deterministic powers
will correspond to small statistical powers.

case is the py3, power measure and the circuit c432 where
the the suboptimality is nearly 9%. In the majority of the
other cases, however, the suboptimality is small, < 5%.
For the pm3, measure the average ds, is 2.4%, and for
the p,, measure the average ds, is 0.2%. This suggests
that there is little improvement to be gained by running
the statistical optimization, as the improvement is on the
same magnitude as modeling error.

The suboptimalities of the total power random variable
were also computed in a similar way for switching prob-
ability .001. The resulting suboptimalities were all very
small (< 1%), and much smaller than in Table III. This is
because the variations in dynamic power are much smaller
than the variations in leakage power, and it reduces the
difference between the statistical and deterministic pow-
ers.

Although examples with v; assignment and [ sizing were
not included in this section, they will be covered in the
following section.

IV. SOLUTION RANKINGS

The weakest part of the above analysis is the need
for an optimum solution to compute the suboptimality.
However, with discrete sizes (e.g., @ € {1,2,4,8}" and
I'e {1,2,3}"), the problem is NP-complete [14] and the
solution is not likely to be optimal. In this case, we want
to compare the rankings of the deterministic power and
the statistical power solutions, and show that good deter-
ministic solutions will be good statistical solutions.

As an experiment, the deterministic and statistical pow-
ers were computed for 10,000 randomly generated solu-
tions widths, lengths and v;s, for each design in the ISCAS
‘85 benchmark suite. The powers are computed using a
lookup table generated from a Monte-Carlo simulation of
the Nangate Open Cell Library, using models from the
BPTM 45 [2]. Three different v; values were used (low,
high and normal), and four different gate lengths were
used ({4+0nm,+1nm,+2nm,+3nm}). The variations are
assumed to be o, = Inm and o, = (0.5nm.

i, wid
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In Figure 2, the deterministic vs. the statistical power is
plotted for the ¢432 circuit (the plots for the other circuits
are very similar). Visually, the relation is linear with a
little error. In effect, this indicates that solutions that
have good deterministic powers will have good statistical
powers. In other words, a solution in the top 1% of all
deterministic solutions is very likely to be in the top 1%
of the statistical solutions.

To quantify the errors, the linear correlation between
the two measures is be removed, and the remaining errors
are normalized to a percentage of the statistical power.
Intuitively, these rank errors approximate the minimum
amount of correction that is required to align the deter-
ministic power rankings and the statistical power rank-
ings, and to make the i*" best deterministic solution the
i'" best statistical solution. The average value tells us
what the expected correction is, and can be interpreted as
the expected suboptimality.

The minimum, maximum and average of these errors
is shown in Table IV. The table reflects the data for the
entire ISCAS ‘85 benchmark suite, and for different com-
binations of design variables (width only, width and v,
etc.). The magnitude of the errors is very low (< 1% for
Pmse and < .2% for p,,), and indicates that on average,
only a little correction is needed to align the results of the
two different power optimizations.

V. STATISTICAL VS. DETERMINISTIC OPTIMIZATION

To support the results above, we optimized the circuits
that were synthesized to speed 3 with mean, nominal and
inter-die quantile p3, objectives using a commercial gate-
width sizing engine. Surprisingly, the optimizations yield
near-identical results. Both the largest difference, and the
average difference are very small (.03% and .003%, respec-
tively) and in most of the circuits, the optimized powers
are identical. This indicates that the worst-case bounds
may be very loose.

We also ran the circuits through a continuous width
sizing program. This used a linear delay model that is
fitted from the Nangate Open Cell Library. Slew effects
were ignored, and the sizing was run over three different
delay values for each of the different synthesized speeds of
the ISCAS ‘85 benchmarks. The differences here are also
very small — the maximum is .07%, and the average is
0.06%. This is a further indication that the optimizations
are similar, and that there is little benefit that is gained
by optimizing the statistical power.

VI. SUMMARY

In this paper we compared deterministic solutions of siz-
ing problems with statistical solutions of sizing problems.
The interesting conclusion is that the worst-case bounds
on the suboptimality gap are small (usually < 5%). The
rankings of the solutions coincide very well, indicating
that good deterministic solutions will be equally good sta-
tistical solutions. Another implication of high rank corre-
lation is that any sizing engine is very likely to yield the
same or similar solution whether it is driven by statistical
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or deterministic objectives. Given the results and the ar-
guments presented in the paper, we believe that there is
little value in statistical modeling of power for optimiza-
tion purposes.

Our ongoing work is to extend similar arguments to
statistical delay objective functions (especially the ones
which are nicely expressible, such as total delay), and ac-
count for variations in v;. Furthermore, we are investi-
gating methods of quantifying the impact of relaxing sta-
tistical constraints to deterministic ones in optimization
problems.
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