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ABSTRACT
With increasing design complexity, as well as continued scaling
of supplies, the design and analysis of power/ground distribu-
tion networks poses a difficult problem in modern IC design.
We propose several closed-form solutions for power distribu-
tion network optimization and analysis which explicitly take into
consideration the mesh topology of modern power-ground net-
works. Our analysis and optimization methods have essentially
zero runtime for global power grids, and are therefore usable for
layout optimization. Experimental validation shows that our IR
drop estimation method has almost perfect correlation with true
IR drop. Our closed-form sizing solutions save up to 32% area
while preserving the peak IR drop; alternatively, we can reduce
peak IR drop by up to 33% while preserving the total area of
the power distribution network. Our iterated incremental power
distribution network improvement technique achieves up to 33%
reduction (in one iteration) in peak IR drop over uniformly sized
meshes. We also introduce a measure for robustness of power
distribution networks to current and process variations.

1. Introduction
Circuits with increasingly higher frequencies and increasingly

higher densities have made on-chip power-ground voltage fluc-
tuation very significant. Worst-case voltage drop is increasing
with every technology node and easily violates the typical 10%
constraint even at the 130nm node [18]. The voltage fluctua-
tion arises from IR drop, L di

dt noise or LC resonance [5]. IR
drop may be remedied by sizing up power-ground wire widths
and by decreasing their pitch. However, overdesign of the power
distribution network consumes valuable clock and global signal
routing resources on top-level metal layers.

Area minimization of the power distribution network is a well-
studied problem. Early work of Chowdhury et al. [3] solves
the nonlinear power distribution problem for networks with tree
topologies using the Lagrange multiplier method. [2] solves
power distribution networks with general graph topologies by
breaking the nonlinear programming problem into two subprob-
lems: one linear program, and one problem with nonlinear ob-
jective and linear constraints. [14] linearizes the nonlinear objec-
tive in the two-phase approach of [2] by Taylor series expansion
around a feasible solution. Tan et al. further simplify the prob-
lem by reducing the size of the network in [17]. [16] uses a net-
work simplex algorithm to solve the sequence of linear programs
developed in [14]. Model order reduction of the entire power
distribution network, followed by a greedy sensitivity-based siz-
ing, is done in [15].

Additional work in power distribution network optimization
includes [13] which heuristically solves the original nonlinear
program using penalty functions and the conjugate gradient method.
[9] deals with the problem of power distribution in the presence
of large macro cells. [12] locally sizes a forest-based power dis-
tribution network depending on the current estimates. [10] as-
sumes a single-direction power routing to start with, and inserts
vias and orthogonal-direction power routing locally as needed.
The authors of [6] consider buffer delay change due to IR drop
and locally modify the tolerable IR drop to meet timing. They
then use the sequence of linear programs approach to solve for
power route segment widths. [1] gives a novel way to approx-
imate the power mesh as a space-continuous structure and de-
termine resistivities of uniform horizontal and vertical wiring to

meet IR drop budgets. The analysis is fast and useful at the RTL
floorplanning stage.

Robustness of power distribution networks to current varia-
tions has been addressed in [21], where the authors heuristi-
cally try to solve the power distribution network sizing prob-
lems when currents have distributions rather than being con-
stant. They show that non-tree topologies may yield better so-
lutions under such constraints. This is consistent with mesh-
based power distribution networks design being the commonly
accepted design approach to handle current variations. Besides
having large runtimes, their approach tends to return solutions
which are closer to a tree topology than a mesh topology. [20]
propose a power network verification technique by solving a
number of linear programs, assuming local and global current
bounding constraints. The approach is time consuming and does
not account for correlations or the statistical nature of current
variations. Neither approach considers the impact of process
variations which can cause varying wire width and thickness
across the die.

Our work considers a wide outer power ring connected to a
global power mesh as the power distribution network topology.
Meshes are the accepted way of designing power distribution
networks in modern designs [8]. We consider the sizing prob-
lem only for the global mesh. Moreover, our analysis is based on
time-independent average currents for the power/ground nodes.
Thus, a purely resistive model for the mesh is sufficient. Reduc-
tion of transient noise in power distribution networks is usually
done by adding decoupling capacitances, which we ignore in our
analysis. IR drop increases as ones moves toward the center of
the chip. This “bull’s eye” phenomenon is common in mesh-
based power distribution. We make use of this to approximate
the power mesh as a collection of distinct equipotential rings
and develop closed-form wire sizing solutions. The closed-form
expressions permit evaluation of alternative power meshes with
negligible computational cost. Important contributions of our
work include the following.

• An optimal sizing solution for the one-dimensional power
stripe sizing problem;

• closed-form sizing solutions for power grids;

• an incremental improvement technique for power grids;

• a closed-form IR drop calculator for quick IR drop esti-
mation during layout; and

• a measure of robustness of power distribution networks to
current and process variations.

The organization of this paper is as follows. In Section 2, we
give solution to the one-dimensional power stripe sizing prob-
lem as a motivation to the more general 2-D problem. Section
3 describes our three-phase approach to closed-form power grid
sizing. Section 4 briefly discusses robustness issues under per-
turbation of the currents as well as process variations. Experi-
mental results are given in Section 5. Finally we conclude with
directions of ongoing research in Section 6.

2. 1-D Case
In this section, we consider a very simple power distribution

network topology. It consists of parallel power stripes drawingProceedings of the 19th International Conference on VLSI Design (VLSID’06) 
1063-9667/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on August 14,2010 at 01:56:45 UTC from IEEE Xplore.  Restrictions apply. 



power from a peripheral thick power ring. In such a case, each
power stripe can be sized independently.

Consider a power stripe with Vdd inputs at one end and n
evenly distributed power tap points from which n placed mod-
ules draw power. Let these be labeled as (1, . . . ,n) with 1 repre-
senting Vdd input. Let i(p,q) denote the current flowing from tap
point p to tap point q. Also, let i( j) denote the current flowing
into the jth tap point. Then

i( j−1, j) = i( j, j +1)+ i( j) (1)

Let r(p,q) denote the resistance of the segment of power stripe
between tap points p and q. Let V ( j) denote the voltage at tap
point j. Then

V ( j +1) = V ( j)− i( j, j +1) · r( j, j +1) (2)
= V ( j)− r( j, j +1)Σn

k= j+1i(k)

The above equation explains the observed “bull’s eye” for IR
drop. Equation (2) can be rewritten as follows.

V ( j +1) = Vdd − (3)
j

∑
k=1

i(k)(Σk
m=1r(m,m+1))− (Σn

k= j+1i(k))r( j, j +1)

Equation (3) also suggests that a nonuniform tapered power
stripe which is thicker (i.e., less resistive) toward Vdd and thinner
away from it will achieve better IR drop reduction with the same
total area. To illustrate this more clearly, consider the case of
uniform current requirements (i.e., i(k) = i ∀k). For this case,
peak IR drop is given by

IRpeak = i
n

∑
k=1

(n−k)r(k,k +1) (4)

The power distribution optimization problem subject to a peak
IR drop constraint then becomes the following.1

Minimize
n

∑
k=1

1
r(k,k +1)

(5)

subject to
n

∑
k=1

i(k,k +1)r(k,k +1) ≤ IRpeak

A closed-form solution to this Min-Area IR Drop Constrained
(MAIC) problem (5) is easily obtained by using Lagrangian mul-
tipliers as follows. The Lagrangian is formulated as

L =
n

∑
k=1

1
r(k,k +1)

+λ(
n

∑
k=1

i(k,k +1)r(k,k +1)− IRpeak)

Since the Lagrangian is convex �L = 0 will give the global min-
imum of the function Σn

k=1
1

r(k,k+1) . Taking partial derivatives we
get

−1
r(k,k +1)2 +λi(k,k +1) = 0 ∀k ∈ [1,n]

r(k,k +1) =
1√

λ
√

i(k,k +1)

Substituting in the peak IR drop constraint equation and solving
yields the following closed-form solution.

r(k,k +1) =
IRpeak

∑n
p=1(

√
i(p, p+1))

√
i(k,k +1)

(6)

Similarly, the Min-IR Drop Area Constrained (MIAC) prob-
lem is given by

Minimize
n

∑
k=1

i(k,k +1)r(k,k +1) (7)

subject to
n

∑
k=1

1
r(k,k +1)

= G

1Note that the total area of the power mesh is directly propor-
tional to the sum of conductances of individual power grid seg-
ments. In this paper we use “total conductance” as a measure of
area.

Figure 1: IR drop distribution for a uniform power mesh.
The bull’s eye at the center is clear. Also note the “circular”
equipotential rings.

Formulation (7) can again be solved by substituting g(k,k+1) =
1

r(k,k+1) to obtain the following closed-form solution.

r(k,k +1) =
∑n

p=1

√
i(p, p+1)

G
√

i(k,k +1)
(8)

In this section, we have developed closed-form solutions for
two variants of the 1-D power network sizing problem. Power
stripes based topologies are no longer very common in modern
power distribution networks, except in small macros. More use-
ful 2-D versions of the above problems are discussed in the next
section.

3. The 2-D Case
In this section we develop a non-iterative approach to sizing

power grids. The approach is an extension of the basic closed-
form solutions given in the previous section for the 1-D case.

Analysis of a 2-D power mesh is difficult. Just as in the 1-
D case, we expect IR drop to increase toward the center. We
begin our discussion with the illustrative example of a square
chip, with the current flow as “radially inward”. If we divide the
layout into concentric rings,2 then the current flowing into a ring
is the sum of currents drawn by the tap points enclosed by the
ring. An IR drop map for a 25× 25 uniform power grid with
uniform current distribution is shown in Figure 1.

The equipotential ring on the power mesh takes the form of a
diamond at the center of the (square) chip and gradually changes
to a square toward the periphery (since the power mesh is as-
sumed to be connected to a power ring with very low resistance).
A reasonable simplification is to assume square equipotential
rings all throughout the chip. The edges of each of these rings
are the segments of the power mesh. Hence, the total number of
rings in a n×n mesh is n−1

2 .3 We take a three-phase approach to
2-D power mesh optimization as follows.

1. Phase I: Radial Sizing. We assume a uniform current dis-
tribution and solve for optimal sizes for radial segments
(i.e., segments between two rings).

2. Phase II: Tangential Sizing. Since the actual current dis-
tribution is not uniform, we divide the layout into sectors4

and redistribute metal along rings between radial segments
belonging to different sectors depending on the current re-
quirements of each sector.

3. Phase III: Circumference Correction. The assumption of
square equipotential rings is accurate only close to the
periphery of the chip. The rings are more “circular” or
diamond-like toward the center of the layout. This means

2If the chip floorplan is not a square, cofocal ellipses can be
used.
3This assumes odd n. In case of even n the number is n/2−1.
4We divide the layout into quadrants for this work. Though our
experiments assume sector ≈ quadrant, the approach is generic
and can be easily extended to smaller sectors.Proceedings of the 19th International Conference on VLSI Design (VLSID’06) 
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Radial Segment

Power Ring

Tangential Segment

Figure 2: A 5×5 power distribution mesh. Radial and tan-
gential segments are shown.
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Figure 3: Variation of peak IR drop in a 13×13 power mesh
with varying conductance of radial and tangential segments.
Note that sizing tangential segments has negligible impact on
IR drop.

that there is current flowing through, and hence a voltage
drop in, the tangential segments of the square rings. We
therefore size the tangential segments which lie along the
circumference of the rings.

A power distribution mesh with labeled radial and tangential
segments is shown in Figure 2.

Figure 3 shows the dependence of peak IR drop on conduc-
tance of tangential and radial segments. The dependence of
peak IR drop on sizing of tangential segments is weak. This
dependence becomes even weaker for larger power grids where
equipotential contours look more like squares.

3.1 Radial Sizing
With respect to radial sizing, we note the following.

• No current flows along an equipotential ring. Therefore,
segments along the ring can be at maximum resistance
(i.e. minimum width).

• The total number of current carrying segments between
rings j and j + 1 (ring n−1

2 is closest to the center, and
ring 1 is the power ring at the periphery) is 4n− 8 j. We
assume all of these segments to be carrying equal currents.

• The total current carried by 4n − 8 j segments between
rings j and j +1 is equal to the current drawn by the mod-
ules strictly within the ring j. Following the 1-D terminol-
ogy, call this current i( j, j +1). Similarly, let i( j) denote
the current drawn by tap points on ring j. Then

i( j−1, j) = i( j, j +1)+ i( j) (9)

Let r( j, j +1) denote the resistance of each of the 4n−8 j seg-
ments between the rings j and j +1. The voltage drop from ring
j to j +1 is given by

V ( j +1) = V ( j)− i( j, j +1)
4n−8 j

× r( j, j +1) (10)

= V ( j)− r( j, j +1)

n−1
2

∑
k= j+1

i(k)
4n−8k

Equation (10) can be rewritten as follows.

V ( j +1) = Vdd −
j

∑
k=1

(i(k)
k

∑
m=1

r(m,m+1))− r( j, j +1)

n−1
2

∑
k= j+1

i(k)
4n−8k

(11)

The 2-D MAIC problem is given below.

Minimize

n−1
2

∑
k=1

4n−8k
r(k,k +1)

(12)

such that

n−1
2

∑
k=1

i(k,k +1)
4n−8k

r(k,k +1) ≤ IRpeak

A closed-form solution to the Min-Area IR Drop Constrained
(MAIC) problem for a 2-D mesh is then given by

r(k,k +1) =
IRpeak(4n−8k)

∑
n−1

2
p=1(

√
i(p, p+1))

√
i(k,k +1)

(13)

Similarly, the solution for the 2-D MIAC problem is

r(k,k +1) =
(4n−8k)∑

n−1
2

p=1

√
i(p, p+1)

GR
√

i(k,k +1)
(14)

where GR is the total conductance allocated to radial segments.

3.2 Tangential Sizing
The second step of our sizing approach redistributes metal

along the ring among the radial segments to account for non-
uniform distribution of currents. We divide the power grid into
quadrants and assume that tap points lying within a quadrant
draw current only from the power grid segments within that quad-
rant. We then enforce equal voltage drop between rings. Let iqp
denote the current drawn by tap points lying in the quadrant q
on the ring p. Similarly, let rq

p be the resistance of each of the
(n−2p) segments in the quadrant q in the ring p. Then the metal
redistribution constraints are as follows.

iqp
n−2p

rq
p = Vp

Vp =
i(p−1, p)

4n−8p
× r(p−1, p) (15)

where Vp is the voltage drop from ring p to p− 1 as calculated
by the optimal radial sizing solution. If metal-constrained sizing
(i.e. MIAC) solution is sought, then the constraint is

4

∑
q=1

1

rq
p

=
Gp

n−2p
(16)

where Gp is the total conductance at ring p. In this case the
tangential sizing solution is

rq
p =

(n−2p)∑4
q=1 iqp

Gpiqp
. (17)

3.3 Circumference Correction
To correct for the fact that equipotential contours may not

look like squares, we heuristically perform local sizing on tan-
gential segments (i.e. the interconnect segments parallel to the
power ring). The equipotential contour progresses from being
diamond-shaped at the center of the layout to a square.

Geometrically, more correction is required near corners of the
square ring to transform it into a diamond. Moreover, the amount
of correction required decreases as we progress from the center
outward. We model these dependencies as a simple linear func-
tion.

r(x,y) = rα(x+y+1) (18)

where r is the resistance of the radial segment intersecting the
given tangential segment, x is the distance of the tangential seg-
ment from the nearest corner, and y is the distance of the corre-
sponding ring from the center of the layout. We measure length
in number of horizontal or vertical power grid segments. The
normalizing factor α affects the conductance of tangential seg-
ments only, and hence its impact on IR drop is small. Figure 4
illustrates this weak dependence.Proceedings of the 19th International Conference on VLSI Design (VLSID’06) 
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Figure 4: Variation of power mesh area and peak IR drop
with α. n denotes the dimension of the square mesh. The
variation is plotted for a sample testcase T4 (see Table 3)

.

The total conductance GCC added due to circumference cor-
rection can be computed for uniform current requirements:

GCC = 8g
α ∑

n−1
2 −1

i=1 (Hi −H i
2
)

≈ 8g
α ( n−1

2 −1)ln(2)
= 4GR(n−3)ln(2)

α(n−1)2

≈ 4GRln(2)
α(n−1)

(19)

Here, Hk is the kth harmonic number. 5 GR is the total conduc-
tance of radial segments after radial sizing and g is the conduc-
tance of each of the radial segments.6 We use the same expres-
sion to approximate GCC for arbitrary meshes as well. Hence,
the total conductance of the power mesh is given by

G = GR(1+
4ln(2)

α(n−1)
) (20)

Equation (20) can be used to determine the required GR for the
MIAC sizing solution in Equation (14).

In this section, we have described a simple closed-form ap-
proach for sizing power meshes. Section 6 will investigate sev-
eral degrees of freedom in choosing some parameters (e.g. α)..

4. Incremental Improvement
In this section, we propose a simple area-preserving incre-

mental power distribution network optimization technique. The
intuition behind this technique is same as for the radial sizing
approach described in the previous section. We want to down-
size the power grid segments which lie along the equipotential
contours and upsize the ones perpendicular to them. The key dif-
ference here is that after a single actual IR drop estimation, the
true shape of the equipotential rings becomes apparent and the
assumption of “square” equipotential contours can be avoided.

A simple way of doing this sizing is to increase conductance
of each segment by a factor proportional to ∆V

V dropmax
where ∆V

is the voltage drop across the segment and V dropmax is the mea-
sured maximum IR drop between any two nodes in the power
grid which are connected by a segment. To preserve the area of
the power grid, conductances of all the segments can be scaled
by a constant factor. Therefore,

g f
i j = β(1+

|∆Vi j|
V dropmax

)g0
i j (21)

β =
∑i< j g0

i j

∑i< j(1+ |∆Vi j|
V dropmax

)g0
i j

where g0
i j is the initial conductance of the segment between nodes

i and j and g f
i j is the final conductance after incremental siz-

5The kth harmonic number is given by Hk = ∑i=k
i=1

1
k . The first

few harmonic numbers are 1, 3
2 , 11

6 , 25
12 , 137

60 .
6Note that for a mesh with uniform current requirements, the
radial sizing solution has all equisized radial segments.

ing. β is the normalizing factor to preserve the total area. This
metal-redistribution can be done after any layout iteration which
requires recomputation of the IR drop map. Though, in this
work we concentrate our effort on power distribution meshes,
this incremental improvement technique can be applied to arbi-
trary power distribution network topologies.

5. Zero-Time IR Drop Analysis
In this section we give a simple heuristic closed-form measure

for IR drop at any node based on Section 3. As in Section 3.2,
we can subdivide each ring into quadrants. Let V Qq

p denote the
IR drop from the Vdd power ring to quadrant q of ring p. Let Gp

denote the total conductance of ring p. Then Gp = ∑segmenti∈p
1
ri

where ri is the resistance of the radial segment i in ring p. Sim-
ilarly we define Gq

p to be the total conductance in quadrant q
of ring p. Let Ip be the total current flowing into ring p. Ip
is the sum of currents drawn by tap points lying within ring p.
Similarly define Iq

p for qth quadrant in ring p. We propose the
following expression for V Qq

p.

V Qq
p = V Qq

p−1 +0.5(
Ip

Gp
+

Iq
p

Gq
p
) (22)

Then all the tap points lying on ring p in quadrant q are as-
sumed to have same IR drop V Qq

p. Such a simple measure, if
accurate, can be very useful in predicting IR drop and its impact
on timing without time-consuming IR drop analysis, especially
during layout optimization. Equation (22) can easily be general-
ized to have further subdivisions of the rings (e.g., use of octants
also as sectors) which can yield better accuracy in cases when
the current distribution is very nonuniform or the power distri-
bution network is nonuniformly sized.

6. Perturbations and Robustness
We now propose a metric for robustness of a power distribu-

tion network with respect to variations. These variations may
arise from inaccurate or incomplete peak current estimation or
from process variations.

Let ‖ A ‖∞ denote the infinity norm of the matrix A. ‖ A ‖∞=
maxi|ai| if A is a vector. When A is a matrix ‖A ‖∞= maxi ∑n

j=1 |ai j|.
If Vdd is set to 0V, then the peak IR drop is given by ‖V ‖∞ where
V is the solution to GV = I. Process variations can manifest as
varying width and thickness of metal (e.g., due to CMP effects)
across the die leading to variation in the conductance matrix G
as well as in the current requirements I. Estimation errors can
cause variation in I/

For perturbation matrices E,e such that (G + E)V ′ = I + e
gives the perturbed solution to GV = I, an upper-bound on V ′ −
V can be easily derived [19].

‖V ′ −V ‖
‖V ‖ ≤‖ G ‖‖ G−1 ‖ (

‖ E ‖
‖ G ‖ +

‖ e ‖
‖ I ‖ ) (23)

Note that E has to maintain the structure of the conductance
matrix. A simple example of such a matrix can be the scaled
version of the original conductance matrix. I.e., E = εG. ‖ G ‖‖
G−1 ‖ is referred to as the condition number of G. It is an indi-
cator of robustness of the solution of the IR drop solution with
respect to small variations in the conductance matrix as well as
currents. Note that this condition number tends to be pessimistic
as it does not exploit the structured nature of the perturbations
which are allowed in the conductance matrix (e.g., for a mesh,
zero entries cannot become non-zero).

In presence of process variations as well inaccurate estimates
of peak currents, low condition number of the power mesh con-
ductance matrix becomes an important metric for the power dis-
tribution network. Regularization and conditioning procedures
are being explored to study this aspect of power distribution net-
work design.

7. Experiments and Results
We validate our results on two artificial power-grid instances

with uniform current requirements as well as a testcase drawn
from the industry. The characteristics of the testcases are giveProceedings of the 19th International Conference on VLSI Design (VLSID’06) 
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Peak IR Drop Total Conductance Total Conductance Measured IR drop Area Savings
Testcase (before sizing) (V) (before sizing) (mho) (after sizing) (mho) (after sizing) (V) (%)

T1 0.11 22080 17425 0.10 21.1
T2 0.21 1140000 775025 0.21 32.0
T3 2.04 11974 8667 1.96 27.6
T4 0.11 217800 160738 0.10 26.2

Table 1: Results of MAIC sizing.

Peak IR Drop Total Conductance Total Conductance Measured IR drop IR Drop Reduction
Testcase (before sizing) (V) (before sizing) (mho) (after sizing) (mho) (after sizing) (V) (%)

T1 0.11 22080 21753 0.08 27.3
T2 0.21 1140000 1139506 0.14 33.3
T3 2.04 11974 11852 1.43 29.9
T4 0.11 217800 215578 0.08 27.3

Table 2: Results of MIAC sizing.
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Figure 5: Variation of total conductance and the peak IR
drop with varying MAIC IRpeak for a sample testcase T4.

in Table 3. MAT LAB [22] is used as the numerical solver to
compute exact IR drops.

MAIC sizing underestimates peak IR drop due to the assump-
tion of square equipotential rings. Therefore, a certain guard-
band is desirable. Variation of conductance and IR drop with the
MAIC IRpeak constraint given to radial sizing is shown in Figure
5 for testcase T4. Comparing Figure 5 and Figure 4 suggests that
oversizing the radial segments by lowering MAICIRpeak gives
more “bang for the buck” as compared to oversizing tangential
segments by reducing α. At the same time too large an α is
not desirable as it will result in a very non-uniform and unstable
power mesh. We choose MAIC IRpeak = 0.7×(Desired peak IR drop)
and α = 0.4.

The results for MAIC sizing are given in Table 2. The simple
closed-form three-phase MAIC sizing achieves 21% to 32% area
reduction over uniformly sized meshes while achieving equal or
smaller peak IR drop. For MIAC sizing, the radial conductance

constraint in Equation (14) is given by GR ≈ (n−1)G
5.9+n for α = 0.4.

The results for MIAC sizing are shown in Table 2. The small
differences between intended and actual power grid areas are due
to the approximations involved in Equation (20). Our closed-
form MIAC sizing approach achieves 27% to 33% reduction in
peak IR drop with equal or smaller areas of the power grid.

We also run a single iteration of the incremental sizing out-
lined in Section 4. To illustrate its impact, we perform it on the
uniformly sized meshes as given in Table 3 and the results of
MIAC sizing given in Table 2. The results are shown in Table
4. The approach achieves 12% to 33% improvement in peak IR
drop with negligible runtime overhead. The peak IR drops for

Peak IR Drop (Uniform) (V) Peak IR Drop (MIAC) (V)
Testcase Orig. Inc. % Improvement Orig. Inc. % Improvement

T1 0.11 0.09 18 0.08 0.07 12
T2 0.21 0.14 33 0.14 0.13 7
T3 2.04 1.80 12 1.43 1.32 8
T4 0.11 0.10 9 0.08 0.07 12

Table 4: Results of one iteration of incremental sizing. Note
that the total conductance is preserved.

Peak IR Drop (V) Correlation
Testcase Measured Predicted Linear Rank

T1(uniform) 0.11 0.08 0.987 0.988
T1(MAIC) 0.10 0.07 0.969 0.973
T1(MIAC) 0.08 0.06 0.969 0.973

T2(uniform) 0.21 0.17 0.986 0.987
T2(MAIC) 0.21 0.14 0.945 0.951
T2(MIAC) 0.14 0.10 0.945 0.951

T3(uniform) 2.04 1.82 0.980 0.983
T3(MAIC) 1.96 1.35 0.956 0.959
T3(MIAC) 1.43 0.99 0.956 0.959

T4(uniform) 0.11 0.10 0.981 0.983
T4(MAIC) 0.10 0.07 0.956 0.959
T4(MIAC) 0.08 0.05 0.956 0.959

Table 5: Results of fast IR drop analysis. Linear (Pearson)
and rank (Spearman) correlation coefficients between the IR
drops on the mesh as measured and as predicted are also
given.

Condition Number
Testcase Uniform MIAC MAIC

T1 499 975 1056
T2 4204 9048 9857
T3 724 1437 1467
T4 1481 2867 3836

Table 6: Robustness of conductance matrices in Table 2 and
Table 1.

the MIAC sized meshes do not improve by more than 12%. This
is just a confirmation of the MIAC sizing being fairly close to
the optimum.

Results of the closed-form IR drop calculation given in section
4 are shown in Table 5. The high rank correlation coefficients
suggest the high fidelity of the simple measure. Moreover, close
to 1 linear correlation coefficient suggests a simple linear rela-
tionship (e.g. multiply by 1.4) can work well as an approximate
IR drop estimator.

Results for robustness analysis for the various conductance
matrices are shown in Table 6. It is clear that sized meshes are
more non-uniform and less robust. The condition number places
a very loose upper-bound on impact of variations. Constructing
pathological examples of current and/or process variations such
that the upper-bound is attained is still an open problem which
we are looking into.

8. Conclusions and Future Work
In this paper, we have presented techniques for sizing and ana-

lyzing power distribution meshes. All the techniques are closed-
form in nature and hence avoid huge computational overheads
of typical mathematical-programming based formulations. We
have considered two variants of the power grid sizing problem
namely, IR drop constrained (MAIC) and area constrained (MIAC).
For the former, our closed-form sizing achieves 21%-32% area
savings over uniformly sized meshes while yielding equal or
smaller peak IR drop. Similarly, our MIAC sizing approach
yields 27%-33% peak IR drop reduction with power mesh ar-
eas smaller than corresponding uniformly sized meshes. The
proposed incremental sizing approach improves the IR drop of
uniformly sized meshes by up to 33% and MIAC sized meshes
by up to 12% while retaining the same area. This simple incre-
mental improvement can be used in any part of the layout flow
after an iteration of IR drop analysis has been done (e.g., forProceedings of the 19th International Conference on VLSI Design (VLSID’06) 
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Horizontal Segment Vertical Segment Total Conductance Peak IR Drop
Testcase Power-grid Size Resistance (mΩ) Resistance (mΩ) (mho) (V)

T1 23 × 23 50 50 22080 0.11
T2 75 × 75 10 10 1140000 0.21
T3 33 × 33 193 172 11974 2.04
T4 33 × 33 10 10 217800 0.11

Table 3: Characteristics of testcases. T1 and T2 are artificial testcases with uniform current requirements while T3 is drawn
from industry. T3 has been derived from a flipchip power distribution network. As a result the IR drop is substantially higher
for it in a power ring setup. T4 is derived from T3.

timing verification).
For mesh based power distribution networks, we have pro-

posed a simple IR drop calculator which underestimates the peak
IR drop but has almost perfect linear correlation with the true IR
drop. As a result, simple scaling of the proposed metric can
yield fairly accurate IR drop estimates which can be used dur-
ing layout optimization (e.g., timing analysis, power distribution
network design, etc). We have also given a robustness metric for
general power distribution networks to measure sensitivity of the
network to current and process variations.

Our ongoing and future work takes several directions as out-
lined below.

• Analysis of flipchip based designs. Many modern designs
use flipchip design methodology which places power many
power pads on the top of the layout rather than having the
conventional power ring. This leads to alleviation of the
IR drop problem. Our radial sizing approach can be ex-
tended for such cases. The power distribution network
then consists of multiple power sources each having con-
centric diamond-shaped equipotential rings around it. Closed-
form solutions for single central power source can be sim-
ilarly developed but the challenge lies in accounting for
interaction between different solder power bumps.

• Impact of macro cells. Current layouts may contain a
number of macro cells each of which has a power ring
of its own, thus disturbing the continuous nature of the
power grid. Typically, the macro cells themselves have a
finer grained power mesh with a thick power ring. As a re-
sult, peak IR drop for the whole layout is likely to improve
in presence of such macro cells. We are investigating ap-
proaches for sizing and analysis of global power grids in
presence of macro cells.

• Better robustness metrics. The ∞-norm condition number
proposed in this paper gives very pessimistic bounds on
impact of perturbations which are not always attainable
especially for the case of structured perturbations. Condi-
tion numbers for structured perturbations as well per-entry
condition numbers (to have better IR drop control for more
critical cells in the design for example) are also part of our
ongoing research. We are also investigating robustifica-
tion of conductance matrices using small perturbations.

9. REFERENCES
[1] W. Roethig and T.L. Nguyen, “Estimation of Voltage Drop and Current

Densities in ASIC Power Supply Mesh”, US Patent 6028440, 2000.
[2] S. Chowdhury, “Optimum Design of Reliable IC Power Networks Having

General Graph Topologies”, Proc. IEEE/ACM Design Automation
Conference, 1989, pp. 787-790.

[3] S. Chowdhury and M.A. Breuer, “Optimum Design of IC Power/Ground
Nets Subject to Reliability Constraints”, IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems, 7(7) (1988), pp. 787-796.

[4] A. Dalal, L. Lev and S. Mitra, “Design of an Efficient Power Distribution
Network for the UltraSPARC-I Microprocessor”, Proc. IEEE International
Conference on Computer Design, 1995, pp. 118-123.

[5] S. Lin and N. Chang, “Challenges in Power-Ground Integrity”, Proc.
IEEE/ACM International Conference on Computer-Aided Design, 2001,
pp. 651-654.

[6] A. Mukherjee, K. Wang, L.H. Chen and M. Marek-Sadowska, “Sizing
Power/Ground Meshes for Clocking and Computing Circuit Components”,
Proc. IEEE/ACM Design Automation and Test in Europe, 2002, pp.
176-183.

[7] W.S. Song and L.A. Glassner, “Power Distribution Techniques for VLSI
Circuits”, IEEE Journal of Solid-State Circuits, SC-21(1) (1986), pp.
150-156.

[8] A. Dharchoudhury, R. Panda, D. Blaauw and R. Vaidyanathan, “Design
and Analysis of Power Distribution Networks in PowerPC
Microprocessors”, Proc. IEEE/ACM Design Automation Conference, 1998,
pp. 738-743.

[9] X. Wu, C. Qiao and X. Hong, “Design and Optimization of Power/Ground
Network for Cell-Based VLSIs with Macro Cells”, Proc. IEEE/ACM Asia
South-Pacific Design Automation Conference, 1999, pp. 21-24.

[10] T. Mitsuhashi, “Method and Apparatus for Power-Source Wiring Design of
Semiconductor Integrated Circuits”, US Patent 5404310, 1995.

[11] D.R. Brasen and B.S. Seiler, “Method for Sizing Widths of Power Busses
in Integrated Circuits”, US Patent 5349542, 1994.

[12] S. Ito, “Method of Automatically Optimizing Power Supply Network for
Semi-Custom Made Integrated Circuit Device”, US Patent 5648910, 1997.

[13] X. Wu, X. Hong, Y. Cai, C.K. Cheng, J. Gu and W. Dai, “Area
Minimization of Power Distribution Network Using Efficient Nonlinear
Programming Techniques”, Proc. IEEE/ACM International Conference on
Computer-Aided Design, 2001, pp. 153-157.

[14] X.-D. Tan, C.-J. R. Shi, D. Lungeanu, J.-C. Lee and L.-P. Yuan,
“Reliability-Constrained Area Optimization of VLSI Power/Ground
Networks Via Sequence of Linear Programmings”, Proc. IEEE/ACM
Design Automation Conference, 1999, pp. 78-83.

[15] H. Su, K.H. Gala and S.S. Sapatnekar, “Fast Analysis and Optimization of
Power/Ground Networks”, Proc. IEEE/ACM International Conference on
Computer-Aided Design, 2000, pp. 477-480.

[16] T.-Y. Wang and C. C.-P Chen, “Optimization of the Power/Ground
Network Wire-Sizing and Spacing Based on Sequential Network Simplex
Algorithm”, Proc. IEEE International Symposium on Quality Electronic
Design, 2002, pp. 157-162.

[17] S. X.-D. Tan and C.-J. Shi, “Efficient Very Large Scale Integration
Power/Ground Network Sizing Based on Equivalent Circuit Modeling”,
IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems, 22(3) (2003), pp. 277-284.

[18] A.H. Ajami, K. Banerjee, A. Mehrotra and M. Pedram, “Analysis of
IR-Drop Scaling with Implications for Deep Submicron P/G Network
Designs”, Proc. IEEE International Symposium on Quality Electronic
Design, 2003.

[19] G.W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press
Inc. ,1990.

[20] D. Kouroussis and F.N. Najm, “A Static Pattern-Independent Technique for
Power Grid Voltage Integrity Verification”, Proc. IEEE/ACM Design
Automation Conference, 2003, pp. 99-104.

[21] S. Boyd, L. Vandenberghe, A. El Gamal and S. Yun, “Design of Robust
Global Power and Ground Networks”, Proc. IEEE/ACM International
Symposium on Physical Design, 2001, pp. 60-65.

[22] http://www.mathworks.com

Proceedings of the 19th International Conference on VLSI Design (VLSID’06) 
1063-9667/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on August 14,2010 at 01:56:45 UTC from IEEE Xplore.  Restrictions apply. 


