
Performance Modeling and Workload Analysis of Distributed
Large Language Model Training and Inference

Joyjit Kundu†∗, Wenzhe Guo†∗, Ali BanaGozar†∗, Udari De Alwis∗, Sourav Sengupta∗, Puneet Gupta‡ and
Arindam Mallik∗

∗Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium
‡Department of Electrical and Computer Engineering, University of California, Los Angeles

†{joyjit.kundu, wenzhe.guo}@imec.be, a.banagozar@tue.nl

Abstract
Aligning future system design with the ever-increasing

compute needs of large language models (LLMs) is undoubt-
edly an important problem in today’s world. Here, we propose
a general performance modeling methodology and workload
analysis of distributed LLM training and inference through
an analytical framework that accurately considers compute,
memory sub-system, network, and various parallelization
strategies (model parallel, data parallel, pipeline parallel, and
sequence parallel). We validate our performance predictions
with published data from literature and relevant industry
vendors (e.g., NVIDIA). For distributed training, we investigate
the memory footprint of LLMs for different activation re-
computation methods, dissect the key factors behind the
massive performance gain from A100 to B200 (∼ 35x speed-up
closely following NVIDIA’s scaling trend), and further run a
design space exploration at different technology nodes (12 nm
to 1 nm) to study the impact of logic, memory, and network
scaling on the performance. For inference, we analyze the
compute versus memory boundedness of different operations at
a matrix-multiply level for different GPU systems and further
explore the impact of DRAM memory technology scaling on
inference latency. Utilizing our modeling framework, we reveal
the evolution of performance bottlenecks for both LLM training
and inference with technology scaling, thus, providing insights
to design future systems for LLM training and inference.

1. Introduction & Background
Transformer architecture has emerged as one of the

most widely used neural network architectures in various
artificial intelligence (AI) applications domain. The whole
zoo of large language models (LLMs) (e.g., class of GPT
models and Llamma variants) with their ever-increasing
model size are examples of transformer architecture, playing
a dominant role in today’s natural language processing
and image classification [15]. Training a large language
model requires a huge amount of data and compute time,
resulting in significant carbon emissions along with an
estimated cost of tens of thousands to millions of dollars. For
instance, training a GPT-3 transformer model costs around
$10M [11, 33]. However, the cost in the long run can be
dominated by inference when the same model is deployed

†. These authors contributed equally to this work

to serve multiple users for a long period of time. Thus, it is
important to understand the impact of the trend in LLMs
and underlying system architecture on the performance
per total cost of operation (TCO) in the context of both
large-scale training and inference. Detailed analysis of the
performance per TCO would help us identify the pain points
and invest in required areas or components while designing
future compute systems or models.

1.1. Transformers
The decoder-based transformer architecture is quite

regular and each layer of it primarily consists of a multi-
head attention block (MHA) and a multi-layer perceptron
block (MLP) [32]. This structural regularity and almost static
nature of the data flow at a higher abstraction level allow
analytical modeling of the performance of LLMs at a data
center level [16]. The attention mechanism is at the heart
of the transformer architecture. The prediction accuracy of
LLMs depends on the sequence length or the context of the
model [30]. Unfortunately, the execution time and memory
complexity of attention grows quadratically with sequence
length [7]. An important challenge in the LLM community
is scaling the performance of transformer models with
long sequences. There are primarily three aspects that
determine the performance: the number of floating point
operations (FLOPs), memory accesses, and communication
over the network. For instance, the FlashAttention [6, 7]
work addresses this problem for LLM training by focusing
on the memory access to and from DRAM at the cost
of FLOPs. Similarly, the implementation of KV-cache is
crucial for scaling the performance of inference. However,
the performance bottleneck is not static and often shifts
with the evolution of LLMs, compute architectures, or
technology. A recent analysis suggests communication will
have a significant overhead (40-75%) in runtime as models
and hardware evolve [24]. Thus, a generic framework that
can expose different tradeoffs in the performance of LLM
training and inference workloads with a connection to the
technology is essential for hardware-software co-design.

1.2. Performance Bottlenecks
The primary operations in Transformer architecture

can be categorized into three groups or kernels: tensor
contractions (general matrix-matrix multiply – GEMM

1

ar
X

iv
:2

40
7.

14
64

5v
1

 [
cs

.A
R

]
 1

9
Ju

l 2
02

4

or matrix-vector multiply – GEMV), normalization (e.g.,
softmax, layer-norm), and element-wise operations (e.g.,
non-linearities, biases, and dropout) [11]. Among these,
GEMM or GEMV (depending on training or inference)
is the most critical operation that dictates the overall
performance of a transformer. The performance at a GEMM
level can be characterized by studying the balance between
pure computation and memory accesses. If the time taken
by an operation is dominated by the count of arithmetic
operations not the memory access time, it is categorized as
compute-bound. For memory-bound operations, the execu-
tion time is primarily determined by the memory accesses
while the time spent in actual computation is negligible. The
arithmetic intensity is a metric that shows the compute or
memory-boundedness of a kernel by capturing the number
of arithmetic operations per byte transferred to and from
the memory. Tensor contractions in distributed training
are generally compute intensive since they involve fat
GEMMs (m ≈ n ≈ k >> 1), characterized by matrices
that are either square or closer to square in shape due to
the substantial batch and sequence dimensions; however, in
the auto-regressive generation phase of inference, they are
mostly memory-bound since the inherent sequential nature
of token generation leads to skinny GEMMs -characterized
by matrices that are long rectangles in shape or GEMVs.
The other two types of operations are in general memory-
bound as well. Kernel-fusion is one of the techniques
commonly used to improve the arithmetic intensity of such
operations [1]. The above issues concern the performance at
a single accelerator level. The other important aspect of LLM
training or inference at scale is the data transfer through
the network. The communication overhead becomes quite
important for large-scale training and inference on advanced
multi-GPU systems when compute is relatively fast [1, 24].

1.3. Parallelization
Distributed training involves different parallelism strate-

gies: Data parallelism (DP), Tensor model parallelism (TP),
Pipeline parallelism, and Sequence parallelism (SP) [4, 14,
18]. In DP, each GPU processes a portion of the data
but shares the same model parameters to compute the
gradients locally. The gradients across the devices are
then reduced (all-reduce) to finally update the model
parameters synchronously. The memory footprint due to
DP at each GPU is dependent on the minibatch size (=
batch size/DP-degree), sequence length, model dimension,
model weights, gradients, and optimizer states. Tensor
model parallelism alleviates the memory requirement of
model related parameters. Essentially, TP partitions a tensor
operation across multiple devices (e.g., the model weight
matrix is split across rows or columns). Depending on the
partitioning, each device might end up having the partial
sums due to tensor contraction that need to be further
reduced before going to the next stage of the computation,
consequently causing network overhead. Here, the same
data is copied to all participating devices. Using Megatron-
LM’s TP parallelization strategy [28], which is explained in
Section 3.2, the communication is of the all-reduce type, and

the overhead is minimized. PP is a type of model parallelism
that involves distributing the layers across multiple devices.
Each device processes a set of layers and passes the
activations to the next device. In PP, the minibatch is
further divided into multiple microbatches that are passed
in a pipeline fashion. This approach can introduce idle
times, known as pipeline bubbles. This bubble time can be
reduced using techniques like interleaved pipeline schedules
as discussed in [28]. TP distributes the attention and MLP
blocks, but not the Dropout and Layer-norm following them.
Despite being computationally inexpensive, the Dropout
and Layer-norm contribute to a considerable amount of
activation memory. Sequence parallelism was proposed
to parallelize these blocks along the sequence dimension
to proportionally reduce their memory footprint without
incurring communication overhead. Since training is data
intensive, usually combinations of DP, TP, SP, and PP are
used to scale the performance across several hundreds or
thousands of nodes. While for inference the data is limited
and thus, most implementations involve only TP across a
few devices within a node. Of course, batched inference
with LLMs may require more devices to fit the model and
data into the device memory.

We consider all the above-discussed issues starting
from the characteristics of the workloads in terms of task
graphs, parallelization, mapping of that onto a system
architecture, and modeling the performance of every kernel
at each device and system level to derive key insights on
performance. Our main contributions in this paper are given
below:

• We construct a general framework to model and
analyze the performance of distributed LLM training
and inference workloads that thoroughly considers
the impacts of compute, memory sub-system, and
network communication.

• Upon extensive validation (GEMM, GEMV, training,
and inference) and performance analysis, we bring
in the insights behind the massive performance gain
achieved by NVIDIA from A100 to B200.

• We run design space exploration at different technol-
ogy nodes and for different DRAM technologies to
investigate the importance of compute vs memory.

• We analyze the impact of off-chip memory tech-
nology scaling and network on LLM training and
inference. Also, explore the GEMM level analysis of
memory and compute boundedness for inference.

2. Related Work, Trends and Gap areas
Numerous prior works [8, 9, 13, 21, 35, 36] focus on

design space exploration for conventional Deep Neural
Networks (DNNs). However, there are relatively few studies
in the LLM space [3, 16, 34, 37, 38]. In [21], the authors
propose an analytical model to assess the impact of dif-
ferent memory hierarchies on performance and energy
consumption for convolution kernels. However, the model
does not support end-to-end DNN performance modeling
and focuses only on optimizing a single layer. Ref. [35],

2

presents a DNN framework that can be simulated in a cycle-
level SoC simulator, which incorporates data transformation,
movement cost, and software framework overheads. In [13],
the authors propose a domain-specific genetic algorithm-
based method for efficient DNN mappings considering a
comprehensive map space including computation order,
tile sizes, and parallelization. The mapping proposed in [9],
further improved the DNN computation scheduling problem
by mapping the multiple scheduling problems into a single
constrained optimization problem that can be solved directly
without incurring the high cost of iterative scheduling. The
model proposed in [8], utilizes a gradient-decent based
algorithm to search the accelerator-cost function space in
order to determine the optimum mapping.

LLMs, nevertheless, have their own unique challenges
that are different from DNNs. To optimize hardware uti-
lization for LLM execution, different mapping strategies
for compute-bound training and memory-bound inference
are essential. AMPeD [16] is an analytical model for end-
to-end performance modeling of distributed transformer
training that explores different parallelization strategies,
tunes accelerator and system specifications. However, it
neglects the modeling of the memory subsystem, tech-
nology implications, and network behavior. In [34], the
authors emphasize on the communication network and
scale-out modeling for server grade architecture. However,
the authors do not study different mappings, architectural
organizations, and technologies. The analytical framework,
in [37], offers a comprehensive review of efficient LLM
inference and introduces a roofline-based analytical tool
for systematic analysis. This framework identifies hardware
bottlenecks and provides insights into memory and compute
requirements for each layer of LLMs. However, it focuses
on existing hardware and does not include customization
of components like bandwidth, memory, and compute.
Additionally, visibility into the GEMM operations within
a layer is still a work in progress. DeepFlow as proposed
in [3], integrates micro architecture generation, compute
graph transformation, device mapping, and performance
prediction engine. It adopts a gradient descent technique to
explore the design space with the knowledge of hardware
specifications. The model characterizes only the LSTM work-
loads and validates with the existing GPUs. In the paper [38],
the authors introduces a hardware evaluation framework for
LLM inference workloads. It is fast, accurate, and versatile,
allowing for detailed evaluation of various hardware designs.
The model breaks down GPU/TPU hardware to the systolic
array level, offering greater design flexibility. It includes an
automatic mapper for performance-optimal scheduling and
an area-based cost model for architectural decision-making.
However, it primarily focuses on inference and does not
address LLM training.

To tackle the challenges of end-to-end performance mod-
eling and workload analysis of LLM training and inference
workloads, we propose a general analytical methodology

or platform, Optimus†. We conduct performance scaling
analysis, explore the impact of logic and memory scaling
on performance, and perform design space exploration
at different semiconductor technology nodes to identify
optimized system architectures.

3. Methodology
We build on DeepFlow’s [3] strong foundation and

extend the framework extensively to model state-of-the-
art LLM workloads, and architectures like advanced GPUs,
TPUs, and future custom designs, enabling us to investigate
the interplay between software and hardware to expose per-
formance bottlenecks. DeepFlow is a cross-stack pathfind-
ing framework based on analytical performance modeling
that integrates technology parameters and system-level
architecture with workload characteristics like compute
graphs and parallelization strategies. At the core, it applies
a hierarchical roofline model with a memory-sub system
aware tiling to predict the performance of GEMMs. However,
DeepFlow is currently tailored to older machine learning
workloads, such as LSTMs, which can be reduced to a single
bulky GEMM operation. Additionally, the framework’s
evaluation and validation have been conducted solely on
old-generation GPU architectures, specifically P4 and V100.
Significant efforts are needed to construct the configuration
file for a new architecture as DeepFlow requires tedious
low-level technology parameter specifications to derive
important quantities like area per cell, energy per flip, etc.
This approach makes it difficult to model new-generation
commercial architectures, like NVIDIA GPUs, since the
technology details are generally not revealed.

3.1. Framework overview
Fig. 1 illustrates the high-level overview of our method-

ology. We start with the task graph of LLM training or

†. Optimus is an in-house proprietary platform to perform early design
space exploration of LLM workloads

Resource allocation

Technology
Parameters

Architecture template

uArch engine

Arch abstraction
layer

Performance
prediction engine

High-level
performance aspects
(Throughput, BW, …)

Distribution
parameters

LLM task graph LLM models

Parallelization
mapper

Time

Optimus

Figure 1: Overview of our performance modeling framework:
µArch engine generates a microarchitecture from the inputs.
The architecture abstraction layer constructs a high-level
representation of the underlying architecture. Given an
LLM workload, the framework builds a task graph and
parallelizes across multiple devices based on mapping. The
performance prediction engine predicts the execution time.

3

inference and map that onto the system architecture based
on the chosen parallelization strategy and mapping. We
adopt the optimized mapping strategy proposed in the
Megatron scheme [28]. At every device level for GEMMs
or GEMVs, we follow a hierarchical Roofline model based
on DeepFlow [3]. Different activation recomputation tech-
niques are also incorporated to minimize model memory
footprint, offering more optimization options as discussed
later.

On the system architecture side, we introduce an
intermediate architecture abstraction layer between the
microarchitecture engine and the performance prediction
engine. This abstraction layer extracts the high-level perfor-
mance drivers, such as compute throughput and memory
sub-system bandwidths, derived from the underlying mi-
croarchitecture engine. It can also directly receive a high-
level system description from external inputs, which avoids
tedious microarchicture parameter calibration and greatly
eases the process of constructing the system configuration
description for any new architectures without compromis-
ing prediction accuracy. This enables us to extend the
studied processors to include modern GPUs (e.g., A100,
H100, B100, and B200), TPUs, and custom architectures.

3.2. Mapping & Parallelization strategy
As discussed in Section 1.3, two primary parallelization

strategies for scaling DNN training are data parallelism and
model parallelism, with model parallelism further classified
into tensor, pipeline and sequence parallelism [14, 28]. We
adopt the model parallelization strategy outlined in the
Megatron paper [28] for training LLMs. This approach fo-
cuses on minimizing synchronization requirements between
processing devices by partitioning matrices effectively, thus
reducing the need for communication. We also model
the sequence parallelism proposed in [14] for distributing
Dropout and Layer-norm layers. For simplicity, we focus
on explaining the concept in relation to the MLP block of
a transformer layer, but as depicted in Figure 2, it applies
to the MHA block as well.

Similar to any other MLP, a GEMM operation between
the input matrix (I) and the weight matrix (Wi) is followed
by a non-linear function, such as GELU. To parallelize the
GEMM while minimizing synchronization needs, Wi can be
partitioned along its columns. This way, when the input is
multiplied by each partition, the non-linear function can be
applied independently without requiring synchronization.
However, the resulting output (O), which serves as the
input to the second MLP layer, is also partitioned along
its columns. Consequently, in the second MLP layer, the
corresponding weight matrix (Wo) should be divided along
its rows in the same proportion as the previous layer’s
output. This ensures that corresponding elements from
both matrices are on the same device and can be multiplied
to produce partial results. The partial results of the second
GEMM are then reduced across the processing devices
before being passed to the dropout layer. This approach
splits both GEMMs in the MLP block across processing
devices and requires only a single all-reduce operation in

Figure 2: The model parallelism strategy proposed in
Megatron-LM paper [28] effectively reduces the need for
synchronization and communication.

the forward pass per MLP block. It is worth mentioning
that in the MHA block, computation of Key, Query, and
Value for different attention heads are processed in parallel
across multiple devices since they are independent. The rest
follows a similar parallelization strategy as the MLP block.
Besides, we also adopt various PP schedules, including
GPipe [10], PipeDream-Flush [17], and Interleaved 1F1B
[18].

3.3. Activation recomputation

Training LLMs demands a large amount of memory. The
total required memory mainly consists of model parameters,
optimizer states, and activations. Since training dictates
that the activations in all layers need to be saved for
backward gradient computation, activations become the
critical bottleneck for scaling LLMs. We have implemented
two mainstream activation recomputation techniques to
alleviate the storage issue, namely full recomputation
[5] and selective recomputation [14]. Full recomputation
checkpoints LLM layers and recompute all the activations by
executing the forward pass again. Despite saving substantial
memory space, it doubles the forward pass time. The
required activation memory size, Afull, can be expressed as

Afull = NckpAinp + L/Nckp(Atot – Ainp) (1)

where Nckp is the number of checkpoints, Ainp is the input
activation size of a transformer layer, Atot is the total
activation size of a transformer layer, and L is the number
of layers.

Selective recomputation selects the memory-intensive
parts of LLM layers, such as softmax and dropout outputs,
which are not computationally expensive for recomputation.

4

The required activation memory size, Asel, can be expressed
as,

Asel = L(Atot – (Asm + Ado_mask + Ado_out)) (2)

where Asm is the size of the input activation to a Softmax
layer, Ado_mask is the mask size of the dropout layer after
the Softmax layer, Ado_out is the size of the output from
the Dropout layer.

3.4. Modeling All-to-All communication
Both training and inference use all-gather or all-reduce

communication collectives where all devices within a
node or the full system communicate with each other for
gathering or reducing data. The communication involves
fetching the data from the respective device memory and
sending it in a pipeline fashion to hide the latency. We
model ring-topology [25] and Double binary trees topology
for global communications [12, 27]. Ring all-reduce is a
bandwidth-optimal algorithm, suitable for data-intensive
communication when the impact of latency is negligible
[22]. The communication cost is determined by the slowest
connection between processors, independent of the number
of processors. The algorithm consists of two stages: scatter-
reduce and all gather. All the processors are arranged in
a logical ring. In the scatter-reduce stage, each processor
sends a chunk of data to its right neighbor and reduces
the data received from its left neighbor. Each processor
ends up with one chunk of the final result. An all-gather
operation is then performed across all the processors. The
data transfer communication time, Tr , can be expressed as,

Tr =
2K

N × BW
(N – 1) + 2 l (N – 1) (3)

where K is the data volume to be transferred, N is the num-
ber of processors, BW is the network bandwidth between
processors, l is the network latency. While during training
the latency term is negligible, for inference, its contribution
can be non-negligible due to low data volume. Thus, we
also model double binary trees-based communication that
is both bandwidth and latency optimal [27]. The revised
communication time is expressed as [31],

Tr =
2K

N × BW
(N – 1) + 2 l log2(N) (4)

The second term in the above reduces the impact of latency
and helps scale inference up to 8 GPUs. It is worth noting
that for inference, the data volume is generally low and the
network bandwidth is underutilized. We apply a utilization
factor to derive the actual bandwidth.

3.5. KV-cache modeling
Unlike training, GenAI inference processes one token at

a time (in the auto-regressive generation or decoding phase)
sequentially depending on previously generated tokens [26].
This sequential nature complicates the use of parallelization
techniques, such as flash-attention [6], that are effective
during training. As mentioned in Section 1.1, Keys and
Values are used to calculate the scaled dot-product attention

for each Query. During the decoding phase of an LLM, the
attention calculation for previous tokens is repeated at each
generation step.

KV-caching optimizes this process by focusing solely
on calculating attention for the new token while caching
the previously computed Keys and Values. The required
total KV-cache size is given by (2 × batch size × context ×
precision×#layers×embedding dimesnion). The first factor
of 2 is due to the Key and Value-matrices. Without KV-
cache the Keys and Values for all the previous tokens need
to be recomputed. The trade-off for this approach is the
increased memory and bandwidth required to store and
load the Key and Value states.

3.6. Design space exploration framework
Design Space Exploration (DSE) relies on connecting

technology parameters to an architecture template following
a system topology to create a micro-architecture that serves
as a blueprint for the underlying device. With a given budget
and allocation of hardware resources (i.e., area, power,
and chip perimeter) on the micro-architecture, the DSE
framework derives the essential coarse-grained quantities,
such as compute throughput, memory capacities, memory
bandwidths, and network bandwidths (both inter-node and
intra-node). The analytical performance model estimates
the performance (i.e., execution time) of a given workload
based on these high-level quantities that define the system.
Thus, the DSE framework solves a constrained optimization
problem. The search space contains all possible choices of
area, power, and perimeter fractions for each component in
the micro-architecture. The constraint is a given resource
budget. A gradient-descent search algorithm is employed to
find the optimal design point that minimizes the execution
time.

4. Validation
Extensive validations of the proposed methodology have

been conducted through experimental measurements and
comparison with published data across various platforms.
Below we present detailed results for GPUs.

4.1. Distributed GEMM and GEMV validation
The primitive component of LLM workloads is the

GEMM kernel. Thus, it is essential to validate its implemen-
tation in different scenarios. The training phase generally
involves fat GEMMs. Whereas, skinny GEMMs such as
GEMV, dominate computation in the inference phase due
to the autoregressive token generation phase. This section
covers the validation of both types.

Fat GEMM kernels are generally compute-bound kernels
due to high arithmetic intensity– they were intensively
validated on the old-generation GPUs in DeepFlow. We
extend the validation studies and verified its prediction
accuracy on advanced GPUs (A100s). On the other hand,
GEMV kernels are typically bounded by the memory
bandwidth in GPUs. Since GEMV kernels move small
volumes of data between memory levels, DRAM bandwidth

5

10 2 10 1

GPU time (ms)

10 2

10 1

Op
tim

us
 ti

m
e

(m
s)

Varied DRAM utilization
Constant DRAM utilization

Figure 3: Correlation between GPU runtime and our pre-
diction for GEMV validation on a single A100 GPU.

is usually underutilized. The utilization depends largely on
the matrix/vector dimension. In order to capture the effect of
the underutilized memory bandwidth, a memory bandwidth
utilization factor is introduced to adjust the roofline model-
based time calculation. Matrix/vector dimensions were
selected to cover a wide range of kernel types used in
the LLMs. The selected GEMV kernels are profiled on A100
GPUs, their memory utilization in multilevel memory as
well as compute utilization are recorded and clustering tech-
niques are used to quantify the DRAM utilization factors.
This process results in reducing the absolute percentage
error between the measurements and the prediction to 5.4%
(depicted in blue in Fig. 3). We also simplify the modeling
process by applying a constant DRAM utilization factor
to all the GEMV kernels, resulting in negligible errors for
large matrices (indicated by orange points). For smaller
sizes, the software overhead has a non-negligible impact.
Worth mentioning that we have extended our modeling
framework to accommodate TPUs and custom architectures.

4.2. LLM training validation for GPUs
Our framework provides training time predictions for

decoder-based transformer models, such as GPTs. Running
large-scale LLM training is not feasible for us, thus, we
have validated our framework and methodology against the
published data [14, 28]. We model the impact of various
parallelism strategies, including TP, DP, PP, and SP. Due to
high memory consumption by activations, different activa-
tion recomputation techniques are considered, including full
recomputation and selective recomputation. Table 1 shows
the comparisons between the reported training time per
batch for different systems of A100 GPUs (8 to 3072 GPUs)
and our predictions for different parallelism settings across
various GPT models (22 B - 1 T parameters models). Among
all the cases, the relative errors are mostly well below 10%.
It is worth noting that TP and SP are always implemented
within a node due to their higher communication overhead.
DP and PP are usually implemented across nodes. For
PP, the interleaved scheduling strategy assigns multiple
pipeline stages in each device and allows for a large number
of microbatches with a small memory footprint, which

minimizes the pipeline bubbles. Our framework accurately
models every aspect of different parallelisms and can also
produce accurate memory breakdown.

4.3. Inference validation for GPUs
Since inference involves skinny GEMM or GEMV, we

first validate the model by running them on A100 GPU as
discussed in Section 4.1. We validate the inference latencies
reported by NVIDIA in [19] with the predicted values using
our performance model for Llama-2-7b, Llama2-13b, and
Llama2-70b on A100-80GB and H100-SXM GPU systems
(Table 3). For each LLM model and a given GPU type, we
validate the strong scaling from 1 to 8 GPUs. Here, the
batch size is set to 1, and the prefill and generation involve
200 tokens. In all the cases, we match the actual reported
numbers within a relative error of 13%. The scaling in
performance from A100 to H100 is largely due to the change
in DRAM technology from HBM2e (bandwidth of 1.9 TBPs)
to HBM3 (bandwidth of 3.35 TBPs). Interesting to note that,
inference scales poorly with the number of GPUs, unlike
training due to the sequential nature of token generation
in the prediction phase that suffers from relatively less
compute requirement and is purely memory-bound. The
only anomaly we see is in the case of the Llama2-7B
parameter model on 8 H100 GPUs: while scaling from
4 to 8 GPUs, the predicted inference latency goes up while
NVIDIA reports otherwise. Although the gain reported by
NVIDIA is very modest, we see an opposite trend. This is
primarily due to the absence of a rigorous network simulator
in our performance model which could give a more realistic
utilization of the network communication bandwidth based
on the data volume.

5. Case studies: Training
Different aspects of LLM training workload analysis,

such as memory profiling, performance projection, and
bottleneck analysis, can be conducted through the Optimus
framework. In this section, we performed case studies to
profile the LLM training memory footprint, project GPU
performance scaling across multiple GPU generations (i.e.,
from A100 to the latest B200), and assess the performance
scaling of semiconductor technology node from 12 nm (N12)
to 1 nm (N1). Here, the technology node refers to a specific
generation of manufacturing process technology.

5.1. Memory dissection
One of the challenges in training billion to trillion-

parameter LLMs is memory overflow. Data parallelism and
model parallelism reduce memory proportionally but suffer
from fundamental scaling limitation. It is important to know
if an LLM can fit in the device memory of a system before
performing any other analysis. The choice of parallelism
mapping strategy largely depends on the resulting model
memory footprint. Memory profiling helps identify the
bottleneck, so that we can apply the corresponding memory
optimization techniques. We can also determine the best
parallelism mapping or training settings for an LLM model

6

TABLE 1: Validation of training time per batch for LLMs on systems of A100 GPUs with varying choices of parallelism
strategies for different GPT models.

Model # GPUs Batch size DP-TP-PP-SP Activation recomputation tref in s from [28] [14] tpred in s δE (%)
Only TP and PP
GPT-22B 8 4 1-8-8-1 full 1.4 1.4 2.1
GPT-175B 64 64 1-8-8-1 full 18.1 16.9 6.9
GPT-530B 280 280 1-8-35-1 full 49.1 46.8 4.6
GPT-1008B 512 512 1-8-64-1 full 94.4 87.9 6.9
TP, PP and SP
GPT-22B 8 4 1-8-8-8 selective 1.1 1.1 0.0
GPT-175B 64 64 1-8-8-8 selective 13.8 12.9 5.9
GPT-530B 280 280 1-8-35-8 selective 37.8 35.5 6.2
GPT-1008B 512 512 1-8-64-8 selective 71.5 69.1 3.4
DP, TP and PP
GPT-310B 1920 2160 15-8-16-1 full 37.6 34.1 9.5
GPT-530B 2520 2520 9-8-35-1 full 54.2 51.2 5.5
GPT-1008B 3072 3072 6-8-64-1 full 102.4 100.7 1.6

TABLE 2: Validation (with [19]) of inference latency on systems of A100 and H100 GPUs with varying degree of TP for
three different Llama models. Here, the batch size is set to 1, summarization and generation stages involve 200 tokens.

Model # GPUs TP tnvidia in ms (A100) tpred in ms (A100) δE (%) tnvidia in ms (H100) tpred in ms (H100) δE (%)
Llama2-70B 8 8 4735 4284 9.5 3202 3147 1.7
Llama2-70B 4 4 6403 6019 6.0 4116 3986 3.2
Llama2-70B 2 2 10500 10042 4.4 6267 6186 1.3
Llama2-13B 8 8 1693 1514 10.6 1201 1209 0.7
Llama2-13B 4 4 1894 1748 7.7 1431 1258 12.1
Llama2-13B 2 2 2499 2492 0.2 1717 1617 5.8
Llama2-13B 1 1 3884 4263 9.7 2396 2599 8.5
Llama2-7B 8 8 1187 1096 7.7 828 899 8.6
Llama2-7B 4 4 1280 1166 8.9 924 869 5.6
Llama2-7B 2 2 1544 1526 1.2 1143 1016 11.1
Llama2-7B 1 1 2190 2472 12.9 1440 1522 5.7

on a certain hardware system or the suitable hardware
system for desired settings.

As an example, we performed memory profiling on three
different GPT models in three activation recomputation
scenarios: no recomputation, selective recomputation, and
full recomputation. The training configurations are available
in TABLE 1. We consider mixed-precision training with
2 bytes. Fig. 4 shows the memory breakdown. We can
clearly observe the difference in memory footprint made
by the choice of the recomputation technique. With no
recomputation, an LLM can not generally fit in the device
memory unless a very small batch size or large degrees
of parallelism are applied, which largely degrades the
training efficiency. Selective recomputation exhibits a small
difference from the full recomputation and causes very little
computational overhead. The extra memory space can be
utilized for further optimizing training efficiency.

5.2. Projected GPU performance scaling

With the dire demand for accelerated processing of AI
workloads, NVIDIA GPUs have experienced many gener-
ations of improvement, providing massive compute and
scalability. Using our performance model, we project the
training time for the GPT3-175B model run on various
GPU systems, namely A100, H100, H200, and B200. Table 3
lists the configurations used for the projection. The inter-
node communication in the A100 cluster is through HDR

InfiniBand (IB) network (200 GB/s), while the nodes in the
more advanced GPU clusters are connected through the
NDR IB network (400 GB/s) or NVLink switch system (NVS).
Fig. 5 reveals a clear trend of performance scaling across
these generations. H200-NVS-L and B200-NVS-L used a
larger batch size of 4096 to demonstrate their large DRAM
capacity. Improved over A100, H100 triples the compute
throughput and introduces an FP8 transformer engine for
mixed-precision training. H100-NDR gives rise to around
4x speedup. An additional factor of 2 can be obtained by
using the NVLink Switch system. Due to a larger DRAM
capacity, H200 can accommodate an even larger batch size
and hence, further accelerate the training by 3x. The latest
breakthrough from NVIDIA, B200, enables FP4 processing
and further boosts the performance by 3x with NDR IB
and by 14x with NVS. B200 also features a larger DRAM
capacity and faster memory bandwidth. Using a larger batch
size leads to 12x more acceleration. Our projections from
A100 to H100 and from H100 to B200 are aligned with the
reported data from NVIDIA [2, 20].

The scaling of compute capacity and communication
speed from one generation to another is not at the same
rate. Through performance modeling, we found that the
LLM training configuration, such as the degrees of all the
parallelisms, can largely affect the scaling trend since it
affects the ratio between compute time and communication
time. However, in general, training configurations are not

7

TABLE 3: Training configurations of case studies for differ-
ent GPT models. Here, total #GPUs = DP × TP × PP.

Model Batch size Seq length Vocab size DP-TP-SP-PP
GPT-175B 1024/4096 2048 51200 128-8-8-8
GPT-7B 512 2048 51200 64-4-4-4

disclosed by NVIDIA. Through our performance model,
we can obtain all the details and gain insights into how
the significant performance gain is achieved and how
to optimally utilize the computing power and network
throughput of a GPU.

5.3. Technology node scaling
The Optimus framework creates a full-stack platform

linking semiconductor technology specifics with the perfor-
mance predictions of LLMs. This facilitates the analysis of
how advancements in low-level technology nodes impact
model performance, offering insights into performance bot-
tlenecks and future trends for better HW-SW codesign. This
case study showcases training performance evolution for
an LLM with the advancement in technology development
and projects the performance of future nodes. Here, we
consider the GPT-7B parameter model distributed across
1024 GPUs. The training configuration is displayed in
TABLE 3. Seven logic technology nodes were explored,
ranging from N12 to N1. With technology logic scaling,
transistors effectively get smaller, allowing for more of them
to fit onto a chip, thus, enhancing the compute density. We
followed the assumption of iso-performance scaling between
consecutive nodes for an optimistic prediction [3, 29], which
determined the scaling factors of 1.8 and 1.3 for area and
power, respectively. Four generations of HBM technology
(HBM2 (1TB/s), HBM2E (1.9TB/s), HBM3(2.6TB/s), and
HBM4 (projected 3.3TB/s)) and three types of inter-node IB
network technology (NDR-x8 (100 GB/s), XDR-x8 (200GB/s)
and GDR-x8 (400GB/s)) were considered. We apply the DSE
method to optimize the architecture at each technology
node based on the area and power budget. The scaling
results are shown in Fig. 6. The node scaling improves
the core throughput, cache capacity, and bandwidth. The

GPT 175B GPT 530B GPT 1T

No No NoSelective Selective Selective Full Full Full0

25

50

75

100

125

150

175

M
em

or
y

(G
B)

Optimizer state
Parameter
Activation

Figure 4: Memory breakdown for training GPT models. The
dash line indicates the NVIDIA A100 memory capacity, 80
GB. For each GPT model, three activation recomputation
methods are compared: no recomputation, selective recom-
putation, and full recomputation.

A10
0-H

DR

H10
0-N

DR

H10
0-N

VS

H20
0-N

VS-L

B20
0-N

DR

B20
0-N

VS

B20
0-N

VS-L
0

5

10

15

20

25

30

35

No
rm

al
ize

d
tim

e

Compute
Communication
Other

Figure 5: Training performance scaling across multiple GPU
generations for GPT-3 175B. Training times are normalized
against that of B200-NVS-L. The A100 cluster is connected
through HDR InfiniBand network, while the others are
configured with NDR infiniBand network or NVLink switch
system (NVS). L indicates a larger batch size. Other includes
weight update time + pipeline bubble time.

N12 N10 N7 N5 N3 N2 N1
Technology Node

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Ex

ec
ut

io
n

Ti
m

e
pe

r I
te

ra
tio

n
(s

) HBM2(1TBps)-Network(100GBps)
HBM2E(1.9TBps)-Network(100GBps)
HBM3(2.6TBps)-Network(100GBps)
HBM4(3.3TBps)-Network(100GBps)
HBM4(3.3TBps)-Network(200GBps)
HBM4(3.3TBps)-Network(400GBps)

Figure 6: Scaling technology node for different memory and
network types.

training time decreases drastically initially and then tends
to saturate at very advanced nodes beyond N5. During
training phase, transformer layers are generally compute
bound. However, when the compute throughput of the
device improves significantly with the scaling, these layers
start becoming bounded by device memory, like DRAM.
At this point, the node scaling hardly contributes to the
performance improvement. Fig. 7 shows the breakdown
of bound types in one attention layer. The impact of
memory boundedness becomes dominant gradually with
the scaling. Using more advanced HBM technology, such
as moving from HBM2 to HBM2E, leads to a significant
runtime reduction. Further improvement with HBM3/4 is
not observed because the model performance becomes
bounded by the network bandwidth. It is worth noting that
DeepFlow framework predicted that the model performance

8

N12 N10 N7 N5 N3 N2 N1
Technology Node

0

1

2

3

4

5

6

GE
M

M
 T

im
e

pe
r A

tte
nt

io
n

La
ye

r (
m

s)
Memory bound
Compute bound

(a) HBM2-NDR

N12 N10 N7 N5 N3 N2 N1
Technology Node

0

1

2

3

4

5

6

GE
M

M
 T

im
e

pe
r A

tte
nt

io
n

La
ye

r (
m

s)

Memory bound
Compute bound

(b) HBM3-NDR

N12 N10 N7 N5 N3 N2 N1
Technology Node

0

1

2

3

4

5

6

GE
M

M
 T

im
e

pe
r A

tte
nt

io
n

La
ye

r (
m

s)

Memory bound
Compute bound

(c) HBM4-NDR

Figure 7: GEMM time breakdown for a single transformer layer in terms of bound types for different HBM technologies:
(a) HBM2, (b) HBM3 and (c) HBM4. The GEMM times were extracted from the corresponding technology node scaling
experiments.

TABLE 4: Identification of performance bottlenecks at
different matrix multiply functions per transformer layer
in the summarization phase of inference. The data are
Llama2-13B model, single A100 and H100 systems with half
precision, B = 1, and summarization of 200 tokens.

GEMM-function A100 H100
t (µs) bound-type t (µs) bound-type

merged-head X.WK/Q/V= K,Q,V 82 compute 32 memory
single head Q.KT = R 3 memory 2 memory
single head softmax(R).V = Z 3 memory 2 memory
Z.W=O 42 compute 17 memory
O.WMLP1 = O1 216 compute 81 memory
O1.WMLP2 = O2 109 compute 42 memory

was bounded by L2 cache instead of compute or device
memory, which is not aligned with actual experiments [11]
[7].

Logic node scaling and memory technology advance-
ment reduce device kernel time. However, in distributed
training, the communication overhead between compute
nodes grows substantially at the same time due to paral-
lelism. The performance scaling is particularly constrained
by the slow inter-node network. Enhancing network band-
width from 100 GB/s to 400 GB/s markedly improves
training times. Pushing for faster networks has been the
focus of industries. For example, NVIDIA’s NVLink Switch
System has transformed inter-node networking to match
intra-node network performance, resulting in significant
performance gains.

6. Case studies: Inference
In this section, we primarily investigate the importance

of compute versus memory throughput on LLM inference.

6.1. Memory boundedness of inference
The autoregressive generation phase in inference is

typically DRAM bandwidth bound for both A100 and H100
GPUs even when batch size (B) > 1 (for half-precision).
However, the prefill or summarization phase can be compute
bound depending on the accelerator type, precision, batch

public

Fr
ac

tio
n

of
 G

EM
M

 ti
m

e/
la

ye
r (

m
s)

A100-HBM2e H100-HBM3

KV-cache
weights

B = 1 B = 16 B = 1 B = 16

Memory Bound Compute Bound

M
em

or
y

(G
B)

0

20

40

60

80

0

2

4

6

8

Figure 8: GEMM time breakdown per layer in terms of
bound types during the summarization phase of inference
for the batch size of 1 and 16. The generation phase is
completely memory bound. The inset shows the memory
capacities, required memory size for kv-cache and model
weights.

size, and the prompt length. In Table 4, we analyze the
performance bottleneck of all the GEMM kernels in the
summarization phase of inference using the Llama2-13B
model with half precision. We identify that on A100, the
following GEMMs, single head QKT = R and softmax(R)V
= Z are particularly DRAM memory bandwidth bound
due to the limited reuse of the bytes transferred from the
device memory. The other GEMMs are compute bound due
to their shape and dimensions. On H100, all the GEMMs
in both prefill and generation phases are DRAM-bound
(see Table 4). This implies that as the compute scales,
performance for inference becomes completely determined
by the memory technology. However, it is worth noting that
at low precision, the memory transaction volume decreases
and the compute throughput goes up, thus impacting the
arithmetic intensity of the GEMM– these options are being
exploited in NVIDIA GPUs. In Fig. 8, we show the GEMM
time breakdown for a single layer based on the compute
versus memory boundedness for two different batch sizes,
B = 1 and 16. On A100, when B=1, roughly 67% of the

9

time is spent on compute-bound GEMMs – this percentage
grows to 96% when B = 16. Whereas, for H100, the compute
dominated time fraction reduces to zero when B = 1, but
grows to 85% when B = 16. Larger batch sizes, thus, improve
inference throughput but at the cost of latency. However,
the growth of latency with B is rather modest. The inset
shows the memory footprint of the KV-cache and the model
weights for the Llama2-13B model when B = 1 and 16.

6.2. Memory technology scaling
Since the performance of inference is primarily bound

by off-chip memory, we investigate the impact of DRAM
memory technology scaling on the inference latency for
multi-GPU systems using our performance model. For this
case study, we again consider the Llama2-13B parameter
model (kv-cache and weights fit into GPU’s device memory),
batch size = 1, prefill and generation of 200 tokens. We
keep the compute fixed at the 7 nm technology node (A100)
and vary the DRAM technology from GDR6 (bandwidth
= 600GB/s) to HBM3e (bandwidth = 4.8TB/s). Further,
we consider a futuristic memory technology, HBMX with
the peak bandwidth of 6.8 TB/s. For all these cases, the
network is considered as NVLink-Gen3 (NV3). Lastly, we
also consider the case of A100-HBMX GPUs connected by
NVLink-Gen4 (NV4) interconnect. The results for 2-GPU
and 8-GPU systems are presented in Fig. 9. We see that
up to HBM3, the performance almost scales linearly with
the DRAM bandwidth and it slows down from HBM3 to
HBM3e. Beyond that, no such performance gain in memory
time is observed since the DRAM bandwidth surpasses
the last level cache bandwidth and the problem starts
to become L2-bound. Further speed-up can be obtained
by scaling the on-chip memory bandwidth and capacity
or the intra-node network. While changing the network
from NVLink-Gen3 (NV3) to NVLink-Gen4 (NV4) a modest
gain in communication ∼ 12% is observed. The horizontal
dashed lines correspond to the latency of 2xH100-HBM3e
and 8xH100-HBM3e systems as references. Note that at
HBM3e, H100 system is slightly faster than the projected
A100-HBM3e system– that’s primarily due to the faster
on-chip memory (no difference in DRAM technology) and
faster network (NV4). It is also worth noting that although
the compute throughput of H100 (5 nm) for half-precision is
989.4 TFLOPS, more than 3x of A100’s compute throughput,
it does not help improve inference performance further,
implying that in principle, one can use an older technology
node with the same memory technology without degrading
the performance at the same precision. Another important
aspect while running inference on a 4 or 8-GPU system, is
the network communication overhead. We identify that for
8 GPUs, communication time is roughly 1.6x of memory
time (for Llama2-13B). Solutions like optical networks can
really alleviate this communication bottleneck [23].

7. Conclusion
In this work, we analyze LLM training and inference

workloads within an analytical performance modeling

framework. We describe the modeling approach, extensively
validate it with published data, and analyze different test
cases. In particular, we investigate the impact of compute
and memory technology scaling on the performance of
LLM training and inference. At a single device level, the
performance model is based on a hierarchical roofline
model, and the communication across multiple devices (or
nodes) is derived using the Megatron-LM-like mapping.
This combination leads to remarkably accurate performance
predictions at scale both for training and inference. Further
improvements can be made with a first principle approach
of determining realistic memory bandwidth utilization for
memory-bound problems like, inference and by complement-
ing it with a network simulator to incorporate the impact
of network traffic and congestion. Our future investigation
includes evaluating future compute system architectures
and technologies for LLM training and inference, integrating
a cost and an energy model into the current performance
modeling framework, and performing complete performance
per TCO analysis.

References

[1] R. Y. Aminabadi, S. Rajbhandari, A. A. Awan, C. Li, D. Li, E. Zheng,
O. Ruwase, S. Smith, M. Zhang, J. Rasley et al., “Deepspeed-inference:
enabling efficient inference of transformer models at unprecedented
scale,” in SC22: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE, 2022, pp. 1–15.

[2] M. Andersch, G. Palmer, R. Krashinsky, N. Stam, V. Mehta,
G. Brito, and S. Ramaswamy, “Nvidia hopper architecture in-depth,”
NVIDIA Technical Blog, March 2022. [Online]. Available: https:
//developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

[3] N. Ardalani, S. Pal, and P. Gupta, “Deepflow: A cross-stack pathfinding
framework for distributed ai systems,” ACM Transactions on Design
Automation of Electronic Systems, vol. 29, no. 2, pp. 1–20, 2024.

[4] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis,” ACM Computing
Surveys (CSUR), vol. 52, no. 4, pp. 1–43, 2019.

[5] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with
sublinear memory cost,” arXiv preprint arXiv:1604.06174, 2016.

[6] T. Dao, “Flashattention-2: Faster attention with better parallelism
and work partitioning,” arXiv preprint arXiv:2307.08691, 2023.

[7] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention:
Fast and memory-efficient exact attention with io-awareness,” in Pro-
ceedings of the 35th Neural Information Processing Systems Conference
(NeurIPS), 2022.

[8] K. Hegde, P.-A. Tsai, S. Huang, V. Chandra, A. Parashar, and C. W.
Fletcher, “Mind mappings: enabling efficient algorithm-accelerator
mapping space search,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2021, pp. 943–958.

[9] Q. Huang, M. Kang, G. Dinh, T. Norell, A. Kalaiah, J. Demmel,
J. Wawrzynek, and Y. S. Shao, “Cosa: Scheduling by constrained
optimization for spatial accelerators,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2021, pp. 554–566.

[10] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant
neural networks using pipeline parallelism,” Advances in neural
information processing systems, vol. 32, 2019.

10

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

GDR6-NV3 HBM2-NV3 HBM2e-NV3 HBM3-NV3 HBM3e-NV3 HBMX-NV3 HBMX-NV4
2 G

PU
s

2 G
PU

s

2 G
PU

s

2 G
PU

s

2 G
PU

s

2 G
PU

s

2 G
PU

s

8 G
PU

s

8 G
PU

s

8 G
PU

s

8 G
PU

s

8 G
PU

s

8 G
PU

s

8 G
PU

s
0

1

2

3

4

5
La

te
nc

y
(s

)
Memory
Communication

Figure 9: Impact of memory technology scaling on inference latency as predicted by the performance model. The data
are for the Llama2-13B parameter model, batch size = 1, prefill and generation of 200 tokens. The on-chip specifications
are same as A100. The horizontal dashed lines correspond to 2xH100-HBM3 and 8xH100-80GB-HBM3 connected via
NVLink-Gen4.

[11] A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler, “Data
movement is all you need: A case study on optimizing transformers,”
Proceedings of Machine Learning and Systems, vol. 3, pp. 711–732,
2021.

[12] S. Jeaugey, “Massively scale your deep learning training with nccl
2.4,” 2019. [Online]. Available: https://developer.nvidia.com/blog/
massively-scale-deep-learning-training-nccl-2-4/.

[13] S.-C. Kao and T. Krishna, “Gamma: Automating the hw mapping of
dnn models on accelerators via genetic algorithm,” in Proceedings of
the 39th International Conference on Computer-Aided Design, 2020, pp.
1–9.

[14] V. A. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch,
M. Shoeybi, and B. Catanzaro, “Reducing activation recomputation
in large transformer models,” Proceedings of Machine Learning and
Systems, vol. 5, 2023.

[15] Y. Liu, H. He, T. Han, X. Zhang, M. Liu, J. Tian, Y. Zhang, J. Wang,
X. Gao, T. Zhong et al., “Understanding llms: A comprehensive
overview from training to inference,” arXiv preprint arXiv:2401.02038,
2024.

[16] D. Moolchandani, J. Kundu, F. Ruelens, P. Vrancx, T. Evenblij, and
M. Perumkunnil, “Amped: An analytical model for performance
in distributed training of transformers,” in 2023 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2023, pp. 306–315.

[17] D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia,
“Memory-efficient pipeline-parallel dnn training,” in International
Conference on Machine Learning. PMLR, 2021, pp. 7937–7947.

[18] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro
et al., “Efficient large-scale language model training on gpu clusters
using megatron-lm,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2021, pp. 1–15.

[19] NVIDIA, “Inference performance: Llama-2 results,” 2019. [On-
line]. Available: https://docs.nvidia.com/nemo-framework/user-guide/
latest/llms/llama/performance.html.

[20] NVIDIA, “DGX B200,” 2024. [Online]. Available: https://www.nvidia.
com/en-us/data-center/dgx-b200/.

[21] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop:
A systematic approach to dnn accelerator evaluation,” in 2019 IEEE
international symposium on performance analysis of systems and
software (ISPASS). IEEE, 2019, pp. 304–315.

[22] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algorithms
for clusters of workstations,” Journal of Parallel and Distributed
Computing, vol. 69, no. 2, pp. 117–124, 2009.

[23] A. Patel, D. Biswas, J. Kundu, Y. Ban, N. Pantano, A. Mallik,
J. Ryckaert, and J. Myers, “Accelerating large language model training
with in-package optical links for scale-out systems,” 2024 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), 2024.

[24] S. Pati, S. Aga, M. Islam, N. Jayasena, and M. D. Sinclair, “Tale of two
cs: Computation vs. communication scaling for future transformers on
future hardware,” in 2023 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2023, pp. 140–153.

[25] P. Pitch and X. Yuan, “Bandwidth optimal all-reduce algorithms
for clusters of workstations,” Journal of Parallel and Distributed
Computing, vol. 69 (2), 2009.

[26] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, J. Heek,
K. Xiao, S. Agrawal, and J. Dean, “Efficiently scaling transformer
inference,” Proceedings of Machine Learning and Systems, vol. 5, 2023.

[27] P. Sanders, J. Speck, and J. L. Träff, “Two-tree algorithms for full
bandwidth broadcast, reduction and scan,” Parallel Computing, vol. 35,
no. 12, pp. 581–594, 2009.

[28] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language mod-
els using model parallelism,” arXiv preprint arXiv:1909.08053, 2019.

[29] A. Stillmaker and B. Baas, “Scaling equations for the accurate
prediction of cmos device performance from 180 nm to 7 nm,”
Integration, vol. 58, pp. 74–81, 2017.

[30] Y. Tay, M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao,
L. Yang, S. Ruder, and D. Metzler, “Long range arena: A benchmark
for efficient transformers,” arXiv preprint arXiv:2011.04006, 2020.

11

https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/.
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/.
https://docs.nvidia.com/nemo-framework/user-guide/latest/llms/llama/performance.html.
https://docs.nvidia.com/nemo-framework/user-guide/latest/llms/llama/performance.html.
https://www.nvidia.com/en-us/data-center/dgx-b200/.
https://www.nvidia.com/en-us/data-center/dgx-b200/.

[31] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in mpich,” The International Journal of
High Performance Computing Applications, vol. 19, no. 1, pp. 49–66,
2005.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[33] K. Wiggers, “Openai’s massive gpt-3 model is impressive, but size
isn’t everything,” 2020. [Online]. Available: https://venturebeat.com/
2020/06/01/ai-machine-learning-openai-gpt-3-size-isnt-everything/.

[34] W. Won, T. Heo, S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna,
“Astra-sim2. 0: Modeling hierarchical networks and disaggregated
systems for large-model training at scale,” in 2023 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2023, pp. 283–294.

[35] S. Xi, Y. Yao, K. Bhardwaj, P. Whatmough, G.-Y. Wei, and D. Brooks,
“Smaug: End-to-end full-stack simulation infrastructure for deep

learning workloads,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 17, no. 4, pp. 1–26, 2020.

[36] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,
H. Ha, P. Raina et al., “Interstellar: Using halide’s scheduling language
to analyze dnn accelerators,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 369–383.

[37] Z. Yuan, Y. Shang, Y. Zhou, Z. Dong, C. Xue, B. Wu, Z. Li, Q. Gu,
Y. J. Lee, Y. Yan et al., “Llm inference unveiled: Survey and roofline
model insights,” arXiv preprint arXiv:2402.16363, 2024.

[38] H. Zhang, A. Ning, R. Prabhakar, and D. Wentzlaff, “A hardware
evaluation framework for large language model inference,” arXiv
preprint arXiv:2312.03134, 2023.

12

https://venturebeat.com/2020/06/01/ ai-machine-learning-openai-gpt-3-size-isnt-everything/.
https://venturebeat.com/2020/06/01/ ai-machine-learning-openai-gpt-3-size-isnt-everything/.

	Introduction & Background
	Transformers
	Performance Bottlenecks
	Parallelization

	Related Work, Trends and Gap areas
	Methodology
	Framework overview
	Mapping & Parallelization strategy
	Activation recomputation
	Modeling All-to-All communication
	KV-cache modeling
	Design space exploration framework

	Validation
	Distributed GEMM and GEMV validation
	LLM training validation for GPUs
	Inference validation for GPUs

	Case studies: Training
	Memory dissection
	Projected GPU performance scaling
	Technology node scaling

	Case studies: Inference
	Memory boundedness of inference
	Memory technology scaling

	Conclusion
	References

