
4214 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

SCIMITAR: Stochastic Computing In-Memory
In-Situ Tracking ARchitecture for

Event-Based Cameras
Wojciech Romaszkan , Jiyue Yang , Alexander Graening , Graduate Student Member, IEEE,

Vinod K. Jacob , Jishnu Sen , Sudhakar Pamarti , Senior Member, IEEE, and Puneet Gupta , Fellow, IEEE

Abstract—Event-based cameras offer low latency and high-
dynamic range imaging data in a sparse format that is well-suited
for high-speed object tracking. Processing this sparse data in the
same way as traditional camera data requires a great deal of
unnecessary computation, making it difficult to take advantage
of the high-effective frame rate for real-time processing. In
this work, we propose an accelerator for high-speed object
tracking on event-based camera data. SCIMITAR combines
digital in-memory stochastic computing, in-situ stochastic stream
generation, and multiple optimizations for utilizing input sparsity.
SCIMITAR provides unparalleled performance with latency and
energy that scale with sparsity. We demonstrate SCIMITAR
performance on an object tracking application using circuit-
level simulations of custom-designed compute-in-memory (CIM)
macros and digital circuits. We achieve a frame processing
rate of 26k frames/s with 100 regions-of-interest per frame and
equivalent or better than state-of-the-art tracking accuracy. The
accelerator achieves a peak throughput of 71 TOP/S and energy
efficiency of 733 to 1702 TOP/S/W demonstrated on a range of
event-based vision datasets, which is 5× higher than other CIM
solutions.

Index Terms—Approximate computing, computer vision, gabor
filters, in-memory computing, neuromorphic cameras, object
tracking, stochastic computing, systems architecture.

I. INTRODUCTION

EVENT-BASED cameras [1] transmit information about
brightness changes as an asynchronous event stream.

The characteristics of these cameras make them preferable to
frame-based cameras for applications, such as object track-
ing [1], [2].

Event-based cameras generate low latency, high-data-rate
outputs that enable tracking high-velocity objects without the
motion blur that plagues conventional cameras [3]. However,
general-purpose processing architectures cannot deal with this
low latency and utilize the sparsity presented by this data,
making a strong case for custom accelerators for event-based
data [4], [5].

Manuscript received 12 August 2024; accepted 13 August 2024. Date of
current version 6 November 2024. This work is based on research funded by
Northrup Grumman and the DARPA FRANC/ERI-DA program. This article
was presented at the International Conference on Hardware/Software Codesign
and System Synthesis (CODES + ISSS) 2024 and appeared as part of the
ESWEEK-TCAD Special Issue. This article was recommended by Associate
Editor S. Dailey. (Corresponding author: Alexander Graening.)

The authors are with the Department of Electrical and Computer
Engineering, University of California, Los Angeles, CA 90095 USA (e-mail:
wromaszkan@ucla.edu; jyang669@ucla.edu; agraening@ucla.edu; jvinod@
ucla.edu; jishnu@ucla.edu; spamarti@ee.ucla.edu; puneetg@ucla.edu).

Digital Object Identifier 10.1109/TCAD.2024.3448227

To push the performance of event-based object tracking,
we propose SCIMITAR: stochastic computing (SC) in-
memory in-situ tracking architecture for event-based cameras.
SC [6], [7], [8] uses logic gates as basic compute units along
with several optimizations to achieve massive parallelism and
extremely high efficiency for sparse data. Compute-in-memory
(CIM) [9], [10], [11] embeds computation inside the memory
to reduce data movement and significantly improve energy
efficiency. SCIMITAR combines the benefits of SC and CIM by
using compact and efficient in-situ stochastic number generators
(SNGs) in the memory to overcome the difficulty of converting
binary to stochastic numbers. Although prior work has proposed
stochastic CIM (SCIM) by storing preconverted stochastic
numbers, it requires spatial unrolling of SC streams, which can
lead to a large chip area [10]. We show, through the use of
analytical modeling and detailed simulations, that SCIM with
in-situ SNG can deliver unprecedented energy efficiency for
processing event-based data through combined innovations in
microarchitecture and circuit design. Our contributions are as
follows: 1) we demonstrate that a tracking pipeline with event-
based cameras based on low-bitwidth Gabor-filter can achieve
state-of-the-art accuracy; 2) the first accelerator architecture for
event-based object detection and tracking using scalable in-situ
SCIM; 3) scalable in-situ SCIM processing with performance
5× higher than state-of-the-art; 4) a set of microarchitecture
techniques, including channel load skipping, zero detection,
and column maximum tracking, co-designed with the SCIM, to
support input sparsity (1.54× energy-efficiency improvement),
coupled with dynamic early termination (ET) scheme (62.8%
latency and energy reduction); and 5) 733 to 1702 TOP/S/W for
sparse inputs demonstrated on a range of event-based datasets.

II. MOTIVATION

A. Event-Based Cameras

Event-based cameras are often referred to as neuromorphic
since their design and data format were inspired by the human
eye [1]. The biological retina produces spikes as individual
cells sense changes in intensity. Similarly, event-based cameras
only transmit pulses, or events, when the brightness of a
given pixel changes. The output from such a camera is a
stream of positive and negative events depending on the
polarity of the change. For a stationary camera, moving
objects will cause events, but background objects will not,
thus highlighting the most critical information in the scene

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UCLA Library. Downloaded on November 22,2024 at 22:36:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0906-7079
https://orcid.org/0000-0002-6328-7032
https://orcid.org/0009-0008-2150-3738
https://orcid.org/0000-0001-6005-8165
https://orcid.org/0009-0008-1560-310X
https://orcid.org/0000-0003-1457-7508
https://orcid.org/0000-0002-6188-1134

ROMASZKAN et al.: SCIMITAR: SC IN-MEMORY IN-SITU TRACKING ARchitecture FOR EVENT-BASED CAMERAS 4215

Fig. 1. Spinning marker. This image shows data accumulated over a 1-ms
interval, generated from tossing a marker in the air in front of a cluttered
background, which is filtered out by the camera. The white events indicate
an increase, and the black ones indicate a decrease in brightness.

for applications, such as tracking [1], [12], [13]. Fig. 1 shows
how moving objects appear while the background disappears.
If the event-based camera is moving, it will highlight the
edges of objects, which can be useful for applications, such as
localization [1], [14], [15]. Advantages of event-based cam-
eras include the following.

1) Sparse Data Output: Only changing pixels transmit
events, significantly reducing bandwidth compared to
transmitting the entire frame [1].

2) Fast Response to Changes: Information about changing
pixels is transmitted immediately since there is no
concept of frame rate. Pixel latency varies from 3 to 120
µs. [1], [16].

3) High-Dynamic Range: Pixels operate independently and
respond to changes in the log of intensity, so event-
based cameras can have dynamic range on the order
of 130-140 dB compared to 60 dB for conventional
cameras [1], [16], [17].

4) Very High-Temporal Resolution: Existing event-based
cameras support between 1 and 1200 mega-events per
second (MEPS) [1], [16], providing useful information
comparable to > 10,000 frames/s (fps) on a frame-based
camera which is typically 30-120 fps.

B. Event-Based Data Processing

1) Background: Data from an event camera typically con-
sists of a string of x-location, y-location, polarity, and
sometimes timestamp for each event referred to as address-
event-representation (AER). Given this data format, we must
determine the best way of processing such information to
guide our architecture choice. Most approaches fit into two
groups [1]. First are the algorithms that process individual
events [4], [18]. Those event-based methods update their state
on every incoming event, guaranteeing minimum latency while
avoiding the processing of irrelevant data. The second type of
approach processes events in groups [3], [19]. These groups
are typically sparse, reconstructed frames, so we refer to those
algorithms as frame-based. The frame format makes it possible
to employ well-established computer vision (CV) algorithms
that are difficult to apply to data event-by-event in AER.

The required compute decreases if we process regions-of-
interest (ROIs) [20], [21], [22] or parts of the field of view
where we expect objects to be instead of processing the entire
frame. For frame-based processing, using ROIs allows us to
ignore large parts of the frame while still being able to harness

Fig. 2. Analytical model parameters for frame-based (top) and event-based
(bottom) processing.

TABLE I
ANALYTICAL MODEL METRICS

conventional CV methods. ROI detection, or region proposal,
requires less energy and is faster than convolution [23], [24].
Hence, we assume its use in all further considerations for our
architecture.

At first glance, an event-based method seems like it should
be more efficient than a frame-based method due to mini-
mizing computations, but this does not account for memory
access requirements, so we conducted the following analysis
that shows when frame reconstruction is better.

We start with a few assumptions. In one iteration, we
process C ROIs of size R × R containing M events. W and
H are the frame width and height and generally R << W, H.
We divide the duration t of data collection into D bins of
events. We use N spatiotemporal filters of the size K ×K ×D,
convolved with the image data. The maximum output of each
filter is recorded and used for tracking. Section II-C describes
our assumed algorithm. We assume the computational cost
of selecting ROIs is negligible as a tracking byproduct. All
parameters of our model are shown in Fig. 2.

We consider the performance metrics in Table I. For sim-
plicity, we assume all memory accesses are of the same size.
For both cases, the number of weight accesses equals filter
size (KKD) times the number of filters (N).

We only need 2M input accesses for event-based
processing - one write and read per event. However, assuming
that events are processed sequentially, many outputs would
need to be updated for each input, leading to M event updates
of KK results for N filters.

For frame-based processing, we need M event writes, and
C ROI reads of size RRD on the input side. For outputs, if the
convolution is completely unrolled spatially, all maxima per

Authorized licensed use limited to: UCLA Library. Downloaded on November 22,2024 at 22:36:08 UTC from IEEE Xplore. Restrictions apply.

4216 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

Fig. 3. Input (top) and output (middle) memory accesses along with MAC
count (bottom) for varying event counts (left) and ROI counts (right).

ROI can be determined at the same time, requiring N output
writes per ROI (CN total).

We measure the required computation in multiply-
accumulate (MAC) operations. We convolve M events with N
filters of size K × K for event-based processing. For frame-
based, C ROIs of size R × R × D are convolved with N
filters of size K × K × D. Note that this does not account for
optimizations that may be possible in some specific cases.

We assume a R = 64 ROI size, with D = 7 time
step channels. Filters are N = 32, K = 9, and D = 7
pregenerated spatiotemporal filters. These parameters were
chosen in accordance with Section II-C.

Fig. 3 (left) shows how memory access and MAC counts
vary with event count for event-based processing and frame-
based with 100 and 1000 ROIs. At a low-event count,
event-based processing requires significantly fewer input
accesses and less computation, but that advantage is quickly
lost when the event count grows. At the 500k event mark,
event-based compute and input accesses are comparable to a
frame-based version with 100 ROIs. More importantly, event-
based processing requires significantly more output accesses
than frame-based processing.

We then compared the results for a fixed event count (M =
1000) but a varying ROI count and two different sizes (R =
64 and R = 32). Results are shown in Fig. 3 (right). If the
number of ROIs is kept low, frame-based processing does not
significantly increase the computation.

As this analysis shows that the benefits of using an event-
based method would be uncertain, we have chosen to use
frame-based processing for the following reasons. We can
use established CV algorithms. We have substantially smaller
output memory requirements due to ROI use and the option
to max pool the outputs (discussed in Section III-C). We
can reduce computations due to input noise with ET (also
discussed in Section III-C). Finally, the structured frame data
is much more favorable to parallel processing.

C. Example Tracking Pipeline

While the goal of this work is not to drive algorithmic
improvements, it is necessary to demonstrate that the com-
putational model described above is indeed representative

Fig. 4. Object tracking pipeline with the percentage of GPU runtime marked.
Note that we did not include event accumulation in the total runtime.

of a tracking application, as the insights from this model
drive our architecture design. To do that, we implemented a
complete filter-based object-tracking pipeline in Python using
well-established and widely used algorithms. Spatiotemporal
Gabor filters have been used for tracking in several prior
works [25], [26]. They consist of sinusoids multiplied by a
Gaussian function. In our case, we use a 3-D Gabor filter
where different rotation angles correspond to different kinds
of motion. A block diagram of the pipeline is in Fig. 4. We
first accumulate events into frames given an accumulation
interval. We split these frames into 64 × 64 pixel ROIs.
We choose ROIs by selecting all regions containing existing
tracked objects while taking the estimated velocities of those
objects into account to include the estimated future location
of the objects. Every 30 frames we process the full frame
to detect new objects. We use 3-D filters with 8 different
rotations in the x–y plane corresponding to the orientation
of the direction of motion and 4 different tilts in the time
dimension that correspond to different speeds for a total of
32 different filters. Our filters have seven time channels,
2 ms each, so we use the most recent 14-ms period to
construct each ROI. Our filters are 9 × 9 × 7. To eliminate
inaccuracies due to zero-padding when processing adjacent
ROIs, we consider the center 56 × 56 pixels of the output
valid and overlap the ROIs by 8 pixels for full coverage.
We then convolve the filters over them. The resulting output
values for each filter are thresholded and then clustered
using the DBSCAN algorithm [27]. We generate bounding
boxes for each cluster and fuse the bounding boxes into a
single set of boxes per frame, using the Weighted Boxes
Fusion algorithm [28]. We pass these fused bounding boxes
to the Norfair tracking algorithm. We use well-established
algorithms since we do not want to tie down our architecture to
insufficiently proven methods. We also measured the execution
time of each part of the pipeline using a CPU (Intel Xeon
E5-2695) and a GPU (NVIDIA GeForce RTX 2080 Ti, 27
TOPS peak performance). As we are considering a stationary-
sensor application, this likely more compute than would be
available for mobile, embedded, or near-sensor processing, but
the general conclusions should be broadly applicable.

As shown in Fig. 4, most of the runtime is consumed
by the convolution of the filters, so accelerating this stage
of the pipeline will have the most impact on the overall
tracking speed. Furthermore, the clustering step, which utilizes
DBSCAN, has O(n2) complexity. Using our convolution-
based filtering beforehand reduces the number of candidate
points by a factor of 6 in the Birds dataset described below.
This reduction gives a 36 × speedup compared to simply
clustering the raw events. Our pipeline achieved 10 fps (12

Authorized licensed use limited to: UCLA Library. Downloaded on November 22,2024 at 22:36:08 UTC from IEEE Xplore. Restrictions apply.

ROMASZKAN et al.: SCIMITAR: SC IN-MEMORY IN-SITU TRACKING ARchitecture FOR EVENT-BASED CAMERAS 4217

TABLE II
TRACKING ACCURACY RESULTS OF THE PIPELINE ON THE BIRDS

DATASET WITH VARIOUS FILTER PRECISION

TABLE III
TRACKING ACCURACY RESULTS OF THE PIPELINE ON THE BIRDS

DATASET WITH VARIOUS EFFECTIVE FRAME RATES. LOWER-FRAME

RATES SKIP TIME STEPS IN THE EVENT DATA

for convolutions only) on the CPU and 36 fps (53 fps for
convolutions only) on the GPU.

It is also worth noting that many other applications well
suited to event cameras also use a convolutional kernel and
could be accelerated using our accelerator or one with some
modifications. Some of these possible applications include
particle size monitoring, high-speed counting, edgelet tracking,
and optical flow [29], [30], [31], [32], [33].

To show that event-based data does not require high
precision for processing, we compare the relative tracking
accuracy when using floating-point and varying bitwidth inte-
ger filter coefficients in the pipeline. We evaluated this using an
in-house Birds dataset collected using the DVXplorer camera.
This dataset shows birds flying from right to left across the
screen. The resolution of the camera is 640 × 480 pixels.
All inputs are ternary, −1 (decrease), 0 (no change), and +1
(increase). For object tracking, we used metrics multiobject
tracking accuracy (MOTA), identification F1 score (IDF1),
and higher-order tracking accuracy (HOTA) described in [34]
to evaluate our pipeline using standardized metrics from the
multiobject-tracking (MOT) Challenge. We observed that the
accuracy loss was negligible down to 6-bit integer weight
precision, after which it drops off sharply, as can be seen
in Table II, confirming that convolving event-based data with
Gabor filters does not require high-numerical precision. SC is
capable of higher precision, but we did not need it for our
application. In prior works, SC has been used successfully
with up to 8-bit precision [35], [36].

We have tested the accuracy of the pipeline using varying
effective frame rates by skipping events from certain time
steps. Results are in Table III. It shows that for event-based
data it is imperative to maintain high-processing throughput,
on the order of at least hundreds of fps, which is beyond
what a CPU or a GPU can handle (as per our results above),
necessitating a custom hardware approach.

To justify our choice of the algorithmic approach, we
compared the 6-bit integer Gabor filter pipeline with the
tracker described in [37], which uses a dataset collected using
a DAVIS camera with a telescope set up to view moving space
junk. We refer to this dataset as Space Junk. The pipeline

TABLE IV
GABOR PIPELINE ACCURACY ON SPACE JUNK DATASET

COMPARED TO [37]

Fig. 5. Comparison on EBBINNOT Cars Dataset. Additional comparisons
beyond SCIMITAR and EBBINNOT are from [38].

used in this article is significantly more computationally
intensive than ours since it uses an exponentially decaying time
surface to represent the history of a given pixel rather than
accumulating events into discrete frames. We used a subset
of the data (by discarding complete videos with no objects)
and used the same accuracy metrics as described in [37]. The
abbreviations are as follows: true positive (TP), true negative
(TN), false positive (FP), and false negative (FN)

Sensitivity = TP

TP + FN
and Specificity = TN

TN + FP
(1)

Informedness = Sensitivity + Specificity − 1. (2)

As shown in Table IV our tracking approach achieves
slightly higher accuracy than the feature detector + tracker
method in prior work. We also observe no significant gain in
accuracy by increasing to higher than 6-bit precision. Given the
straightforward computational nature of filter-based computing
(3-D convolutions), we build our architecture around them. It
also gives us the flexibility to switch to different types of filters
or tackle other applications based on 2-D or 3-D filters.

To validate with larger objects, we compared to the car
dataset in [38]. We will refer to this dataset as Cars. In Fig. 5
added our results to a comparison from [38] of detection
F1 scores for different detectors for different intersection over
union identification thresholds. See [38] for a description of
the additional traces.

D. Stochastic Computing

Given the above evaluation, for our architecture, we are
looking for technologies that enable low-precision convolu-
tions in a fast, efficient, and high-compute-density manner to
sustain a high-effective frame rate. We leverage two techniques
that offer unparalleled compute density: 1) SC [6], [39] and
2) CIM [11]. In this section, we will introduce the first of the
two techniques.

Authorized licensed use limited to: UCLA Library. Downloaded on November 22,2024 at 22:36:08 UTC from IEEE Xplore. Restrictions apply.

4218 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

Fig. 6. (Top) Basic concept of SC. Note that the AND gate acts as a
multiplier and the OR gate acts as an approximate adder that is accurate when
the product ab is small. (Bottom) In-memory SC MAC structure. This figure
shows an implementation of an AND between input stored in the memory
cell and the weight stream generated by the SNG followed by an OR to add
with the other products in the MAC.

A comprehensive overview of SC is presented in [39]. Fig. 6
shows the basic concept of SC. SC represents numbers as
the fraction of 1s in a bit stream instead of as binary. A
SNG converts binary to stochastic numbers. SC has been
extensively explored for uses in CV applications [40], [41], [42]
and machine learning [6], [7], [8], [10]. Our application fits
the strengths and avoids the typical drawbacks of SC described
below.

1) Single Logic Gate Operations: Multiplication arithmetic
uses an AND gate to perform a bit-wise AND and
addition is implemented using an OR gate to perform
a bit-wise OR. A simple counter can convert stochastic
to binary numbers. This compact hardware unit enables
many large, dense MACs in a small area with high-
spatial reuse [6], [9].

2) Variable Precision Support: Each cycle of SC approx-
imates the result. Changing compute precision on the
fly through ET to take advantage of sparsity reduces the
computation time.

3) Accurate Multiplications: The stochastic nature of SC
causes random errors [39]. Since the inputs for our
application are +1, −1, and 0, one full stream is either
1 or 0. Due to our choice of pseudorandom number
sequences (as in [35]), multiplications are guaranteed to
be accurate if they run for the full stream length.

4) Low-Precision Requirements: Increasing the precision of
SC requires an exponential increase in stream length
(limiting SC to applications requiring eight or fewer
bits of precision), but that is not a problem here as we
have low-precision requirements (1-bit inputs and 6-bit
weights). Prior works have shown SC can match fixed-
point precision in this range efficiently [35].

5) Amortized Conversion Cost: SC requires costly con-
version from binary to stochastic streams [6], [7], but
the parallelism in our application allows us to amortize
the conversion costs of filter weights (32-way reuse in
our architecture) while inputs, being binarized, have no
stochastic number generation overhead.

III. SCIMITAR IMPLEMENTATION

Based on the algorithm-driven analysis from Section II-B,
our architecture must support low-precision, sparse 3-D convo-
lutions at high throughput and energy efficiency. Our hardware

requirement based on our tracker is 32 9 × 9 filters with up
to eight time channels (7 required for our pipeline), a 64 × 64
ROI, 6-bit filter precision, and 10-bit output precision.

A. Stochastic Computing In-Memory Macro With In-Situ
SNG

We use SCIM to achieve high-energy efficiency for process-
ing the sparse reconstructed event-camera ROIs. Embedding
SC computations in memory has previously been shown to
be an efficient way to implement the AND-OR structure of
the large MAC used in the convolution [9], [10], [43]. Fig. 6
shows the structure of an SC MAC unit in an SRAM-based
SCIM macro. Each SRAM cell stores a stochastic bit of the
weight parameters. We add two transistors next to the cell to
perform an AND operation (multiplication) between the stored
bit and the compute word line. We describe our improvements
on this below.

The main challenge of embedding SC in memory is convert-
ing a binary number to a stochastic bit sequence in memory.
Previous works have stored preconverted unrolled streams in
memory, but this method requires significant area and hurts
the overall energy efficiency [10]. Our recent work uses a
simple and compact solution to embed the binary-to-stochastic
conversion in memory [44]. Fig. 7 shows an overview of the
SCIM macro. The core of the macro is an array of SCIM
units, which are the basic processing units corresponding
to one weight parameter each. The SCIM unit consists of
memory cells for storing one weight in binary format, an in-
situ SNG for number conversion, and multiple SC MAC units
reusing the SNG output. We chose 6 bits as the precision for
weights since the analysis presented previously indicated that
it is sufficient for our target application. The in-situ SNGs
are embedded next to the weight storage cells to convert
them from binary to stochastic bit sequences. An extremely
high-weight reuse factor is achieved by sharing the in-situ
conversion output with many in-memory SC MAC units,
amortizing the cost of the in-situ conversion. We embed 32
SC MAC units per weight to maximize weight reuse since
this is the largest number of MAC units that can fit within
the memory cell’s height. An SCIM slice consists of 81
SCIM units and corresponds to an unrolled 9 × 9 filter for
one of the eight time channels. We process the left and the
right of the ROI rows sequentially due to the physical limita-
tions of the macro layout. 32 SCIM slices within the macro
share the same inputs, each implementing a different filter.

The SNG is embedded inside the memory to achieve in-
situ number conversion. During computation, the in-situ SNGs
use random numbers generated from pseudo-random number
generators (PRNGs) near the macro to convert the stored
binary number to stochastic bits. The PRNG uses shift registers
to store the entire output sequence of an XOR-based, maximal-
length linear feedback shift register (LFSR) and circularly
shifts in each cycle. We choose the LFSR’s polynomial order
to match the bit width of the weight coefficient, which
guarantees accurate conversion since the LFSR outputs are
uniformly distributed over the stream length. Each PRNG
generates unique random numbers for 32 SNGs. Three PRNGs
in each macro store different LFSR sequences and can support

Authorized licensed use limited to: UCLA Library. Downloaded on November 22,2024 at 22:36:08 UTC from IEEE Xplore. Restrictions apply.

ROMASZKAN et al.: SCIMITAR: SC IN-MEMORY IN-SITU TRACKING ARchitecture FOR EVENT-BASED CAMERAS 4219

Fig. 7. SCIM unit with 32 MAC reuse and SCIM slice (top) and SCIM
macro architecture (bottom).

Fig. 8. Split-unipolar stochastic number representation (top) and in-situ SNG
circuit (bottom).

81 SNGs without correlation. Note that we use the unrolled
sequence for the PRNG since the cost is shared and to allow
testing of non-LFSR sequences. Since the correlation is limited
to the stochastic bits computed within each MAC unit at each
cycle, the minimal number of unique random numbers should
match the dot product’s size (81). We can reuse this sequence
for all 32 slices within the macro. Further, given convolution’s
extensive data reuse for both weights and inputs, conversion
costs, as well as SNG cost itself, are heavily amortized, as has
been shown in prior works [6].

The in-situ SNG is shown in Fig. 8. For a 6-bit weight, the
fifth bit is selected by random numbers with a probability of
0.5, the fourth bit is selected with a probability of 0.25, and
the LSB is selected with a probability of 0.55. Each bit cell
has two extra cascaded nMOS transistors beside the 6T SRAM
cell to perform an AND operation between the stored binary
bit and the random number. The output of AND logic in each
cell is connected to form a local bitline, which performs a
wired-OR operation. An inverter amplifies in-situ SNG’s local
bit line and inverts the signal to maintain the correct logic.
Using the in-situ SNG also makes the implementation agnostic
to the stream length, which was not the case for bit-parallel
SCIM [10]. A more detailed presentation of the in-situ SNG
macro is in [44].

For event-based object tracking we require supporting
signed inputs (event polarity) and weights (filter coefficients).
We use a split-unipolar representation to support signed
numbers [6]. A number is represented by two SC streams:
1) WSC+ and 2) WSC− only one of which is enabled at a
time by the sign bit. The value of the number is encoded as
the difference between them: WSC+ − WSC−. If the number

Fig. 9. SCIMITAR architecture block diagram.

is positive, WSC+ represents the value’s amplitude, and WSC−
is a zero stream, and vice versa for the negative numbers. A
demultiplexer circuit using pseudo-nMOS logic generates the
split-unipolar streams with an inverter buffer output.

Output values are 10 bits. This is due to 6-bit weights, eight
time channels (+3 bit), and split unipolar (+1 bit). A split
unipolar SC MAC can have activity on both polarities within
a stream).

B. SCIM Accelerator Architecture

Given the algorithm and circuit-driven design of the SCIM
macro, we now face the challenge of integrating it into an
accelerator architecture that can also take advantage of vast
event-data input sparsity. Fig. 9 shows the overall architec-
ture of SCIMITAR. Given a limited set of operations, we
implement the control logic as a finite-state machine (FSM)
controlled through a set of programmable registers. The I/O
interface transfers ROIs to input SRAMs and outputs/maxima
from the output SRAM. We designed SCIMITAR to process
a single 64 × 64 ROI at a time with up to eight time
channels. Based on that, we organized the architecture into
eight columns, each consisting of an input SRAM, staging
buffer, and a SCIM bank. We provisioned each input SRAM to
double buffer one time channel of a single ROI. Input SRAM
width is provisioned to hold 64 2-bit (ternary) values.

Values from input SRAM are first read into staging buffers,
then optionally rotated, and passed onto the SCIM banks.
Since, as described in the previous Section, the SCIM macro
can only process half of the row at a time, staging buffers
are provisioned for 36 2-bit values. Within each SCIM bank,
we write the input values to the SNG buffers where they are
used to generate SC streams when the computation starts.
Each bank has nine SNG buffers, which hold nine rows of 36
values, making it possible to unroll one 9 × 9 time channel
of the convolutional filters spatially. This spatially unrolled
convolutional window is based on the one used in [6] to
maximize convolutional data reuse.

The weights are preloaded in the SCIM, and their streams
are generated in situ, as described in the previous Section.
Within each macro, a sliding 9 × 9 convolution is performed
across nine input rows, generating 32 outputs for each of 32
filters for a total of 1024 outputs per bank. Outputs of each
compute line are fed into counters. After the computation
finishes, counter outputs are sent to the global accumulator
block. SCIMITAR adds outputs of eight counters to implement
the combined 9 × 9 × 8 filter size.

Authorized licensed use limited to: UCLA Library. Downloaded on November 22,2024 at 22:36:08 UTC from IEEE Xplore. Restrictions apply.

4220 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

Fig. 10. ROI memory requirements for different compression schemes.

We will now describe the architectural optimizations indi-
cated in Fig. 9. Those optimizations improve the efficiency of
sparse event-data processing (algorithm-driven) and circum-
vent the limitations of SCIM-based computing (circuit-driven).

1) Channel Load Skipping: While ROI processing reduces
memory and computation compared to full frames, individual
ROIs are also highly sparse. To take advantage of this sparsity,
we propose embedding additional information in input memory
to avoid storing and loading rows of the ROI with no events.
Since data in memory is organized in rows, we consider two
levels of granularity: 1) row and 2) channel skipping. The
former will skip any slice of 64 × 8 pixels (one row across
all eight time channels) that is all zero. The latter will skip
any slice of 64 pixels (one row, one time channel) that is
all zero.

To support this functionality, input memory contains the
next_row_id, which indicates the index of the next nonzero
row stored in the subsequent address. In case of row skipping,
the next row index is shared across all eight input SRAMs. For
channel skipping, each SRAM has the index information for
the next row. To evaluate potential storage compression, we
used Birds dataset described in Section IV, partitioned it into
64 × 64 × 8 ROIs, and calculated the memory required for
each of the ROIs, including next_row_id information. Results
are shown in Fig. 10. Row skipping reduces storage require-
ments by 2.36× on average, while channel skipping does
so by 8.88× on average, even including indexing overheads.
Given those results, we opt to implement channel skipping in
SCIMITAR.

We implemented channel skipping in local control logic on
a column-by-column basis. Whenever reading a word from
input memory, if next_row_id is more than current_row + 1,
where current_row is the index of the currently read row, local
control logic skips the next N reads, where N is equal to
the next_row_id − current_row. This is shown schematically
in Fig. 11. In other words, local input SRAM control will
wait until global FSM catches up to its next nonzero row.
We always read the first row in an ROI since there is no
next_row_id.

2) Half-Row Multiplexing: The SCIM Macro can only
process half of the 64-wide row at a given time. Given the
relatively high-energy cost of accessing SRAM, it is prudent
to store half-rows separately in memory to save on accesses.
However, to avoid a gap in convolution coverage, each half
needs to include the same 8-pixel overlap region. Further,
next_row_id information would need to be stored with each
half-row. Instead of storing 64 + 6 = 70 bits, we would need
to store 2 × (36 + 6) = 84 bits, a 20% storage overhead.
Instead, we partition each input SRAM into three physical

Fig. 11. Channel load skipping and half-row multiplexing using partitioned
input SRAM. Each ROI row is split into three parts (left, middle, and right),
placed in their respective SRAM banks. Only two banks are accessed at a time,
depending on which half is being processed (L/R control signal). next_row_ID
is stored in the middle bank, which is always accessed (overlap region), and
is compared against current_row to skip rows containing all zeros.

banks: 1) left (bits 0–27); 2) middle (bits 28–35); and 3) right
(bits 36–63), as shown in Fig. 11. A signal from the control FSM
(L/R - left/right) decides which banks are accessed (left-middle
or middle-right) and multiplexes the outputs to appropriate
positions of the staged data SD. This approach avoids storage
overheads while saving access energy. next_row_id is stored in
the middle bank, as it is always accessed.

3) Zero Indicator: Staging buffers also contain a zero
indicator bit. Upon detecting one or more zero rows, using
the next_row_id, local control will also set the zero indicator
bit in its staging buffer, as shown in Fig. 11. This bit is used
downstream to gate the SNG buffer propagation and the SNG
stream generation for that row. This approach saves energy by
reducing the toggling of unnecessary logic.

4) Time Channel Overlap: SCIMITAR supports up to 8
time channels in each ROI. In some applications, subsequent
“frames” can be disjoint, meaning their time channels cover
nonoverlapping time windows. For example, if using 1-ms
channels, the first reconstructed frame covers the first 8 ms, the
second one the next 8 ms, etc. However, temporal resolution
can be improved if there is an overlap between subsequent
“frames.” For example, each subsequent reconstruction can
shift by 1 ms, where the remaining 7-ms overlap. Given that
in SCIMITAR, filter time channels are assigned to physical
SCIM macros, each of which is connected to its input SRAM,
naively supporting such overlap would require reloading the
entire ROI, as time channels would need to be physically
moved between input banks. To provide seamless support for
overlapping time-channel ROIs, we propose to connect staging
buffers as a circular buffer, as shown in Fig. 12.

Initially, time channels are properly aligned to columns, for
the first 8 time steps. Half-rows can be loaded directly into
staging buffers and passed to their respective SCIM banks. After
processing, time channel t = 0 is replaced with time channel
t = 8 in column 0. After loading each row to the staging buffers,
they are rotated once, so that channel t = 8 ends in column 7,
channel t = 7 in column 6, and so on. Using this approach,
time channels can be overlapped with a minimum number of
memory accesses. The latency of rotating staging buffers is
hidden using SC stream processing latency. In the worst-case
scenario, SCIMITAR needs to hide 7 rotation cycles.

Authorized licensed use limited to: UCLA Library. Downloaded on November 22,2024 at 22:36:08 UTC from IEEE Xplore. Restrictions apply.

ROMASZKAN et al.: SCIMITAR: SC IN-MEMORY IN-SITU TRACKING ARchitecture FOR EVENT-BASED CAMERAS 4221

Fig. 12. Time channel overlap using circular buffers.

Fig. 13. Impact of proposed optimizations on the computational energy
efficiency of the SCIMITAR architecture. Efficiency calculated on 99% sparse
input data assuming 32 × 2-bit SC streams (64 cycles).

Fig. 13 shows how energy per computation, for a 64-long
SC stream MAC, is affected by the above optimizations on the
accelerator level. Our use of channel-load skipping, half-row
multiplexing, and time-channel overlap, can reduce the energy
related to input communication (SRAM, buffers) by up to 55
times, which translates to 1.54× higher-energy efficiency for
the entire accelerator.

SCIMITAR can scale well in terms of sensor size and
throughput. Since processing is ROI-based, any sensor size
can be supported, subject to throughput constraints. Additional
arrays can be added to process more ROIs in parallel, improv-
ing throughput. Temporal resolution is adjusted through the
number of SCIM arrays per filter. Certain aspects of the
architecture, like the ROI or filter size, are tightly coupled
to circuit design. However, we argue that tightly coupling
microarchitecture and circuit design allows us to achieve
significant performance improvements. Larger ROIs can be
supported by “stitching” multiple smaller ones. SC also
enables flexibility in computation precision [6] - by adjusting
the stream length we can tradeoff precision with latency
and energy. We leave exploring the interaction of variable
precision with tracking accuracy to future work. Here, we
use equivalent 6-bit precision streams, which guarantees good
tracking results, as demonstrated in Section II-C.

Since SCIMITAR is built for 3-D convolutions, it is similar
to prior works that use SC for convolutional neural networks
(CNNs) [6], [10]. However, there are differences. SCIMITAR
is built for shallow filters, while the ones used in CNNs have
tens or hundreds of channels [45]. Further, SCIMITAR has a
host of optimizations for exploiting very high-input sparsity,
uncommon in CNNs. However, concepts like the in-situ SNG
could be used in SCIM accelerators for ML, which we will
explore in future work.

C. Early Termination & Maxima Tracking

Every cycle of SC computation provides an estimate of the
final result. For example, if the first 16 cycles of computation
contain 50% ones, we can expect that at the end of the

Fig. 14. ET noise reduction. ET helps eliminate medium to low-valued peaks,
which effectively denoises the output.

Fig. 15. Percentages of ET at cycles 16 and 32. Computed over subsets of
ROIs from Birds, Space Junk, and Cars. Note that ET thresholds are dataset
specific.

computation, the proportion should be similar [7]. Short
streams can give an estimate, and longer streams increase
the precision and reduce the impact of randomness. This
progressive convergence to the final result leads to the concept
of ET. Since early partial results from running a computation
approximate the final result, we can judge whether or not we
are likely to care about the result of a computation before
it is complete. While ET has been proposed before, it was
either static (termination after a fixed number of profiled
cycles) [7], [46], or required complex decision methods that
cannot be easily implemented on an output-by-output basis
[47]. Since we are looking for peaks in our application, we can
rule out negative values and values close to 0 after a certain
number of cycles. This saves power and latency especially
when processing inputs that only contain noise and thus do not
produce peaks above the threshold. Note that ET can be used
to dampen noise if the threshold is set that will terminate the
values expected from white noise early. As shown in Fig. 14
real peaks are unaffected.

The downside of using partial results is that the shorter the
stream is, the more likely it is to have a large error. An error
of 1 on a 16-bit stream is 1/16 whereas an off-by-1 error for
a 4-bit stream is 1/4, which is significantly more serious. To
reduce the risk of such errors affecting accuracy, we do not
use ET on the first 16 cycles of computation and only turn
ET on after that. Since we split the signed compute streams
temporally for inputs, the first 8 bits of signed compute take
16 cycles, 8+ and 8−. After that, we periodically check the
result of the stream to see if it is below a threshold that would
allow us to discard the pixel. In an ideal case for ET, we
could check the count against a threshold every cycle, but in
our case, we are constrained to check after we have computed
an equal number of positive and negative cycles. For a 32-bit
stream with 64 cycles of compute, this gives us the potential
to save up to 75% of compute time, with a high degree of
confidence that we will not lose any peaks that we care about,
as shown in Section IV.

Constraining ET to occur only at cycle 16 or 32 simplifies
the hardware and reduces the overhead of switching between

Authorized licensed use limited to: UCLA Library. Downloaded on November 22,2024 at 22:36:08 UTC from IEEE Xplore. Restrictions apply.

4222 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

Fig. 16. Sensitivity and specificity for ET SC ROI peak matching with
floating point. This is computed over a subset of ROIs from each dataset with
ET levels in Fig. 15.

positive and negative compute streams. Since the relevant ET
threshold depends on the stream length, only checking at the
power of 2 stream length values allowed us to set a threshold
and use a bit shift to scale the threshold from the 16th to the
32nd cycle. Fig. 15 shows that most ET happens at the earliest
opportunity. While finer-grained ET is possible, the benefits
we get for earlier checks for ET get progressively smaller.
Terminating after 32 cycles saves about half the computation
time. After only 16 cycles, terminating saves an additional
25% compared to 32, but terminating after eight cycles would
only save an additional 12.5% compared to 16 in an ideal
system. The benefits are small compared to the overheads
of pipelining and loading. The overall reduction in compute
cycles we observed over 7000 ROIs from the Birds dataset
was 62.8%, see Fig. 15. The “Space Junk” and Cars datasets
showed similar cycle reduction. Sensitivity and specificity for
peak matching with ET are shown in Fig. 16.

Once we compute all the outputs we need to find a
maximum for each filter. However, storing all intermediate
results takes a large amount of memory. For 32 filters, an ROI
of 64 × 64 pixels, and 10 bits per output, we need to store
64 × 64 × 32 × 10b= 1.28 MB per ROI. To reduce memory
size, we do not want to store all the outputs. A single max will
do well if we only have a single object in an ROI, but multiple
objects will fail with a single max, see Fig. 17. One way to
solve this issue is to save the maximum value from each cell in
a grid of regions in the output. This method tracks additional
outputs. We instead decided to keep track of a per-ROI-column
maximum on the fly as shown in Fig. 18 (left). This option is
straightforward to implement in hardware, as each column is
processed sequentially in the same output counter, requiring
only two additional registers per counter: 1) value (10 bits)
and 2) row index (6 bits) of the current maximum. Beyond
the hardware simplicity, we selected column max instead of
a grid option as it showed better-peak retention than the grid
option using equivalent storage as shown in Fig. 18 (right).
It reduces the output memory requirement to only 64 × 32 ×
(10 + 6) bits = 32 KB per ROI.

IV. EVALUATION

A. Object Detection and Tracking

To evaluate the SCIMITAR architecture, we ran RTL emula-
tion using a scaled-down version of our SC architecture on the
ALVEO U200 FPGA implemented fully in digital logic. We
used functionally equivalent digital logic to replace the CIM
for the test on the FPGA. The mixed-signal verification of the

Fig. 17. Example ROI with multiple objects. The left image shows a few
time channels of the input. The right image shows the result after convolving
with a Gabor filter.

Fig. 18. Column max. In column max, we save one maximum from each
output column. This technique substantially reduces storage requirements
while catching peaks when multiple objects are in the ROI. In the table on
the right, we look at different grid options compared to column max for a
Gabor filter. Column max has the same storage requirement as an 8 × 8 grid
while detecting the same peaks detected by a 16 × 16 grid and requiring less
additional hardware than the grid options. Tracking results are still reasonable
after applying column max as shown in the lower half of this figure in the
chosen metrics for each dataset.

SCIM macro is described in the next section. We evaluated
100 consecutive reconstructed frames from the Birds dataset
for 7000 total ROIs. We use the same filters as in Section II-C,
converted to 6-bit integer values by scaling maximum filter
values to 31 and then quantizing them. We do not train or
modify filter coefficients to better suit our SC computation
in this work. This means existing filter coefficients can be
used directly without modifications other than quantization to
6 bits. We made no additional modifications to the algorithm
to suit our hardware. By doing this, we verified three points:
1) close match between peak locations using SC and floating
point; 2) little to no loss of peaks due to column max;
and 3) little to no loss of objects due to ET. We used the
sensitivity and specificity metrics described earlier treating
the peaks from floating-point convolution results as ground
truth and comparing them to the peaks simulated results
using SC. Sensitivity, specificity, and informedness are 1 for
perfect identification and 0 for entirely incorrect identification.
As shown in Fig. 16, the sensitivity is above 85% and the
specificity is above 95%.

We set the identification thresholds for floating point and
SC so they produce a similar number of peaks to reduce the
dependency of the result on arbitrary thresholds. This means
we have nearly equal FP and FN rates for the shown results.
Here, a correct identification consists of the same ROI being
identified as containing an object by both floating point and
SC. A FP is an ROI identified by SC but not floating point
and a FN is an ROI identified by floating point but not SC.
For the stream length of 32 bits or 64 cycles, the average pixel
error in the location of the peak identification was 3.36 pixels.

Column max tracking did not result in any loss of peak
identification accuracy compared to global maximum tracking.

Authorized licensed use limited to: UCLA Library. Downloaded on November 22,2024 at 22:36:08 UTC from IEEE Xplore. Restrictions apply.

ROMASZKAN et al.: SCIMITAR: SC IN-MEMORY IN-SITU TRACKING ARchitecture FOR EVENT-BASED CAMERAS 4223

Fig. 19. Sparsity versus ROI location of one frame. The ROI with the object
has a sparsity of 98.5% compared to the other ROIs with sparsities above
99%.

However, the Birds dataset always has a relatively small
number of objects in the ROI. The chances of two objects
being located above each other so that all peaks from one of
the objects are blocked by the other are low. Also, there was
no loss of accuracy due to ET since we chose a threshold well
below the threshold used to identify peaks. More aggressive
ET thresholds could further improve performance but might
start to impact accuracy.

B. Hardware Evaluation

The SCIM macro is custom-designed, laid out, and simu-
lated in GF 12 nm LP technology using the layout-extracted
netlist in Cadence Virtuoso’s analog design environment. We
verified the functionality of the read/write and computation
operations with input vectors that lead to worst-case timing
conditions. The timing and energy of the macro are char-
acterized in different PVT corners to generate library files
for top-level digital flow. We reported the energy efficiency
of the overall SCIMITAR accelerator from simulations using
Cadence Genus and Synopsys PrimeTime. Since sparsity is
critical for the system energy efficiency, the event camera’s
data is studied as shown in Fig. 19. When a moving object
is flying in front of the event camera, the ROI containing
the object has a sparsity of 98%, while the other ROIs
have a sparsity above 99%. To evaluate the system’s energy
efficiency at different sparsity levels, we generate randomly
distributed images with sparsity varying between 0 and 99%.
The results are also cross-validated by getting the energy
consumption of each block factoring in its expected switching
activities. For the 0% sparsity case, we assume each input has
a switching activity factor of 0.5. We pessimistically assume
dense outputs that switch 50% of the time. The SCIM macro
runs computation for 64 cycles to generate a full-precision
output, consuming the most energy. The energy breakdown of
the 0%-sparsity case is shown in Fig. 20 (bottom left). The
total energy consumption is 11.9 fJ or 83 TOPS/W.

SCIMITAR’s energy efficiency improves with sparsity, a
notable advantage over other CIM solutions. SC uses combi-
national circuitry, which naturally consumes less energy when
the switching activity decreases. The energy of the SCIM
macro’s input driver and in-memory MAC unit scales down
proportionally with increasing sparsity levels. 32 SC MAC
units within an SCIM unit share each in-situ SNG and PRNG.
The SC MAC unit only consumes 1/4 of the energy in the
sparse input case compared to the dense input case. However,
we do not scale the PRNG or in-situ SNG’s energy with
sparsity due to the constant switching activities of PRNG.
Flip-flops that are active every clock cycle dominate the

Fig. 20. SCIMITAR performance summary (top). Energy breakdowns
without ET for 0% (bottom and left) and 99% (bottom and right) sparsity in
fJ and normalized by the number of operations.

bank output counter’s energy consumption. The input-based
clock gating can significantly reduce the counter’s energy.
The remaining parts that do not scale with the sparsity are
clocking and state machines. The energy breakdown is shown
in Fig. 20 (bottom right). The energy efficiency for the 99%-
sparse input is 482 TOPS/W. We calculate sparse energy
efficiency factoring in the “skipped” computation, similarly to
other sparse accelerators [48], [49], [50].

ET can stop a computation before it reaches the end of
the SC sequence length at 64 cycles, saving both time and
energy. If the computation terminates, all the SCIM banks will
stop and move to the next ROI. Since we skip the remaining
computing cycles, the energy consumption and throughput
improve by the percentage of skipped cycles. The simulation
results show a 2.7× improvement in energy efficiency and
peak throughput. When we enable ET for the Birds data set,
energy efficiency improves from 482 to 1285 TOPS/W and
peak throughput increases from 21 to 56 TOP/S. With ET
turned on, the object tracking system achieves performance of
1.9×109 ROI/Filter/J and 84.4×106 ROI/Filter/s. Assuming 32
filters and 100 ROI/frame translates to an equivalent frame rate
of 26k fps, orders of magnitude higher than the rate achievable
with conventional cameras [1]. It is also much higher than the
500 fps requirement from our previous evaluation, meaning
that SCIMITAR could work in situations requiring processing
more ROIs to avoid losing tracking performance, such as larger
frames, more objects, or poor ROI identification.

C. Comparison With Prior Work

Stochastic CIM (SCIM) storing unrolled bit stream can
achieve similar energy efficiency and sparsity scaling as
SCIMITAR [10] but has much lower throughput per area.
Since it requires 2N cells to store an N-bit number, it has an
area penalty of 2N/N compared to SCIMITAR. CIM based
on analog computing is widely studied for accelerating matrix

Authorized licensed use limited to: UCLA Library. Downloaded on November 22,2024 at 22:36:08 UTC from IEEE Xplore. Restrictions apply.

4224 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

Fig. 21. (Top) Normalized energy of different blocks in stochastic-CIM
and charge-based CIM macro scaled with the number of operations; and
(Middle) SCIM system energy efficiency versus input sparsity without ET’s
help. (Bottom) Comparison of energy efficiency between SCIMITAR with or
without ET and standard digital SC or ADC-based CIM (right).

multiplication in deep CNNs [11], [51]. However, few of
these works focus on the object tracking application or event-
based cameras [23], [52] given the relative novelty of this
field. As such, no direct comparison point exists for our
chosen application on CIM-style architectures or other custom
accelerators. We compare to prior art based on the peak
performance of ML accelerators. Note that SCIMITAR is more
application-specific than a general NPU due to features, such
as column max and ET, but the same architecture principles
we show could be adapted to other applications or a more
general purpose NPU.

Conventional CIM solutions accumulate analog current or
charges on the memory’s bit line and use analog-to-digital
converters (ADCs) to convert analog signals to digital bits.
ADCs are power-hungry and occupy a large area. Although
these solutions have shown significant improvement over non-
CIM digital accelerators on dense inputs, the constant energy
of ADCs prevents further improvement on highly sparse
inputs. Fig. 21 (top) shows the normalized energy of different
components of SCIM and charge-based CIM macros scaled
with the number of operations. Most components in SCIM
macros are combinational circuits whose energy consumption
can decrease with increasing input sparsity. The conventional
charged-based CIM requires ADC to convert analog voltage
to digital bits. The ADC requires a digital-to-analog converter
(DAC) to generate a reference voltage and compare it with
the input in each cycle, which does not change based on the
input. The SCIM’s system energy efficiency as a function of
input sparsity is shown in Fig. 21 (middle) and a comparison
of energy efficiency of SCIM, charge-based CIM, and standard

SC is shown in Fig. 21 (bottom). The CIM numbers are based
on [11], and we estimate the sparsity impact by scaling the
energy drawn from the input driver and switched capacitor
with the input sparsity level. We also compare SCIMITAR
to purely digital SC accelerator GEO [35] to show how
much efficiency can be improved by combining digital SC
with CIM. For a fair comparison, we compare peak energy
efficiency, which is application agnostic, at 6-bit, or equivalent
for SC, precision. The energy efficiency of the SCIM scales
with the sparsity level from 0 to 99%, while the ADC-based
CIM solution only shows negligible improvement when the
sparsity level increases above 50%. Another work has shown
an efficient CIM accelerator for denoising and region pro-
posal applications for event-based cameras [23]. It performs
computation between pixels but does not allow convolution
and filtering by weight kernels, which is necessary for object-
tracking applications.

CIM using nonvolatile memory, such as RRAM [53] and
MRAM [54], [55], is less efficient than the switch-capacitor-
based analog CIM [11] due to the limitation of the device.
Since the RRAM and MRAM devices have large variations,
the in-memory dot-product size is limited to <32, while
the switched-cap-based CIM can reach 1024. The proposed
SCIMITAR is a digital CIM solution that is more efficient.

V. CONCLUSION

In this work, we proposed SCIMITAR, an accelerator for
high-speed object tracking using event camera data. By taking
advantage of the sparsity of the event camera data and
using several techniques, including ET with SC, we achieve
extremely high-frame rates. We use compute in memory to
further increase compute density and energy efficiency. By
achieving this energy-efficient and high-speed data-processing,
SCIMITAR enables more fully utilizing event cameras for
real-time tracking of extremely fast objects. To promote further
work, we have made our tracking pipeline, RTL, and Birds
dataset available for download at https://github.com/nanocad-
lab/scimitar.

REFERENCES

[1] G. Gallego et al., “Event-based vision: A survey,” 2020,
arXiv:1904.08405.

[2] D. Gehrig, H. Rebecq, G. Gallego, and D. Scaramuzza, “EKLT:
Asynchronous photometric feature tracking using events and
frames,” Int. J. Comput. Vis., vol. 128, no. 3, pp. 601–618, 2020.
[Online]. Available: https://doi.org/10.1007/s11263-019-01209-w

[3] P. Bardow, A. J. Davison, and S. Leutenegger, “Simultaneous optical
flow and intensity estimation from an event camera,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 884–892. [Online].
Available: http://ieeexplore.ieee.org/document/7780471/

[4] A. Linares-Barranco, F. Gomez-Rodriguez, V. Villanueva, L. Longinotti,
and T. Delbruck, “A USB3.0 FPGA event-based filtering and tracking
framework for dynamic vision sensors,” in Proc. IEEE Int. Symp.
Circuits Syst., 2015, pp. 2417–2420.

[5] R. Serrano-Gotarredona et al., “CAVIAR: A 45k neuron, 5M synapse,
12G connects/s AER hardware sensory-processing-learning-actuating
system for high-speed visual object recognition and tracking,” IEEE
Trans. Neural Netw., vol. 20, no. 9, pp. 1417–1438, Sep. 2009.

[6] W. Romaszkan, T. Li, T. Melton, S. Pamarti, and P. Gupta, “ACOUSTIC:
Accelerating convolutional neural networks through or-unipolar skipped
stochastic computing,” in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), 2020, pp. 768–773.

[7] D. Wu, J. Li, R. Yin, H. Hsiao, Y. Kim, and J. S. Miguel, “UGEMM:
Unary computing architecture for GEMM applications,” in Proc.
ACM/IEEE 47th Annu. Int. Symp. Comput. Archit. (ISCA), 2020,
pp. 377–390.

Authorized licensed use limited to: UCLA Library. Downloaded on November 22,2024 at 22:36:08 UTC from IEEE Xplore. Restrictions apply.

ROMASZKAN et al.: SCIMITAR: SC IN-MEMORY IN-SITU TRACKING ARchitecture FOR EVENT-BASED CAMERAS 4225

[8] R. Hojabr et al., “SkippyNN: An embedded stochastic-computing
accelerator for convolutional neural networks,” in Proc. 56th ACM/IEEE
Design Autom. Conf. (DAC), 2019, pp. 1–6.

[9] S. Li et al., “SCOPE: A stochastic computing engine for DRAM-
based in-situ accelerator,” in Proc. 51st Annu. IEEE/ACM Int. Symp.
Microarchit. (MICRO), 2018, pp. 696–709.

[10] J. Yang, T. Li, W. Romaszkan, P. Gupta, and S. Pamarti, “A 65nm 8-bit
all-digital stochastic-compute-in-memory deep learning processor,” in
Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2022, pp. 10–11.
[Online]. Available: https://ieeexplore.ieee.org/document/9980613/

[11] H. Jia et al., “15.1 A programmable neural-network inference accelerator
based on scalable in-memory computing,” in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC), 2021, pp. 236–238. [Online]. Available: https:
//ieeexplore.ieee.org/document/9365788/

[12] T. Delbruck and M. Lang, “Robotic goalie with 3-ms reaction time at 4%
CPU load using event-based dynamic vision sensor,” Front. Neurosci.,
vol. 7, p. 223, Nov. 2013.

[13] A. Glover and C. Bartolozzi, “Event-driven ball detection and gaze
fixation in clutter,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), 2016, pp. 2203–2208.

[14] A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza, “Ultimate
SLAM? Combining events, images, and IMU for robust visual SLAM
in HDR and high speed scenarios,” IEEE Robot. Autom. Lett., vol. 3,
no. 2, pp. 994–1001, Apr. 2018.

[15] H. Kim, S. Leutenegger, and A. J. Davison, “Real-time 3D reconstruc-
tion and 6-DoF tracking with an event camera,” in Proc. 14th Eur.
Conf. Comput. Vis. (ECCV), 2016, pp. 349–364. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-46466-4_21

[16] C. Brändli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A
240 × 180 130 dB 3 µs latency global shutter spatiotemporal vision
sensor,” IEEE J. Solid-State Circuits, vol. 49, no. 10, pp. 2333–2341,
Oct. 2014.

[17] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “High speed and
high dynamic range video with an event camera,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 43, no. 6, pp. 1964–1980, Jun. 2021.

[18] C. Scheerlinck, N. Barnes, and R. Mahony, “Asynchronous spatial image
convolutions for event cameras,” IEEE Robot. Autom. Lett., vol. 4, no. 2,
pp. 816–822, Apr. 2019.

[19] H. Patel, C. Iaboni, D. Lobo, J.-w. Choi, and P. Abichandani, “Event
camera based real-time detection and tracking of indoor ground
robots,” 2021, arXiv:2102.11916.

[20] J. Yang et al., “Aircraft tracking based on fully conventional network
and Kalman filter,” IET Image Process., vol. 13, no. 8, pp. 1259–1265,
2019.

[21] H. Liu, D. P. Moeys, G. Das, D. Neil, S.-C. Liu, and T. Delbrück,
“Combined frame- and event-based detection and tracking,” in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), 2016, pp. 2511–2514.

[22] B. Ramesh et al., “e-TLD: Event-based framework for dynamic object
tracking,” 2020, arXiv:2009.00855.

[23] S. K. Bose and A. Basu, “A 389TOPS/W, 1262fps at 1meps region
proposal integrated circuit for neuromorphic vision sensors in 65nm
CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC),
2021, pp. 1–3. [Online]. Available: https://ieeexplore.ieee.org/document/
9634734/

[24] S. Paul et al., “A 0.05pJ/pixel 70fps FHD 1meps event-driven visual
data processing unit,” in Proc. IEEE Symp. VLSI Circuits, 2020, pp. 1–2.
[Online]. Available: https://ieeexplore.ieee.org/document/9162948/

[25] K. S. Ray, V. K. Asari, and S. Chakraborty, “Object detection by Spatio-
temporal analysis and tracking of the detected objects in a video with
variable background,” 2017, arXiv:1705.02949.

[26] J. Graham, M. Celenk, J. Willis, T. Conley, and H. Eren, “Multiple
vehicle tracking using Gabor filter bank predictor,” in Proc. 4th Int.
Conf. Comput. Vis. Theory Appl., 2009, pp. 632–635.

[27] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Proc.
2nd Int. Conf. Knowl. Discov. Data Min., 1996, pp. 226–231.

[28] R. Solovyev, W. Wang, and T. Gabruseva, “Weighted boxes fusion:
Ensembling boxes from different object detection models,” Image Vis.
Comput., vol. 107, Mar. 2021, Art. no. 104117. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0262885621000226

[29] “Applications and tools—Metavision SDK docs 4.4.0 documenta-
tion.” [Online]. Available: https://docs.prophesee.ai/stable/applications.
html

[30] M. Fränzl and F. Cichos, “Active particle feedback control with a single-
shot detection convolutional neural network,” Sci. Rep., vol. 10, no. 1,
Jul. 2020, Art. no. 12571. [Online]. Available: https://www.nature.com/
articles/s41598-020-69055-2

[31] Q. Cao, Z. Shan, K. Long, and Z. Wang, “GhostCount: A lightweight
convolution network based on high-altitude video for vehicle instanta-
neous counting in dense traffic scenes,” IET Intell. Transp. Syst., vol. 17,
no. 5, pp. 943–959, 2023. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1049/itr2.12318

[32] J. C. Arbeláez, “On object recognition for industrial augmented real-
ity,” Ph.D. dissertation, Universidad EAFIT, Medellín, Colombia, 2018,
Accepted: Dec. 11, 2019. [Online]. Available: http://repository.eafit.edu.
co/handle/10784/15342

[33] T.-R. Tsao and V. Chen, “A neural scheme for optical flow
computation based on Gabor filters and generalized gradient
method,” Neurocomputing, vol. 6, no. 3, pp. 305–325, Jun. 1994.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
0925231294900671

[34] J. Luiten et al., “HOTA: A higher order metric for evaluating multi-object
tracking,” Int. J. Comput. Vis., vol. 129, no. 2, pp. 548–578, Feb. 2021.
[Online]. Available: https://doi.org/10.1007/s11263-020-01375-2

[35] T. Li, W. Romaszkan, S. Pamarti, and P. Gupta, “GEO: Generation
and execution optimized stochastic computing accelerator for neural
networks,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2021,
pp. 689–694.

[36] W. Romaszkan, T. Li, and P. Gupta, “SASCHA—Sparsity-aware
stochastic computing hardware architecture for neural network accel-
eration,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 41, no. 11, pp. 4169–4180, Nov. 2022. [Online]. Available: https:
//ieeexplore.ieee.org/document/9852757/

[37] G. Cohen et al., “Event-based sensing for space situational awareness,” J.
Astronaut. Sci., vol. 66, pp. 125–141, Jun. 2019.

[38] V. Mohan et al., “EBBINNOT: A hardware-efficient hybrid event-frame
tracker for stationary dynamic vision sensors,” IEEE Internet Things J.,
vol. 9, no. 21, pp. 20902–20917, Nov. 2022.

[39] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Trans. Embedd. Comput. Syst., vol. 12, no. 2s, pp. 1–19, 2013.

[40] P. K. Muthappa, F. Neugebauer, I. Polian, and J. P. Hayes, “Hardware-
based fast real-time image classification with stochastic computing,” in
Proc. IEEE 38th Int. Conf. Comput. Design (ICCD), 2020, pp. 340–347.

[41] V. Sehwag, N. Prasad, and I. Chakrabarti, “A parallel stochastic number
generator with bit permutation networks,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 65, no. 2, pp. 231–235, Feb. 2018.

[42] R. K. Budhwani, R. Ragavan, and O. Sentieys, “Taking advantage of
correlation in stochastic computing,” in Proc. IEEE Int. Symp. Circuits
Syst., 2017, pp. 1–4.

[43] S. Gupta et al., “COSMO: Computing with stochastic numbers in
memory,” ACM J. Emerg. Technol. Comput. Syst., vol. 18, no. 2,
pp. 1–25, Apr. 2022. [Online]. Available: https://dl.acm.org/doi/10.1145/
3484731

[44] J. Yang, A. Graening, W. Romaszkan, V. K. Jacob, P. Gupta, and
S. Pamarti, “A 278-514M event/s ADC-less stochastic compute-in-
memory convolution accelerator for event camera,” in Proc. IEEE/ACM
Int. Conf. VLSI Design, 2024, pp. 1–2.

[45] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015, arXiv:1409.1556.

[46] D. Wu, Y. Ruokai, and J. S. Miguel, “Normalized stability: A cross-level
design metric for early termination in stochastic computing,” in Proc.
26th Asia South Pac. Design Autom. Conf., 2021, pp. 254–259.

[47] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic
energy-accuracy trade-off using stochastic computing in deep neu-
ral networks,” in Proc. 53rd Annu. Design Autom. Conf. (DAC),
2016, pp. 1–6. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
2897937.2898011

[48] J.-S. Park et al., “9.5 A 6K-MAC feature-map-sparsity-aware neural
processing unit in 5nm flagship mobile SoC,” in Proc. IEEE Int. Solid-
State Circuits Conf. (ISSCC), 2021, pp. 152–153.

[49] C. Deng, Y. Sui, S. Liao, X. Qian, and B. Yuan, “GoSPA: An energy-
efficient high-performance globally optimized SParse convolutional
neural network accelerator,” in Proc. ACM/IEEE 48th Annu. Int. Symp.
Comput. Archit. (ISCA), 2021, pp. 1110–1123.

[50] J. Lin, Z. Zhu, Y. Wang, and Y. Xie, “Learning the sparsity for
RERAM: Mapping and pruning sparse neural network for ReRAM based
accelerator,” in Proc. Asia South Pac. Design Autom. Conf. (ASP-DAC),
2019, pp. 639–644.

[51] J. Yue et al., “15.2 A 2.75-to-75.9TOPS/W computing-in-memory NN
processor supporting set-associate block-wise zero skipping and ping-
pong CIM with simultaneous computation and weight updating,” in
Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), 2021, pp. 238–240.
[Online]. Available: https://ieeexplore.ieee.org/document/9365958/

[52] X. Zhang and A. Basu, “A 915–1220 TOPS/W hybrid in-memory
computing based image restoration and region proposal integrated circuit
for neuromorphic vision sensors in 65nm CMOS,” in Proc. IEEE Custom
Integr. Circuits Conf. (CICC), 2022, pp. 1–2. [Online]. Available: https:
//ieeexplore.ieee.org/document/9772788/

[53] C.-X. Xue et al., “16.1 a 22nm 4Mb 8b-precision ReRAM computing-in-
memory macro with 11.91 to 195.7TOPS/W for tiny AI edge devices,” in
Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), 2021, pp. 245–247.
[Online]. Available: https://ieeexplore.ieee.org/document/9365769/

[54] P. Deaville, B. Zhang, and N. Verma, “A 22nm 128-kb MRAM
row/column-parallel in-memory computing macro with memory-
resistance boosting and multi-column ADC readout,” in Proc.
IEEE Symp. VLSI Technol. Circuits (VLSI Technol. Circuits), 2022,
pp. 268–269. [Online]. Available: https://ieeexplore.ieee.org/document/
9830153/

[55] S. Jung et al., “A crossbar array of magnetoresistive memory devices
for in-memory computing,” Nature, vol. 601, no. 7892, pp. 211–216,
Jan. 2022. [Online]. Available: https://www.nature.com/articles/s41586-
021-04196-6

Authorized licensed use limited to: UCLA Library. Downloaded on November 22,2024 at 22:36:08 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

