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Abstract 

Chiplet technologies allow for greater flexibility in system 
design through a wide range of system configuration options 
spanning integration schemes (monolithic, 2.5D, 3D), 
heterogeneity in technology nodes, and partitioning of system 
resources. Each such configuration has implications on figures 
of merit such as cost, power and performance. Optimizing for 
one metric may come at the expense of the other two. During 
the initial architecture exploration and design planning stage, 
it is critical to conduct cost-performance co-optimization 
using models that cover the entire spectrum of configuration 
options to make an informed choice. This work presents an 
evaluation using a framework that models both cost and 
performance simultaneously for chiplet-based systems, 
enabling analysis of the impact of various system-wide 
architectural configurations. We analyze a representative 
scale-out system for high-performance computing workloads 
to investigate how factors like integration, partitioning, 
technology node choices, and system size affect power, 
performance, and cost. The results demonstrate that the 
optimal design choices vary depending on these factors, 
highlighting the insights early stage chiplet design space 
exploration can offer. 
Introduction 

Advanced integration and packaging will drive the scaling 
of computing systems in the next decade. Chiplet systems [1, 
2] are becoming increasingly prevalent in the industry for high 
performance computing and are under active exploration for 
automotive systems [3]. NVIDIA [4], Intel [5], and AMD [6] 
have all released chiplet-based products. The diversity of 
integration choices (monolithic, 2.5D, 3D) [2] and partitioned 
die sizes for chiplet based systems enlarges the design space 
and widens the attainable cost and performance profile. This 
necessitates cost-performance co-optimization to determine 
ideal system configuration [7]. 

With respect to performance, chiplets allow for integration 
of very large systems. Instead of integrating these systems as 
multiple packaged chips, we can integrate them as a chiplet 
system with near monolithic performance. While integrating 
large systems in a single package tends to improve 
performance, disaggregating monolithic designs into multiple 
chiplets can hurt performance due to the increased signal 
lengths resulting from die separation. Generally splitting a 
design and integrating in a 2D or 2.5D manner will result in 
worse or equivalent performance, but in the case of 3D 
stacking there can be a performance improvement over the 
monolithic case due to reducing signal length by changing 
long cross-die connections into relatively short vertical 
connections. 

Chiplet-based design can offer significant reduction in 
system cost due to improving yield, however, there are other 
confounding factors to consider.  A chiplet design requires 
more engineering work upfront to appropriately partition the 
system into the optimal number and kinds of chiplets. Chiplet 
systems are more expensive to assemble and package than 
monolithic designs, particularly if complicated stacking or 
interposers are required. Additionally, splitting a design into 
chiplets requires adding die-to-die interface IOs that increase 
total area and power for the design. 

Chiplets also have other benefits that are more difficult to 
quantify. Creating a new design based on previously designed 
chiplets can be faster than creating the design from scratch, 
reducing time to market. Thus, reuse is an important design 
consideration. Additionally, if it is easier to customize 
different product instances with minimal silicon waste, it can 
be practical to offer more variations of a product family by 
offering different combinations of chiplets with minimal re-
design. 

In addition to the inherent benefits and drawbacks of 
different chiplet architecture options, the cost and performance 
of chiplet systems depends on factors such as inter-chiplet IO 
scheme, substrate type, and bump pitch. These factors are 
important to consider early in the design process. This requires 
detailed cost and performance modeling to make informed 
design decisions. 

 In this work, we motivate the need for both cost and 
performance modeling during the architectural definition 
phase to identify cost-performance co-optimal points in the 
design space. For a representative scale-out system designed 
for HPC workloads, we study the impact of partitioning, 
integration choices, technology node, and system size on 
individual and combined metrics involving performance, 
power, and cost. Our results illustrate the variation in co-
optimal design points, highlighting the insights that 
performance and cost modeling for early stage chiplet design 
space can offer. 

Ther rest of the paper is organized as follows. First, we 
discuss related works, then we describe the example system 
we used for our study. Next, we describe our modeling 
framework with details about both our cost model and our 
performance model. After this we show the results of our 
system analysis on a variety of metrics. 

Related Work 
The manufacturing cost of dies and silicon interposers has 

been previously studied in [8] and [9]. However, these studies 
do not account for the cost for substrates, die-to-die (D2D) 
overhead, or non-recurring engineering (NRE) costs. 
Quantitative cost modeling for chiplet-based designs has been 
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published in “Chiplet Actuary” [9] and “Chiplets: How Small 
is too Small” [10]. These analytical cost models account for 
multiple elements of chiplet cost including manufacturing 
yield, packaging cost, IO requirements, technology nodes, and 
many other factors. In particular, the work in [10] provides an 
analytical framework to determine the system size above 
which disaggregating an SoC into smaller chiplets yields cost 
benefits and below which disaggregating will tend to carry a 
cost penalty. 

The total cost of ownership (TCO) benefit of employing 
chiplet-based systems in building AI supercomputers for 
serving large language model (LLM) workloads has been 
established in the work on Chiplet Cloud [11] where the 
authors demonstrate that chip costs dominate TCO. The study 
in [12] explores the question of how to partition compute 
resources across chiplets as well as the trade-off in 
performance versus cost and sustainability. The impact of 
inter-chiplet network in 2.5D integration on system 
performance for deep learning inference workloads has been 
studied in [13]. A design space exploration framework for 
chiplet based processors is shown in [14], while [15] proposes 
HISIM, a benchmarking tool for chiplet-based heterogeneous 
integration that evaluates the performance of monolithic, 2.5D 
and 3D systems. 

It is pertinent to note that none of the existing works in 
literature simultaneously explore the performance and cost 
variation for chiplet-based systems wherein the integration 
scheme, technology node, system partitioning, and system size 
are simultaneously varied. 
System Description 

Fig. 1 illustrates components of a single node of a scale-
out system architecture. We consider a single node of this 
system for cost-performance evaluation, and it is composed 
of: 

• Compute arrays containing control cores, RISC-V 
based SIMT compute cores (CCs), and local SRAM. 

• Data processing unit (DPU) attached to a DRAM 
(HBM) and a storage system. 

• Network processing unit (NPU) building a distributed 
storage system. 

Nodes are integrated into boards and the full system is 
composed of a network of boards. Cost and performance are 
intertwined and impacted by the system architecture and 
physical SoC configuration. We examine a few physical 
configuration options (Fig. 2) to evaluate the trade-offs 
therein. Cost is estimated for a single package and components 
that are shared between packages and thus packaged 
separately – i.e., the colored blocks in Fig. 1 – are ignored 
since they do not change across the chosen configurations. 
The rest of the logic and memory silicon (including HBM) is 
split up according to the configurations shown in Fig. 2. 

The four chiplet-configuration options shown in Fig. 2 
contain the same HBM chiplet and have different 
configurations for the compute cores and memory. In the first 
column, labeled “fewer chiplets,” everything except the HBM 
is integrated in a single die/stack. This consists of a single 
monolithic chiplet and a 3D stack of logic on memory 
respectively. The “more chiplets” column contains both a 
more aggressively split 2.5D integration option and a version 

including 3D stacking. In both cases, the DPU is placed as its 
own independent chiplet while the memory and cores are split 
into two groups either integrated as 2 separate chiplets or as 
two separate 3D stacks. 

We evaluated these configurations for both 7nm and 5nm. 
Additionally, we considered a variety of system sizes by 
varying the number of compute cores per board and boards per 
system. The area measures we used for this study are from 
physical aware synthesis. 

 

 
Fig. 1.  System architecture under evaluation consists of 

compute tiles, data processing unit (DPU), HBM, network 
processing unit (NPU), and storage (SSD). 

 

 
Fig. 2.  Configurations for cost-performance co-optimization. 
2.5D splits SoC into 3 chiplets and S3D splits L3D stack into 

two 3D stacks plus one additional chiplet. 
 

 
Fig. 3.  Evaluation framework. 
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System Modeling 
Fig. 3 depicts our evaluation framework that 

simultaneously models cost and performance for chiplet-based 
systems used for analyzing the impact of different system-
wide architectural configurations, integration scheme, 
technology node, system partitioning, system size and 
workloads. The framework supports modeling and evaluating 
a configurable high-performance computing (HPC) system 
comprised of compute core/s, memory and network 
components. The inherent cost and performance models 
embedded in our framework are detailed below. 

Cost Model 
To analyze system cost, we used the open source chiplet 

cost model previously described in [10]. This cost model uses 
a nested stack of chip class objects meant to allow flexible 
cost analysis of arbitrary chiplet based designs. The model is 
fully parameterized so users can define custom technologies 
and processes for their studies. This model is open source at 
https://github.com/nanocad-lab/cost_model_chiplets. 

Fig. 4 depicts the required input parameters for the cost 
model. Bonding pitch, assembly machine costs, assembly 
yields and other parameters are included in the assembly 
technology process. Assembly cost and yield are modeled to 
be dependent on the nature of bonding (e.g., solder reflow vs. 
die-to-wafer thermocompression bonding) and bump pitches 
which influence tool cost. The IO cell includes the additional 
area required to drive a signal over a longer distance between 
chiplets compared to a monolithic design as well as the 
additional energy per bit. IOs are only placed in regions which 
meet the reach requirement for the cell type. Total chiplet area 
is calculated as the larger of either core area plus IO cell area 
or the area required by bumps for signaling and power. The 
layer definition contains parameters such as cost per mm2 and 
defect density required to compute the cost and yield of dies. 
Yield is computed using the negative binomial yield model 
[16]. The wafer process contains reticle size and dicing 
information to improve the accuracy of the cost per die. We 
assume pre-bond known-good-die testing and ignore test cost. 
Our cost model currently does not incorporate IP, license, and 
board costs. 

 

 
Fig. 4.  Cost model overview. The model provides a wide 

range of parameters that influence cost. 
 

The negative binomial yield model used in this work uses 
parameters representative of advanced CMOS nodes. Most 
parameters are scaled down from their correspondent value for 
the 10nm node. For all options, the portion of area considered 
critical is 60%, the clustering factor parameter in the yield 
model is assumed to be equal to 2 and the stitching yield as 

0.5. A few of the parameters we used for yield and cost 
calculations that vary by process technology node are shown 
in Table 1. In Fig. 5, we show the portion of cost for each 
configuration that comes from the costs and yield impacts of 
the chiplet configuration. Cost of assembly and packaging 
configuration are important to consider for chiplet systems. 

 
Table 1.  Parameter values used to differentiate between 5nm 

and 7nm cost and yield for the chiplet-based cost model. 

 
 

 
Fig. 5.  Package cost breakdown (%). Bonding/packaging is 

for yield plus material cost not including substrate. 
 

 
Fig. 6.  Substrate cost trends for each configuration. 

 
Organic substrates are typically cheaper than silicon, but at 

the expense of having much larger bump pitch. We looked at 
an organic substrate with chiplets bonded simultaneously 
using a reflow style bonding and compared this to a silicon 
substrate with a much lower pitch using thermal compression 
bonding where each die is placed and bonded individually. We 

https://github.com/nanocad-lab/cost_model_chiplets
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compared switching from the 110um pitch organic substrate to 
the 10um pitch silicon substrate in Fig. 6 and Fig. 7. The 
silicon substrate cases are more expensive than organic. The 
cost of the silicon substrate is higher than the almost 
negligible cost of the organic substrate, but this is the primary 
difference between the cases. Fig. 6 shows that this case study 
is not pitch-bound as the cost of the organic substrate case 
remains the same for a smaller bump pitch and the cost of the 
silicon substrate case remains the same for a larger bump 
pitch. Silicon substrates with small bump pitch make more 
sense in cases that are pitch limited with a large number of 
IOs. 

 

 
Fig. 7.  Cost with bump pitches and substrates for 2.5D case. 

 
Performance Model 

A detailed, functionally correct and cycle approximate 
executable model of the system is used for cost-performance 
codesign (Fig. 3) and studied with representative workloads. 
The performance model has relevant parameter sensitivity to 
account for different chiplet configuration options (Fig. 2) i.e. 
latency and bandwidth between logic/memory in 2.5D vs. 3D 
and with D2D interfaces over UCIe. This work uses large 
sparse matrix-vector multiplication workloads distributed 
across the entire system measuring Giga floating-point 
operations per second (GFLOPS/s) in steady state as a 
performance metric. The system with multiple interconnected 
boards is simulated using a parallel discrete event simulator. 

 It may be noted that the cost and performance models are 
decoupled, and any other system performance model whose 
performance estimates can be sensitive to such configuration 
parameters can also be used. For instance, our model uses a 
3D SRAM performance model for 3D configuration 
(accounting for latency and bandwidth improvements) vs. 
non-3D configurations. 

System-level power estimation is done as a function of 
system parameters and the underlying components. This uses 
power estimates via characterization of individual function 
blocks within the components with EDA tools targeting 
relevant technology nodes. Additionally, variation in IO 
power as a function of system partitioning (Fig. 2) is also 
accounted for in system-level power. Hierarchical area 
estimation also follows a similar approach. 

Results and Discussion 
While the results and observations here correspond to a 

specific system architecture, our conclusions and methodology 
can be helpful for informing other chiplet system architecture 
configuration choices. 

Performance measurements in Figs. 8-13 correspond to 
executing large sparse matrix-vector multiplication 
(SPMV) distributed across various parameterized 
configurations of the system. In these figures, a tile is a unit 
of design containing several cores within a package (Fig. 1). 
More tiles mean a larger package which impacts package cost. 

Fig. 8 shows the normalized system performance for the 
different system configurations and package sizes. Fig. 9-13 
consider 5nm and 7nm variants with an iso-performance 
assumption. It is also interesting to note that the performance 
benefit of 3D stacking in the L3D case is mostly lost in the 
S3D case compared to the SoC case due to the increased 
signal distance in inter-chiplet communication. 

Fig. 9 shows normalized system power. Since we assume 
iso-performance for 7nm and 5nm, we do see a power benefit 
for 5nm. We do not observe any appreciable power difference 
between the chiplet configurations, but the options with more 
chiplets (2.5D and S3D) and so more interconnect power have 
slightly higher power than the options with fewer chiplets 
(SoC and L3D), matching our expectations. Note that power 
scales better for 5nm than for 7nm. 

Fig. 10 shows the normalized system cost. Here we see the 
impact of the system size on the preferred number of chiplets. 
The L3D case (2 stacked chiplets + HBM) is cheapest for the 
smallest 2-tile system while the S3D (5 total chiplets + HBM) 
is better for the larger 8-tile system. We also see the SoC (1 
chiplet + HBM) is already impacted by yield in the 2-tile case 
and is consistently the worst option for cost. 

In a power-constrained application, we care about how 
many operations can be executed on a power budget. Fig. 11 
shows the performance per Watt for our system. Note that 
L3D consistently outperforms SoC and S3D consistently 
outperforms 2.5D in the same technology due to the 
performance benefit of 3D stacking memory on compute. We 
also see all 5nm options are better than all 7nm options for the 
8-tile case due to the spike in power we see in Fig. 9. 

 

 
Fig. 8.  Normalized system performance. 
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Fig. 9.  Normalized system power. 

 

 
Fig. 10.  Normalized system cost 

 
If our application is cost constrained rather than power, we 

care about maximizing the operations we can get for a certain 
monetary budget. Fig. 12 shows the impact on performance 
per dollar. Here we see the 3D stacked cases behaving well 
due to their increased performance and we see a swap between 
the higher performing L3D case and the cheaper S3D case for 
the 8-tile package due to the much better yield in the S3D 
case. It is also worth noting that 5nm does not compare well to 
7nm in this study since it is more expensive, and we assumed 
iso-performance. 

If we want to optimize for all 3 metrics, then we can look 
at the performance per Watt per dollar. Fig. 13 shows that 
L3D is the best in terms of this metric for 2-tile and 4-tile 
systems, but S3D in 7nm is the best for the 8-tile system. This 
is largely the result of the performance per dollar we saw in 
Fig. 12, but it is interesting to note how the gap has closed 
between 5nm and 7nm with the inclusion of power. Again, we 
see 5nm get a noticeable edge due to the spike in power for 
7nm in the 8-tile case shown in Fig. 9. 

These measurements show how co-design with a target 
workload can lead to different conclusions dependent on size 
of system and choice of optimization target among cost, 
power, and performance. 

 

 
Fig. 11.  Normalized performance per Watt. 

 
 

 
Fig. 12.  Normalized performance per dollar. 

 
 

 
Fig. 13.  Normalized performance per Watt per dollar. 
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Conclusions 
Early cost, power, and performance co-optimization for 

chiplet systems is critical since changing the chiplet 
configuration gets more expensive later into design. Detailed 
system modeling can be used to allow an informed choice 
early in the design process. We provide insights on how doing 
this for a realistic system can steer 2.5D and 3D design 
decisions. Our cost model is open source and can be used 
together with any other detailed system performance model. 

Our results allow us to draw several conclusions: 
● Advanced packaging (silicon, small bump pitch) is 

not necessary in our system, but might become 
necessary if the inter-chiplet bandwidth or number of 
HBMs increases. 

● Normalized package cost and chipletization benefit 
increase with system size due to yield. 

● Small systems where chiplet yield is less of a driving 
factor favor fewer chiplets due to assembly cost. 

● 3D stacking improves performance over monolithic, 
but performance equalizes if we split to multiple 3D 
stacks to improve cost and yield. 

While our co-optimal design points are specific to system 
architecture, technology, and workload dynamics, the insights 
of our study highlight the benefits that performance and cost 
modeling for early stage chiplet design space exploration can 
offer. 
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