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ABSTRACT
In recent years, there has been a significant focus on achieving low-
latency and high-throughput convolutional neural network (CNN)
inference. Integrated photonics offers the potential to substantially
expedite neural networks due to its inherent low-latency properties.
Recently, on-chip Fourier optics-based neural network accelerators
have been demonstrated and achieved superior energy efficiency for
CNN acceleration. By incorporating Fourier optics, computationally
intensive convolution operations can be performed instantaneously
through on-chip lenses at a significantly lower cost compared to
other on-chip photonic neural network accelerators. This is thanks
to the complexity reduction offered by the convolution theorem
and the passive Fourier transforms computed by on-chip lenses.
However, conversion overhead between optical and digital domains
and memory access energy still hinder overall efficiency.

We introduce ReFOCUS, a Joint Transform Correlator (JTC)
based on-chip neural network accelerator that efficiently reuses
light through optical buffers. By incorporating optical delay lines,
wavelength-division multiplexing, dataflow, and memory hierarchy
optimization, ReFOCUS minimizes both conversion overhead and
memory access energy. As a result, ReFOCUS achieves 2× through-
put, 2.2× energy efficiency, and 1.36× area efficiency compared to
state-of-the-art photonic neural network accelerators.

CCS CONCEPTS
• Computer systems organization→ Architectures; • Hard-
ware→ Emerging technologies; Emerging optical and pho-
tonic technologies; • Computing methodologies→ Artificial
intelligence; Machine learning.

KEYWORDS
Photonic neural network, on-chip photonics, Fourier optics, 4F
system, deep learning, neural network accelerator
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1 INTRODUCTION
Convolutional neural networks (CNNs) [18, 23, 27, 49, 54, 58] have
become indispensable in modern Artificial Intelligence (AI) appli-
cations, forming the basis of numerous computer vision tasks such
as image classification, object detection, and autonomous driving.
Although vision transformers [10, 14, 59] are gaining popularity,
CNNs still maintain an edge in terms of model compactness and
the ability to achieve comparable accuracy to vision transformers
with significantly fewer parameters [2]. Due to the complexity of
convolution operations, executing them on general-purpose pro-
cessors is not energy efficient. Therefore, researchers have focused
on developing domain-specific accelerators employing parallel ar-
chitectures for energy-efficient computation of neural networks
[11, 29, 38, 45, 50]. However, the ever-increasing complexity of
modern CNNs, the end of Dennard scaling, and the slowdown of
Moore’s law have imposed limitations on CMOS digital accelerators
concerning energy consumption for data movement and compu-
tation. Silicon photonics emerging as a promising solution to this
problem, which offers remarkable computational parallelism and
efficiency.

Photonics components possess several unique advantages, in-
cluding high frequency, relatively low power consumption, and no
RC delay. These characteristics make photonics an unparalleled
contender for low-latency and low-power computation. Generally,
there are two types of photonic neural network accelerators: free-
space and on-chip versions.While free-space optical neural network
accelerators [8, 12, 22, 24, 34, 40] are often bulky and inflexible, on-
chip photonics-based accelerators have gained significant interest
due to their efficiency and flexibility. On-chip photonics can be
further classified into two main categories. Most existing works
compute dot products or vector-matrix multiplications using Mach-
Zehnder Interferometers (MZI) and/or micro-ring resonators (MRR)
[5, 20, 33, 36, 52, 53, 56, 71]. These MZI/MRR-based photonic neural
network accelerators share similarities with compute-in-memory
(CIM) analog accelerators but feature high clock frequencies (5-10
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GHz) and the possibility of leveraging wavelength-division multi-
plexing (WDM) for extra parallelism. However, a major bottleneck
of photonic and other analog neural network accelerators is the
conversion cost between digital and analog domains, which can
consume a significant amount of power. Unlike CIM accelerators
which are typically designed to have tall columns to reduce the
compute-to-conversion ratio, photonic neural network accelerators
often have significantly smaller arrays because of relatively large
photonic components and limitations ofWDM. This results in lower
compute-to-conversion ratios. Morever, the conversion overhead
between digital and optical domains often prevents photonic neural
networks from delivering their theoretical advantage over CMOS
electronics.

The second category focuses on computing the convolution
directly. This can be achieved through a pair of Fourier lenses
that compute the Fourier transform passively. Fourier optics-based
designs capitalize on the convolution theorem, which states that
convolution in the space domain is equivalent to point-wise multi-
plication in the Fourier domain. These systems, commonly referred
to as 4F systems, utilize time-of-flight Fourier transform via Fourier
lenses to reduce convolution complexity from𝑂 (𝑁 2) to𝑂 (𝑁 ). Com-
pared to conventional MZI/MRR-based photonic neural network
accelerators, 4F systems require significantly fewer optical com-
ponents to perform the same amount of computations, thanks to
the complexity reduction. This type of photonic neural network
accelerator was typically built as a free-space system, but recently,
silicon photonics versions have been proposed, opening a new di-
rection for designing efficient photonic neural network accelerators.
[32] proposed a Joint Transform Correlator (JTC) based on-chip
photonic neural network accelerator, which is a variant of the 4F
system (still using Fourier optics), and achieved orders of magni-
tude better efficiency than previous state-of-the-art photonic neural
network accelerators. JTC computes the auto-convolution of two
input signals using a pair of Fourier lenses similar to 4F systems,
but it uses spatial filters instead of complex-valued Fourier-domain
filters. JTC addresses some limitations of conventional 4F systems,
such as the support for complex filters and the large filter size (as
Fourier-domain filters need to have the same size as inputs).

Although the JTC-based photonic neural network accelerator al-
ready demonstrates state-of-the-art efficiency, there is still substan-
tial room for further optimizations. On one hand, the conversions
between analog and digital domains still consume a large propor-
tion of system power. On the other hand, as computation becomes
even more efficient, memory access power becomes non-negligible.
Both of these aspects could be optimized to further improve system
efficiency.

In this work, we propose ReFOCUS, a JTC based on-chip pho-
tonic neural network accelerator that reuses light through optical
buffers to minimize the conversion cost between optical and digital
domains. With optical reuse and various optimizations, ReFOCUS
is able to achieve significantly better energy efficiency compared
to state-of-the-art photonic neural network accelerators. The main
contributions can be summarized as follows:

• Wepropose optical reuse based on optical buffers constructed
using optical delay lines, and incorporate corresponding data-
flow and laser power optimization to significantly improve
the power efficiency of the system.

• We adopt wavelength-division multiplexing (WDM) to im-
prove the area efficiency by sharing on-chip lenses, which
also reduces the area overhead of optical buffers.

• ReFOCUS can achieve 2× throughput, 2.2× energy efficiency
and 1.36× area efficiency than previous state-of-the-art pho-
tonic neural network accelerator.

2 BACKGROUND
2.1 Background of JTC
Over the past couple of decades, JTC has found applications in a
variety of fields, such as image filtering [25, 60] and object tracking
[37, 57]. Recently, JTC systems have been used for accelerating neu-
ral networks [17, 32, 46, 67]. Theoretical analysis and experimental
demonstrations of low-latency convolution operations using JTC
systems have been presented in [17] and [46, 67] respectively, while
[32] proposed the architecture-level design and optimizations.

The math behind JTC operations has been adequately discussed
and analyzed in previous literature, so we will not go into too
much detail in this paper as the focus is on architecture design
and optimization. Still, we will provide a brief introduction to JTC
operations for easier understanding.

Optical lenses can perform a Fourier transform F [𝐸 (𝑥,𝑦, 𝑓 )] on
their back focal plane when an input image 𝐸 (𝑥,𝑦, 𝑓 ), illuminated
by a coherent light source, is placed at the front focal plane [19].
Utilizing the Fourier transform property of lenses, [63] introduced
an optical JTC that generates optical convolution with both phase
and amplitude components. A 1D on-chip photonic JTC can be
derived from a traditional 2D optical JTC with minor modifications.
There are five main components in a typical on-chip JTC system:
(1) a 1D multi-channel input beam containing a signal 𝑠 (𝑥 + 𝑥𝑠 )
and a kernel 𝑘 (𝑥 − 𝑥𝑘 ) (with 𝑥𝑠 and 𝑥𝑘 representing the offsets of 𝑠
and 𝑘 from the origin in the 𝑥 direction); (2) the first on-chip lens,
which functions like a traditional free-space lens, to achieve the 1D
Fourier transform F [𝑠 (𝑥 + 𝑥𝑠 ) + 𝑘 (𝑥 − 𝑥𝑘 )]; (3) a nonlinear func-
tion unit (not the activation function of neural networks), realized
using photodetectors and electro-optic modulators (EOM) or non-
linear materials to achieve a square function at the Fourier plane
which is essential for JTC operation ; (4) the second on-chip lens,
to transform the signal back to spatial domain; (5) photodetectors
that detect the intensity pattern of the computed convolution by
the JTC:

𝑠 (𝑥 + 𝑥𝑠 + 𝑥𝑘 ) ∗ 𝑘 (−𝑥) + 𝑠 (−𝑥) ∗ 𝑘 (𝑥 − 𝑥𝑠 − 𝑥𝑘 ) + 𝑁 (𝑥) (1)

, where ∗ denotes convolution. The first and second terms represent
the computed auto-convolution between the two inputs. The third
term 𝑁 (𝑥), equals to F

[
|𝑆 (𝑥) |2 + |𝐾 (𝑥) |2

]
, is a non-convolution

term that can be spatially filtered out. Figure 1 illustrates the high-
level diagram of a typical on-chip JTC system, which includes the
five main components. Besides the 5 photonic components, DACs
and ADCs are also required to convert the signals to and from
the optical domain. The non-linear function in JTC, applied in the
frequency domain after the first lens, is crucial for computing the
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convolution, as the output would be identical to the input without
it (Fourier transform followed by inverse Fourier transform). The
primary difference between on-chip JTC and conventional free-
space JTC is the replacement of 2D lenses with 1D on-chip lenses,
which results in the computation of 1D convolutions instead of
2D convolutions. This will be further discussed in Section 2.2. In
this work, we assume the non-linear function is achieved through
passive non-linear materials [4, 6, 26, 41], which is also used in the
NG version of [32].

Figure 1: High-level diagram of a typical on-chip JTC system.

2.2 Computing 2D convolutions using 1D JTC
Unlike free-space 4F/JTC systems that naturally support 2D convo-
lutions through the use of 2D Fourier lenses, their on-chip coun-
terparts can only employ 1D on-chip metasurface-based lenses,
and therefore, by default, only support 1D convolutions. To enable
on-chip JTC systems to perform 2D convolutions, [32] proposed a
generic algorithm for computing 2D convolutions using 1D convo-
lutions, which is applicable to JTC systems. With this algorithm,
2D convolution can be computed using 1D convolution with no
computation overhead for digital systems. For JTC-based systems,
the supported 1D Fourier transform size needs to be large enough
to avoid computation overhead. The core idea involves row tiling
and partitioning, in which rows of 2D inputs and kernels are tiled
with zero padding to form 1D inputs and kernels for 1D convolution.
For 𝑘 × 𝑘 kernels, row tiling can be implemented if the JTC can
accommodate at least 𝐾 rows of inputs. This method can achieve
identical results to conventional 2D convolutions when input rows
are zero-padded with 𝑘 − 1 zeros per row and can closely approxi-
mate conventional 2D convolutions without zero-padding. While
the 1D kernels needed to be zero-padded to the size of 1D input tiles,
the zero-padding does not add overhead to JTC systems thanks to
a unique property of JTC. For JTC, the actual convolution can be
computed by the optical components passively, drawing almost no
power. The computation cost comes from the input generation and
output conversion part. For the zero-padding part, since all values
are zero, the corresponding DACs and MRRs can be switched off
so that no power will be consumed.

In cases where the JTC cannot hold 𝑘 rows of inputs, 2D convo-
lutions can still be computed by partially tiling or partitioning the
input rows and taking multiple cycles to generate a single output
row. The convolution results are identical to those obtained in the
row tiling case but require more iterations. Since JTC can typically
support a large number of input waveguides (>256), and CNNs usu-
ally incorporate multiple pooling layers to reduce activation size,
partial row-tiling or row-partitioning generally occurs only during
the execution of the first layer, where activation sizes are large.
Therefore, the overhead of partial row-tiling and row-partitioning
is negligible.

An example of performing 2D convolution with a 3 × 3 kernel
using the on-chip JTC system is illustrated in Figure 2. In this
example the input (activation) size is larger than the number of input
waveguides in the JTC, therefore multiple iterations are required
to compute the full convolution. The input is split into chunks
and the rows in one chunk are tiled and loaded into the JTC. The
kernel rows are padded to the same size as the input rows and
also tiled and loaded into the JTC. The convolution between the
tiled input rows and kernel rows completes in one cycle, and the
output is received by the photodetectors and ADCs. Because of the
circular padding nature of Fourier transform-based convolutions in
JTC, only two output rows are valid in this example. Consequently,
the invalid rows are discarded, constituting the primary source of
computation overhead. The process is repeated multiple times to
complete the convolution of the entire 2D input. The number of
valid output rows is 𝑅𝑖 − 𝑘 for 𝑘 × 𝑘 kernels, where 𝑅𝑖 is number
of input rows that can be tiled on the JTC. Therefore, the effective
utilization is higher for larger JTCs and smaller input activations.

Comparing the amount of operations required for processing
convolutions of digital systems (e.g., GPUs) and JTCs is non-trivial
due to JTC’s passive computation nature. However, if assuming
the JTC’s computational requirement is the number of input con-
versions needed, JTC with 256 input waveguides requires more
than 5 times fewer computations than a GPU when computing a
convolution between a 32×32 input and a 3×3 kernel. For JTC, each
pass can tile 8 rows and generate 6 valid outputs (8 − 2), thereby
requiring 6 JTC passes to compute the actual value. This leads to
1590 conversions in total (6×(256+9)) while GPU typically requires
9216 multiply-and-accumulate operations (322 × 32).

3 A CASE STUDY FOR A TYPICAL JTC-BASED
ACCELERATOR

In this section, we briefly introduce the baseline system of ReFO-
CUS, and analyze its bottlenecks while discussing how to further
improve the efficiency of Fourier optics-based accelerators. We use
a slightly modified version of PhotoFourier-NG (next-gen version)
[32], the state-of-the-art Fourier-optics based photonic neural net-
work accelerator, as our baseline system. The baseline system keeps
the architecture of Photo Fourier-NG, which includes 16 JTCs in
parallel, assumes monolithic integration of CMOS and photonics,
and incorporates passive non-linear materials. The modification
we made is to use citable sources for ADC and DAC power. The
average power and the area of the baseline system are 15.7W and
116.3𝑚𝑚2 (90.7𝑚𝑚2 for photonic components) respectively.

The power breakdown comparison of a single JTC system (no
optimizations) and our baseline system is illustrated in Figure 3
(a). It is evident that for the single JTC system, the overall power
consumption is dominated by ADCs and DACs (> 85%). ReFOCUS-
baseline exhibits reduced ADC power due to the implementation of
an optimization technique called temporal accumulation introduced
in [32], which accumulates convolution results before ADC readout
using photodetectors, resulting in a significant reduction of ADC
power consumption. The DAC and SRAM access power constitute
a large proportion of the total system power, highlighting the need
for further optimization. By reducing their power consumption, the
efficiency of the baseline system can be enhanced. Area-wise, as
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Figure 2: Illustration of how 2D convolution is computed using on-chip JTC system. IR, KR, and OR stand for input row, kernel
row, and output row. The gray block represents zero-padding.

Figure 3: (a) Power breakdown of single JTC system
and ReFOCUS-baseline. (b): Area breakdown of ReFOCUS-
baseline, only photonic components are included.

demonstrated in Figure 3 (b), the lens area dominates, consuming
more than 50% of the total area. Therefore, reducing lens area is
crucial for achieving better area efficiency.

In ReFOCUS, we propose optical reuse and WDM to mitigate the
power consumption of both the DACs and the memory accesses,
which are the two most dominating factors in total power con-
sumption, thereby enhancing overall energy efficiency. These two
optimizations, along with the architecture-level optimizations, will
be discussed in detail in Section 4 and 5.

4 REFOCUS COMPUTE UNIT
ReFOCUS comprises multiple compute units, which are named as
ReFOCUS Compute Unit, or RFCU in short. Each RFCU is essentially
a JTC system described in Section 2.1. The JTC configuration of the
RFCU is kept the same as [32] unless related to optical reuse since
this work focuses on optical reuse. Each RFCU has 256 input waveg-
uides and 25 active weight waveguides (active means waveguides
with DACs). On top of the baseline design, we introduce two main
optimizations to improve energy efficiency and area efficiency.

4.1 Optical reuse
As discussed in Section 3, the ADC power can be reduced by tem-
poral accumulation. However, this technique does not effectively
reduce the DAC power, necessitating further optimization. One
approach to decrease DAC power is to reuse the optical signals
generated by the DACs. Reusing can be easily achieved in digital
electronics through data buffers, but this proves to be non-trivial
in photonics/optics due to the absence of optical memory. Despite
this, optical buffers can be achieved through the use of optical delay

lines. Optical delay lines essentially consist of spiral waveguides
that require light signals to travel a relatively long distance within
the delay line, consequently causing a delay. The delay line length
can be calculated by multiplying the speed of light by the target
delay time. The waveguides are placed in a spiral shape to minimize
the area, as depicted in Figure 4 (the red square). The light signal is
split into two parts, and one part travels through the delay line to be
reused at a later time, such that DACs do not need to be active when
light is reused from the delay line, effectively reducing the average
DAC power. To accomplish optical reuse, we propose two versions
of optical buffer design based on optical delay lines, which have
different use cases. In this work, both optical buffer designs will be
adopted and evaluated, hence forming two versions of ReFOCUS -
ReFOCUS-FB (feedback) and ReFOCUS-FF (feedforward).

4.1.1 Feedback optical buffer. The schematic diagram of the feed-
back version of the optical buffer design is depicted in Figure 4
(a), which comprises a delay line module, a switch MRR, and a Y-
junction. The input signals generated by the DAC are divided into
two parts by a Y-junction. One part is used for JTC computation,
while the other is designated for reuse. The reuse signal passes
through the optical delay line module and returns to be reused 𝑁
cycles later, where 𝑁 is determined by the delay line length. An
MRR is required as a switch to control whether the feedback should
be used for computation since, when a new input signal is gener-
ated by the input MRRs, the reuse signal should be blocked to avoid
corruption of the final input. For instance, if a second Y-junction is
employed to replace the switch MRR, the delayed optical will be
added to the main signal that goes to the first Y-junction and the
JTC even when the JTC is supposed to receive new input activa-
tions, causing data corruption. A switch MRR can be turned off to
block the feedback signal. When the switch MRR is turned on, the
reuse signal will be coupled to the main waveguide connected to
the Y-junction, and the input MRR should be turned off to avoid
data corruption.

The advantage of this feedback approach is that, theoretically,
the signals can be reused as many times as desired, which can
maximize the reuse and significantly cut down the DAC power.
However, one potential limitation of this design is that the signal
power of the feedback signal will be lower with every iteration due
to the Y-junction and the delay line loss. Define the power split
ratio of Y-junction as 𝛼 (percentage of input power directed to the
JTC), and the delay line loss as 𝑙𝑑 , the relationship between the
signal power that goes into the JTC can be derived as:
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𝑋𝑖 = (1 − 𝑙𝑑 ) · (1 − 𝛼) · 𝑋𝑖−1 (2)
, where 𝑋𝑖 is the signal power that goes into the JTC for the 𝑖𝑡ℎ
iteration. The overall signal loss for every reuse iteration 𝑙𝑡 is hence
(1− 𝑙𝑑 ) · (1−𝛼). The signal power of a particular iteration can then
be calculated as:

𝑋𝑖 = ((1 − 𝑙𝑑 ) · (1 − 𝛼))𝑖 · 𝑋0 (3)
, where 𝑋0 is the signal power of the initial input to the JTC.
Assuming the input activations are reused, typically different

convolution filters will be processed each time the input is reused.
That means different filters will see inputs with different magni-
tudes, which are supposed to be the same. Since the power reduction
of the signals for each iteration is fixed and can be pre-determined,
a hardware-aware scheduler can be designed to adjust the weights
of the filters according to Equation 1, and the convolution outputs
will be scaled back in the digital domain. In this case, the number
of times the same signal can be reused is determined by the laser
power overhead (average laser power will be higher to compensate
for the loss due to delay lines), the dynamic range of photodetectors,
and ADCs. This will be further analyzed in Section 5.4.

4.1.2 Feedforward optical buffer. In addition to the software so-
lutions, there is a hardware solution to address the issue of the
reduction of power of the reused signals, at the cost of the amount
of achievable reuse. This solution involves using a feedforward
optical buffer, as depicted in Figure 4 (b). The difference between
the feedback version is that the delayed signal is not connected
back to the input of the Y-junction; instead, it goes directly to the
JTC through a second Y-junction. The second Y-junction is used to
connect the delayed signal back to the main waveguide. A switch
MRR is not required in this design, as there are no signal loops -
which means the delayed signal does not need to be blocked. In this
design, the split ratio 𝛼 of the Y-junction can be configured to make
the signal power of the original signal and the delayed signal iden-
tical. The signal power that directly goes to the JTC (without delay)
is 𝛼 ·𝑋 , where 𝑋 is the signal power before the first Y-junction. The
signal power of the delayed signal is (1 − 𝑙𝑑 ) · (1 − 𝛼) · 𝑋 , where
𝑙𝑑 is the loss of the delay line module. By equating the two signal
powers, the split ratio can be calculated:

𝛼 =
1 − 𝑙𝑑
2 − 𝑙𝑑

(4)

By configuring the split ratio according to Equation 4, the original
signal and the delayed (reused) signal will have the same signal
power. This design eliminates the need for weight and activation
scaling. However, the signal in this design can only be reused once
since there is no feedback loop, which is the main limitation of the
feedforward optical buffer.

4.1.3 Reusing signal or weight. In the context of neural networks,
the JTC receives two signals to compute their convolution: inputs
(activation) and weights. Consequently, there is a choice of whether
to reuse inputs or weights. Assuming the processing of a 3 × 3
kernel, the number of input DACs is 256, while the number of
weight DACs is 9 for a single JTC. Even considering the entire
system and assuming input is fully broadcasted to 8 or 16 RFCUs,

(a)

(b)

Figure 4: Schematic diagramof two versions of optical buffers
used in ReFOCUS. (a): Feedback version. (b): Feedforward
version.

the number of input DACs remains significantly larger than the
number of weight DACs. Therefore, reusing inputs will have a
greater impact on power efficiency than reusing weights.

Furthermore, reusing weights can lead to lower-than-expected
performance improvement. For inference with a batch size of 1, if
weights are reused, the only option is to process different input
activation tiles for each iteration since they share the same weight.
However, the JTC tile size is usually large (e.g., 256) for more in-
herent weight reuse within the JTC, while the input activation size
can be small for later layers of CNNs due to pooling. For instance,
ResNet-34 has 18 layers with input activation sizes small enough
that the entire input can be loaded into a single JTC together, which
means there will be no opportunity for temporal weight reuse at all.
Reusing inputs will not have this problem, as the number of filters
of modern CNNs is far larger than the number of filters that can
be executed in parallel on ReFOCUS so that each cycle can process
different filters.

4.1.4 Longer delay lines. Temporal accumulation can significantly
reduce ADC frequency by accumulating the outputs of multiple
cycles at photodetectors before the ADC readout, enabling the ADC
to operate at much lower power. However, output stationary (OS)
dataflow is required for temporal accumulation to function properly,
as only the outputs of individual channels can be accumulated. The
introduction of optical buffers to reuse inputs means the dataflow
needs to be adjusted accordingly. Assuming the inputs are only
delayed by 1 cycle, then input stationary dataflow will be enforced,
and temporal accumulation cannot be implemented. If input reuse
is achieved at the cost of removing temporal accumulation, it will
not be an ideal design choice, as the increase in ADC power will
have a greater impact than the reduction of DAC power.

Nevertheless, with a longer delay line and dataflow optimization,
temporal accumulation can still be implemented by accumulating
the results while the reused inputs are traveling through the delay
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lines. An alternating dataflow (OS + input stationary (IS)) is re-
quired to implement temporal accumulation with a delay line. The
maximum amount of temporal accumulation that can be achieved
in terms of cycles is the same as the delay line length in terms of
cycles. The alternating dataflow, choice of the exact length of the
delay line, as well as how many times an input signal will be reused
for ReFOCUS-FB, will be discussed in detail in Section 5.

4.1.5 Overhead of optical buffer. The components used in both
versions of the optical buffers are passive, except for the switch
MRR used in the feedback optical buffer, which consumes signifi-
cantly less power compared to a high-speed DAC. Therefore, the
power overhead of optical buffers is small (excluding laser power).
However, the area overhead cannot be ignored, as the delay line
modules are large in size, particularly if the signals need to be de-
layed for an extended period to implement temporal accumulation.
Table 1 lists the length, area, and loss of the delay line which can
delay the signal by one cycle for a 10 GHz system (0.1 ns). The
delay line area is around 0.01𝑚𝑚2, which constrains the number
of inputs that can be delayed and the number of cycles that can be
delayed. The area overhead of optical buffers can be compensated
through lens sharing and architecture-level optimizations, both of
which will be discussed later.

In addition to the area overhead, delay lines also attenuate the
signal. The total signal power loss is directly proportional to the
delay line length. The average laser power will be higher compared
to the case without optical buffers to compensate for the power loss
caused by the delay line module, which will be discussed further
in Section 5. With low-loss on-chip delay lines [28], the delay line
loss is not significant for any reasonable delay line lengths.

Table 1: The length, area, and loss of a delay line with 0.1 ns
delay (1 cycle in 10 GHz system).

# Length (𝑚𝑚) Area (𝑚𝑚2) Loss (dB) [28]
8.57 0.01 6.94e-3

4.2 Lens sharing
4.2.1 Motivation. The optical buffer allows input reuse, which can
reduce the DAC and memory access power of inputs. However,
the delay line comes with a non-negligible area overhead. For a 16-
RFCU system (each with 256 input waveguides), if the inputs of each
RFCU are buffered individually for 8 cycles, the total delay line area
is 327.7𝑚𝑚2, which is about 3× larger than the whole system area
without the delay line and is clearly infeasible. The optical buffer
area can be dramatically reduced through input broadcasting. By
placing the optical buffer before the Y-junction tree that broadcasts
the inputs, the total delay line area can be reduced to 20.48𝑚𝑚2

assuming full input broadcasting. Even in this case, the optical
buffer still adds around 20% area overhead to the system.

To improve the overall area efficiency of the system, lens opti-
mization is required, which accounts for around 50% of the total
system area, as shown in Figure 3 (b). Wavelength-division multi-
plexing (WDM) is a common approach used in photonic designs
to enhance parallelism and area efficiency, although it is primarily

used in dot-product style on-chip photonic neural network ac-
celerators and has not yet been applied to Fourier optics. WDM
works by transmitting multiple data channels encoded into different
wavelengths on a single waveguide, thus saving area. Furthermore,
operations applied to the waveguide, such as phase change and
delay, are effectively broadcasted to all wavelengths (data channels).
For JTC, the Fourier transform implemented by the lens can also
be broadcasted to the wavelengths through WDM, effectively shar-
ing the lens. In this work, we leverage WDM to share lenses and
photodetectors with different wavelengths, significantly improving
the area efficiency of ReFOCUS.

Figure 5: Illustration of how WDM is implemented in ReFO-
CUS (not drawn to scale). Two wavelengths are modulated
and encoded into a single waveguide through MRRs with
different wavelengths, for both filters and inputs generation.
Photodetectors and ADCs receive the sum of the convolution
output of the two wavelengths.

4.2.2 Implementation. When WDM is used for optical communi-
cations, encoders and decoders are required to encode and decode
the signals. Both can be implemented with MRR arrays, with each
MRR corresponding to one wavelength. For each wavelength, two
MRRs are required for modulation/encoding and decoding, and
one photodetector, ADC, and DAC. In the context of neural net-
work acceleration, some of the components described above can
be shared because of the reuse opportunity inside neural networks.
Depending on the exact dataflow, either input DAC/MRR, weight
DAC/MRR, or photodetector/ADC can be shared with different
wavelengths. In ReFOCUS, each wavelength processes a single con-
volution channel, hence their convolution results can be directly
accumulated. The decoder is no longer required in this case - the
waveguide that contains multiple wavelengths is directly connected
to a single photodetector and the convolution results of different
wavelengths/channels are accumulated by the photodetector. The
wavelengths should be selected to be close to each other so that
their convolution results can be detected by a single photodetec-
tor. Figure 5 illustrates how WDM is implemented in ReFOCUS.
In this example, 2 wavelengths are encoded into a single waveg-
uide through MRRs with wavelength 𝜆1 and 𝜆2, for both inputs
and weight generation. The photodetector receives the sum of the
convolution results of both wavelengths.

In this implementation, the photodetector and ADC can be
shared, and extra decoding MRRs are not required, which means
WDM can improve area efficiency and power efficiency at the same
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time. We choose to share ADCs rather than input or weight DACs
for the following reasons: (1) As previously discussed, broadcasting
weights to different activation tiles is not guaranteed, especially
for later layers of CNNs, while inputs are already broadcasted to
different RFCUs (and further reused through optical buffer). (2):
Photodetectors can also be shared when sharing ADCs, which is
not possible for the other two cases. Sharing photodetectors further
improves area efficiency as they are around 10× larger than MRRs.
Define 𝑁𝜆 as the number of wavelengths used, and in this dataflow,
𝑁𝜆 input channel needs to be generated. Since delay lines can also
be shared by all wavelengths, processing multiple input channels
will not cause excessive area overhead of optical buffers. WDM is
applicable to both optical buffers, including the feedback version,
as the switch MRR can react to a range of wavelengths.

4.2.3 Number of wavelengths. However, there is a limit on how
many wavelengths can be used, and is relatively low for ReFOCUS.
Having too many wavelengths can cause the spread of the con-
volution results of all wavelengths too large to be captured by a
single photodetector, and our simulation suggests that the number
of wavelengths should be less than 4. Besides, more wavelengths
will make accessing inputs from memory/buffer challenging due
to the huge number of data that needs to be accessed every cycle,
as using temporal accumulation means inputs need to be accessed
every cycle regardless of optical reuse. Considering both factors, we
set 𝑁𝜆 = 2, that is using two wavelengths. With WDM, each RFCU
essentially contains two ‘virtual’ JTCs and has 2× throughput, but
only requires a single set of lenses and photodetectors.

Table 2: Area and normalized area efficiency in terms of
frames per second per𝑚𝑚2 of a 16-RFCU system with differ-
ent wavelengths.

# wavelengths Area (𝑚𝑚2) Normalized FPS/𝑚𝑚2

1 111.3 1.00
2 115.2 1.93

Even with just two wavelengths, significant area efficiency can
be achieved. Table 2 shows the area and normalized area efficiency
of a 16-RFCU system with 1 or 2 wavelengths. Adding a second
wavelength only increases the area by 3.5%, while doubling the
throughput. Combining these together, a 1.93× area efficiency is
achieved byWDM. The reason for this extremely low area overhead
of WDM is that the Fourier lens and the photodetectors can be
shared, which together consume a large proportion of the total
system area.

5 REFOCUS ARCHITECTURE
The high-level architecture and configuration of ReFOCUS are in-
troduced first in this section, followed by optimizations and design
choices.

5.1 Overall architecture
ReFOCUS has two versions, ReFOCUS-FF (feedforward) and Re-
FOCUS-FB (feedback). The difference between the two versions
is at the RFCU level - ReFOCUS-FB reuses inputs 15 times while

ReFOCUS-FF reuses inputs once, and both versions share the same
high-level architecture. The architecture diagram of ReFOCUS is
illustrated in Figure 6. ReFOCUS operates at 10 GHz, supports 8-bit
precision, and assumes monolithic integration of CMOS and pho-
tonics [47]. There are 16 RFCUs within ReFOCUS, with each RFCU
containing 256 input waveguides and processing two wavelengths
concurrently through WDM. Input signals first pass through op-
tical buffers and then broadcast to all RFCUs, while weights are
generated within each RFCU. ReFOCUS adopts 16-cycle tempo-
ral accumulation to reduce the frequency of ADC and the output
processing CMOS circuits to 625 MHz. On the CMOS part, each
RFCU has two corresponding CMOS processing units that are used
to generate the inputs, process the outputs (reading from ADC,
scaling and accumulating the results, and implementing the ReLU
non-linearity), and communicate with memory. ReFOCUS has a
4MB global activation SRAM shared with all RFCUs, while each
RFCU has its own 512 KB weight SRAM. Input and output data
buffers are added to reduce the access energy of the shared activa-
tion SRAM. The design choices such as dataflow, number of RFCUs,
data buffer configuration, and delay line lengths, will be further
discussed in this section.

Figure 6: High-level architecture diagram of ReFOCUS. CCU
stands for CMOS compute unit. Each RFCU has two CCUs,
one for input generation and the other for output processing.
The diagram is not drawn to scale.

5.2 Memory hierarchy
ReFOCUS adopts a similar top-level memory configuration as [32],
with a 4MB shared activation SRAM and separate local weight
SRAMs (one for each RFCU with 512KB size). he activation and
weight SRAM sizes are configured to hold the entire activation/layer
of weights of common CNNs [23, 54] to eliminate the need for
writing to DRAMs during execution. This relatively large SRAM
size also results in > 4× access energy compared to weight SRAM.
Directly accessing and storing from/to the shared activation SRAM
as [32] leads to excessive SRAM power, as shown in Figure 3 (a).
In ReFOCUS, we add input and output data buffers to reduce the
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memory access power. All RFCUs share a single input buffer because
of input broadcasting, while each RFCU has its own output buffers.
The size and relative access energy of the data buffers depends on
the dataflow, and is further discussed in Section 5.3.

5.3 Dataflow
5.3.1 Parallelization scheme. Input broadcasting the default paral-
lelization scheme in ReFOCUS, and the main reason is to reduce
the input DAC power. Output reuse is achieved through temporal
accumulation while weight reuse is inherently achieved by the JTC
operation (kernel is ‘broadcasted’ to the entire input tile). Therefore,
inputs are broadcasted to all RFCUs to achieve input reuse. Within
an RFCU, WDM is implemented to compute two input channels in
parallel, for reasons discussed in Section 4.2.

5.3.2 Alternating dataflow. Dataflow plays a critical role in Re-
FOCUS, as many optimizations have constraints or requirements
related to dataflow. Temporal accumulation, which reduces ADC
frequency and power, requires an OS dataflow to accumulate the
output of different convolution channels using the photodetector.
However, the optical buffers, which optically reuse the inputs, en-
force an IS dataflow. While the two dataflow seem contradicting,
they can be combined together to form an alternating dataflow with
some modifications on the optical buffer.

The solution is to increase the delay line length so that inputs
will be delayed by𝑀 cycles before being reused. Within the𝑀 cy-
cles, there are no restrictions on the exact dataflow, and OS dataflow
can be used to implement temporal accumulation for𝑀 cycles, by
processing an input channel group of𝑀 channels. After𝑀 cycles,
the same input channel group is reused, and another filter needs to
be processed to achieve input reuse. The dataflow is illustrated in
detail in Figure 7, which shows the dataflow of an example system
with WDM and feedforward optical buffer with𝑀 = 4. Each RFCU
processes a unique filter, and for the 8-RFCU system in this exam-
ple, 8 filters will be processed in parallel, therefore when the input
channel group is reused in RFCU1, filter 9 is processed. Within
an RFCU, spatial accumulation is achieved by WDM, where each
wavelength processes a different channel group of a filter. With this
OS-IS alternating dataflow, output reuse (through temporal accu-
mulation) and input reuse (through optical buffer) can be achieved
concurrently.

5.3.3 Optimizing for efficient memory accesses. The input channel
group can only be reused a limited number of times (reuse once
for the ReFOCUS-FF). Thus, after reuse completes and new inputs
need to be generated, there is a choice of what should be processed
next. There are two dataflow choices: (1) follow the current pattern
to process another filter until all filters are processed for the cur-
rent input channel group, as illustrated in Figure 7 and (2) process
another input channel group of the first filter being processed in
the RFCU, until all the channels are fully processed for the current
filters being processed. These two dataflow choices have different
impacts on the SRAM data buffer design and the overall power effi-
ciency. (1) requires relatively small input buffers and large output
buffers while (2) requires relatively large input buffers and small
output buffers.

Table 3: Notations and definitions of common terms used in
the analysis.

Notation Definition
𝑀 Delay line length in terms of cycles
𝑅 How many times the signal is reused

𝑁𝑅𝐹𝐶𝑈 Number of RFCUs
𝑇 Input tile size (number of input waveguides)
𝑁𝜆 Number of waveguides.

Some common notations and their definitions used in the analy-
sis are listed in table 3. For case (1), the input and output buffer size
(per RFCU) in bytes can be calculated as (ignore ping-pong buffer
for now):

𝐵𝑖𝑛1 = 𝑇 ×𝑀 × 𝑁𝜆, 𝐵𝑜𝑢𝑡1 = 𝑇 × 𝑁𝐹

𝑁𝑅𝐹𝐶𝑈

, where 𝑁𝐹 is the maximum number of filters per layer of a neu-
ral network. For case (2), the input and output buffer size can be
calculated as:

𝐵𝑖𝑛2 = 𝑇 × 𝑁𝐶 × 𝑁𝜆, 𝐵𝑜𝑢𝑡2 = 𝑇 × (𝑅 + 1)

, where𝑁𝐶 is themaximumnumber of channels per layer of a neural
network. In ReFOCUS, we adopt (1) as our dataflow, which favors
the input buffer over the output buffer. The reason behind this
design choice is the input buffer needs to have a higher frequency
than the output buffer and hence has higher constraints on access
latency. The input buffer needs to be accessed every cycle (although
when input is being reused the input buffer will not be accessed at
all), while the output buffer only needs to be accessed once per𝑀
cycle. A large input buffer may not meet the latency requirement.
Besides, for ReFOCUS-FF, the input buffer has more accesses overall
compared to the output buffer, as there is more output reuse than
input reuse (discussed more in Section 5.4). Thus, having a smaller
input buffer reduces the cost of input buffer accesses, and improves
the overall power efficiency of the ReFOCUS-FF.

5.4 Choice of design parameter
Some of the design choices such as which signal to reuse, howWDM
is implemented, and the number of wavelengths used are already
discussed in Section 4. This section discusses other design choices
that cannot be determined individually as they have dependence
or impact on each other and require system-level analysis, such
as delay line length, number of RFCUs, and how many times the
inputs should be optically reused in ReFOCUS-FB.

5.4.1 ReFOCUS-FF. From Equation 4, the Y-junction split ratio 𝛼
for the feedforward buffer can be computed. Based on 𝛼 , it can
be derived that the average laser power needs to be 1/2𝛼 × larger
(divided by 2 because the light is reused once). Based on the delay
line loss from Table 1, and the fact that laser power per channel
is much smaller than the DAC power, the increase in laser power
caused by a longer delay line will have a negligible impact on overall
power efficiency for any reasonable delay line lengths. Therefore,
the primary overhead of longer delay lines is the increase in area.
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Figure 7: Dataflow used in ReFOCUS. An 8-RFCU system
that implements feedforward optical buffers with 4-cycle
delay lines and WDMwith 2 wavelengths is assumed for this
example. IC(𝑎 − 𝑏) refers to input channel 𝑎 − 𝑏 , F(𝑥)C(𝑎 − 𝑏)
refers to channel 𝑎−𝑏 of filter 𝑥 . 𝜆𝑖 refers to the 𝑖𝑡ℎ wavelength
in WDM. R means reused input signal through the optical
buffer. Difference channel groups are marked with different
colors.

A longer delay line can result in fewer RFCUs that can be placed
within a given area limit.

Nearly all previous studies on on-chip photonic neural net-
work accelerators have reported chip areas of less than 200𝑚𝑚2

[32, 36, 52, 56, 71]. Increasing the chip area can lead to yield and cost
issues, while providing diminishing returns in terms of performance.
Therefore, we set the area budget of the photonic components of
ReFOCUS to be 150𝑚𝑚2 (leaving some margin for CMOS compo-
nents), and calculate the maximum number of RFCUs that can be
placed for various delay line sizes within the area budget. Since
optical buffer has impacts on both power and area, we develop a
custom efficiency metric to take into account both power efficiency
and area efficiency. The metric is simply the product of frames per
second per watt and frames per second per 𝑚𝑚2, and is named
PAP (power-efficiency-area-efficiency-product). The geo-mean of
relative PAP on four different CNNs (VGG-16, ResNet-18, ResNet-
34, ResNet-50) is calculated to determine the optimal delay line
length and number of RFCUs, and the results are shown in Table
4, along with relative FPS/W and FPS/𝑚𝑚2,. The change in laser
power is modeled in the calculation. The results suggest that when
the signals can be delayed by 16 cycles, the optimal efficiency can
be achieved, with 18 RFCUs. Thus, we configure ReFOCUS-FF to
have 16 RFCUs. We choose 16 rather than 18 as 16 is a power-of-two
value and fits better with neural network execution.

5.4.2 ReFOCUS-FB. There is an additional design choice for Re-
FOCUS-FB, which is how many times the inputs are reused before
generating new ones (𝑅). The choice of 𝑅 solely depends on the
signal loss of the optical buffer, and the related change in average
laser power and dynamic range of reused signals (ratio of the initial
signal power and the power of the last reused signal).

Unlike ReFOCUS-FF, laser power overhead is not trivial without
optimizations for ReFOCUS-FB, even with a low delay line loss.
Since the signal power will be smaller for each reuse iteration due
to the Y-junction, a relatively large initial laser power is required to

Table 4: Number of RFCUs can be placed and relative FPS/W,
FPS/𝑚𝑚2, PAP for different delay line lengths in terms of
cycles, for both ReFOCUS-FF and ReFOCUS-FB. The absolute
values are shown for the baseline case where𝑀 = 1.

𝑀 1 2 4 8 16 32
𝑁𝑅𝐹𝐶𝑈 25 24 23 21 18 11

FPS/W (FF) 1 (237) 1.92 2.83 3.71 4.51 4.72
FPS/𝑚𝑚2 (FF) 1 (196) 1.00 0.97 0.91 0.80 0.53

PAP (FF) 1 (4.6e4) 1.92 2.75 3.39 3.61 2.52
FPS/W (FB) 1 (247) 2.00 3.07 4.18 5.20 5.17
FPS/𝑚𝑚2 (FB) 1 (196) 0.99 0.96 0.91 0.80 0.53

PAP (FB) 1 (4.8e4) 1.98 2.96 3.80 4.14 2.75

make sure the last reused signal (the one with the lowest power) is
detectable by the photodetector. In this scheme, all signals except
for the last reused signal have higher than the required signal power,
which makes the average laser power much higher than the case
without optical buffers, especially when the split ratio 𝛼 is 50%.
The average laser power overhead and the dynamic range can be
calculated based on Equation 3 and are reported in Table 5 for
different number of reuses and 𝛼 . Without optimizing the 𝛼 , reuse
7 or more times is infeasible as it can lead to > 38× average laser
power and > 153× dynamic range. Even ignoring the laser power
overhead, the dynamic range is too large for an 8-bit ADC which
has just 256 levels.

However, this issue can be resolved by setting 𝛼 to 1/(𝑅+1), the
optimal Y-junction split ratio for the feedback optical buffer. As
shown in Table 5, the relative laser power and the dynamic range are
both 3.05 for reusing 7 times. Therefore, significantly more optical
reuse can be achieved with this modification. If only power-of-2
values are considered (to fit the structure of CNNs better), reusing
the signal higher than 15 leads to diminishing returns on overall
power efficiency, while increasing the dynamic range of the signal.
Thus, ReFOCUS-FB reuses the input signals optically 15 times, to
achieve a balance between power efficiency and effective output
precision. Once 𝑅 is determined, the delay line length (𝑀) and the
number of RFCUs can be decided in the same way as ReFOCUS-FF,
and the results are shown in Table 4. The optimal choices of𝑀 and
𝑁𝑅𝐹𝐶𝑈 are the same as ReFOCUS-FF, thus these two designs share
the same system architecture.

Table 5: Relative laser power when compared to the system
without optical buffer and the dynamic range of input signals
for different 𝑅 and 𝛼 .

𝑅 1 3 7 15 31 63
𝛼 =1/(𝑅+1)

relative LP. 2.05 2.56 3.05 3.87 5.96 13.7
dynamic range 2.05 2.56 3.05 3.87 5.96 13.7

𝛼 = 0.5
relative LP. 2.05 4.32 38.4 6.0e3 3.0e8 1.5e18

dynamic range 2.05 8.64 153 4.8e4 4.8e9 4.7e19
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6 EVALUATION
We employ Cadence Genus along with a commercial 14nm library
to model the power and area of the CMOS components. We use
CACTI [43] to model the area, leakage power, and access energy for
all the SRAM memory and buffers used in ReFOCUS. We develop
a custom simulator based on Python to simulate the throughput
and energy consumption of ReFOCUS on CNN inferences, and also
model the area of ReFOCUS. The simulator integrates the CMOS
and SRAM simulation results and then models the photonic part
based on the characteristics of photonic components used in Re-
FOCUS. Table 6 lists the power and area of the components used
in ReFOCUS. Since there are no reported ADCs/DACs that have
the exact same specifications as we assumed in ReFOCUS, we find
8-bit, 14 nm ADC and DAC, with higher frequency than ReFO-
CUS required, and then linear scale down the power accordingly
frequency, which is a conservative approach as the relationship be-
tween frequency and power is not linear. The average DAC power
is calculated by multiplying the power reported in [35] with the
duty cycle of DAC in ReFOCUS. Since JTC-based system can only
process positive weights, ReFOCUS implements pseudo-negative
processing, which splits a filter into two parts, one positive and
one negative. The negative part is processed as a positive filter
and the results are subtracted from the results of the positive part
digitally. This approach addresses the positive-weight limitation,
but doubles inference latency. We only benchmark the convolution
layers of these networks, which correspond to more than 99% of
total computation.

Table 6: Power of active components and the area of photonic
components used in ReFOCUS.

Component power (mW)
MRR 0.42 [42]
Laser (min) * 0.1 per waveguide
ADC @ 625 MHz 0.93 [35]
DAC@ 10 GHz 35.71 [7]

Optical component area (𝜇𝑚2)
MRR 255 [32]
Photodetector 1920 [32]
Y-junction 2.6 [69]
Laser 1.2e5 [13]
Delay line (0.1 ns delay) 1e4
Lens 2e6
*: Minimum laser power required. The average laser power will be higher to
compensate for the loss of optical buffers.

6.1 Power and area
For power evaluation, we benchmark ReFOCUS on 5CNNs (AlexNet
[27], VGG-16 [54], ResNet-18,34,50 [23]), and the average system
power is calculated. Overall, ReFOCUS-FF and ReFOCUS-FB con-
sume 14.0W and 10.8W average power respectively. The differ-
ence is caused by the further reduction of input DAC energy, as
ReFOCUS-FB has more optical reuse. Figure 8 shows the power

Figure 8: (a): Power breakdown of ReFOCUS-FF. (b): Power
breakdown of ReFOCUS-FB. The same legend is applied to
both pie charts.

breakdown of ReFOCUS-FF and ReFOCUS-FB. In both systems,
DAC still consumes the most power, but the proportion is reduced
in the FB version. For the FB version, DAC power is dominated by
weight DAC, which consumes 90% of total DAC power, preventing
further reduction of DAC power through input reuse. As a result
of computation becoming more efficient, SRAM access energy con-
sumes a large proportion of total power in both cases, which would
be even larger without data buffers. ReFOCUS-FB has significantly
higher laser power compared to ReFOCUS-FF, as the laser power
needs to be scaled to compensate for the loss of the feedback optical
buffer. Further improving the system power requires reducing the
weight DAC power, and we will briefly discuss this in Section 7.3.

Figure 9: Area breakdown of ReFOCUS. The secondary pie
chart shows the area breakdown of non-photonic compo-
nents (CMOS, SRAMmemory, and data buffers).

Figure 9 shows the area breakdown of ReFOCUS, which is ap-
plicable to both versions of ReFOCUS as they have the same area.
ReFOCUS has a 171.1𝑚𝑚2 overall area, with 135.7𝑚𝑚2 contributed
by the photonic components. SRAM memory and data buffers to-
gether consume 12.4𝑚𝑚2 area, and the rest chip area is contributed
by CMOS logic and ADCs/DACs. On the photonic side, lenses (58.5
𝑚𝑚2) and delay lines (41.0𝑚𝑚2) are the two largest contributors.
WDM reduces the lens area of ReFOCUS by 2×, making it possible
to fit 256 16-cycle delay lines with no area overhead. Further in-
creasing the delay line length will make its area overhead too large
to be compensated, and leads to lower system efficiency.

6.2 Effect of optimizations
Table 7 shows the potential reuse (spatial and temporal) that can
be achieved through different optimizations for the baseline sys-
tem and two versions of ReFOCUS. With the proposed WDM and
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optical buffer, both outputs and inputs can be further reused when
compared to the baseline, hence reducing the conversion energy.

Table 7: Potential reuse can be achieved by different opti-
mizations. OB stands for optical buffer and TA stands for
temporal accumulation.

Input reuse Output reuse
Broadcast OB WDM TA

Baseline 16 × N/A N/A 16×
ReFOCUS-FF 16 × 2× 2× 16×
ReFOCUS-FB 16× 16× 2× 16×

Figure 10: Relative FPS/W for ReFOCUS with different opti-
mizations. Each column includes the optimizations that are
reported on its left. Resnet-34 is used for this benchmark. OB
stands for optical buffer while SB stands for SRAM buffer.

Figure 10 shows the relative FPS/W on ResNet-34[23] of ReFO-
CUS with different optimizations enabled compared to ReFOCUS-
baseline with the same architecture (similar to [32]). All three opti-
mizations proposed (optical buffers, WDM, and SRAM data buffers)
improve the overall power efficiency noticeably. The SRAM buffers
provide substantial benefits because the power of ADCs/DACs is
optimized by optical buffers, WDM, and temporal accumulation,
making SRAM power consume a larger proportion of total system
power (36.9% for ReFOCUS-FB without data buffers). When compar-
ing to the baseline system that scaled to the same throughput (with
a much larger area), the absolute power of converters (ADC + DAC)
for ReFOCUS-FB is 1.72× smaller, demonstrating the effectiveness
of optical reuse to reduce the power overhead of A/D and D/A
conversions. Overall, both ReFOCUS versions achieve significant
performance improvement compared to the baseline system, with
ReFOCUS-FB being 2× more efficient.

6.3 Comparison with prior work
We primarily compare ReFOCUS with PhotoFourier for two reasons
- (1) PhotoFourier is the most closely related prior work as both
PhotoFourier and ReFOCUS are based on JTC, and (2) PhotoFourier
reports state-of-the-art efficiency results for on-chip photonic neu-
ral network accelerators. Tomake the comparison as fair as possible,
we obtain the simulator from the authors of PhotoFourier, and im-
plement a slightly modified version of PhotoFourier for comparison,

Figure 11: Two ReFOCUS versions compared to PhotoFourier,
in terms of relative FPS, FPS/W, FPS/𝑚𝑚2, PAP, and inverse
of EDP. Benchmarked on 5 CNNs.

which uses our power and area number for individual components
and adopts non-linear material for optical nonlinearity. We evaluate
the systems on the 5 CNNs mentioned earlier, and the geometric
mean of key metrics is calculated.

Figure 11 shows the relative improvements of ReFOCUS over
PhotoFourier, in terms of throughput (FPS), power efficiency (FPS/W),
area efficiency (FPS/𝑚𝑚2), and two combined efficiency metrics -
PAP (introduced earlier) and 1/EDP (inverse of energy-delay product).
Both ReFOCUS-FF and ReFOCUS-FB achieve better results on all
metrics compared to PhotoFourier, demonstrating the efficiency of
ReFOCUS. The FPS of ReFOCUS is roughly doubled since ReFOCUS
processes two wavelengths concurrently in each RFCU. For the
same reason, ReFOCUS achieves better area efficiency even though
delay lines add a large area overhead. Energy-wise, ReFOCUS-FB
achieves more than 2× FPS/W compared to PhotoFourier, thanks to
the extra input and output reuse achieved through the optical buffer
and WDM. ReFOCUS-FF also has close to 2× efficiency. Since ReFO-
CUS has higher throughput, power, and area efficiency, naturally,
ReFOCUS achieves significantly better PAP and 1/EDP.

We also compare ReFOCUS with two other 8-bit precision pho-
tonic neural network accelerators, Albireo [52] and Holylight-m
[36] in terms of FPS and FPS/W on AlexNet, VGG-16, and ResNet-
18. For reference purposes, we further compare ReFOCUS with a
digital accelerator (UNPU) [29] and one RRAM-based accelerator
[62]. The results are shown in Figure 13, some results are missing
as some works did not report results on all three networks. Simi-
larly, ReFOCUS achieves the best results on both metrics. ReFOCUS
achieves up to 25× power efficiency compared to state-of-the-art
MZI/MRR-based photonic neural network accelerator Albireo, and
achieves up to 145× power efficiency compared to Holylight-m.
The large performance gap between Fourier-optics based accelera-
tors such as ReFOCUS and PhotoFourier and the MZI/MRR style
accelerators demonstrates the superiority of Fourier-optics on CNN
acceleration.

To better demonstrate the advantage of ReFOCUS, we conduct a
comparison with some well-known digital accelerators from both
industry and academia, namely, the NVIDIA H100 GPU [3], Google
TPU V3 [1], Simba [51], and a design from JSSC 20 [70], on the
relatively large ResNet-50 network. The FPS results of H100 and
TPU V3 are collected from the MLPerf benchmark [48]. Figure 12
illustrates the FPS and FPS/W results. While H100 and TPU V3
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(a)

(b)

Figure 12: ReFOCUS compared with other accelerators. The
logarithmic axis is used. (a): FPS. (b): FPS/W.

exhibit better raw throughput compared to ReFOCUS, it is essential
to consider their significantly larger footprint as a contributing
factor. However, in terms of power efficiency (FPS/W), ReFOCUS
has a clear advantage over existing GPUs and ASIC accelerators,
boasting an efficiency that is 5.6 − 24.5 times higher.

The efficiency advantage over digital and other photonic accel-
erators mainly stems from the complexity reduction of JTC, the
passive calculation of Fourier transforms, and the reduced conver-
sion cost due to the reusing of light signals. When compared to
RRAM-based analog accelerators that have limited write endurance,
high write latency/energy, and are usually network-specific due to
the necessity to unroll the network into numerous fixed crossbar
arrays, ReFOCUS presents much better programmability and flexi-
bility while still having more than 2× efficiency. Rather than being
network-specific like RRAM-based accelerators, ReFOCUS allows
weights to be fully programmable at high speed during runtime,
akin to digital accelerators.

7 DISCUSSION
7.1 Instruction scheduling
While optical buffers introduce complexity to the system and data-
flow, potentially complicating scheduling, the buffer size (delay
line length) and latency in ReFOCUS are fixed. Given the strictly
first-in-first-out behavior of the optical buffer, its behavior can be
predetermined, allowing scheduling to be offloaded to the compiler.
Consequently, the compiler can manage the instruction scheduling
statically, akin to Very Long Instruction Word (VLIW).

(a)

(b)

Figure 13: ReFOCUS compared with different digital accel-
erators on ResNet-50. RF stands for ReFOCUS. (a) FPS. (b)
FPS/W.

7.2 Compensating system noise
Inherent in analog computing, noise and non-idealities cannot be
entirely avoided in photonic neural network accelerators. However,
system noise can be mitigated through careful design, placement,
and calibration of photonic components. Moreover, the noise impact
can be further compensated by modeling and injecting noise during
training. This approach enables the trained neural network to learn
and adapt to various noise behaviors and non-idealities.

7.3 DRAM, weight sharing, and weight DAC
Almost all prior works on photonic neural network accelerators
did not report DRAM energy, which is often a major contributor to
system power. We discover that when the computation and on-chip
memory access are efficient enough, DRAM access power cannot
be ignored. For example, DRAM access power can contribute more
than 50% of total power in ReFOCUS-FB, when profiled with HBM2
access energy [44]. For neural network layers with small activation
sizes but a large number of filters, DRAM energy dominates, even
though ReFOCUS already minimizes DRAM accesses (no DRAM
writes). Without reducing DRAM access energy, further optimizing
computation or on-chipmemory access leads to diminishing returns.
Besides developing better DRAM technology (e.g., HBM3), there
are also software solutions to reduce DRAM access energy, such as
weight sharing.

Neural network weight sharing:Weight sharing [15, 16, 31,
55, 61, 65] is an effective compression technique for neural networks
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that outperforms quantization and pruning while maintaining accu-
racy. It uses a smaller codebook and index matrix, reducing storage
needs. In CNNs, various weight sharing methods exist [31, 55, 65].
Sharing 2D convolution kernels [55] with a trainable scaling factor
can achieve a 4.5× compression ratio compared to 8-bit weights
in ReFOCUS, with negligible accuracy loss. This method reduces
DRAM access energy by 4.5× and overall energy by up to 52%.
Weight SRAM access energy is also lowered due to smaller weight
memory.

Channel Reordering: In ReFOCUS-FB and ReFOCUS-FF, the
weight DAC accounts for 90% and 53% of the DAC power consump-
tion, and 42% and 31% of the total system power on ResNet-34,
respectively. Weight sharing in 2D convolution kernels presents
an opportunity to decrease weight DAC power and thereby en-
hance system efficiency. To capitalize on this, we reorder the input
channels and group those that are assigned to the same kernel.
This minimizes the weight DAC operations, although the degree
of reduction is constrained by factors like input broadcasting and
reuse. We further introduce a Simulated Annealing-based algorithm
for channel reordering, achieving a 15% reduction in weight DAC
power for ReFOCUS-FF under a typical setup and boosting the
overall power efficiency by 4.7%.

7.4 Non-CNN tasks
While we primarily focus on accelerating CNNs in this work, re-
cently there are many works proposed Fourier-transform based
transformer [21, 30] and convolution-based transformer [64, 68],
which can be potentially accelerated by JTC-based systems as they
share similar underlying operations as CNNs. Further work is re-
quired to adapt JTC-based architecture for these transformer mod-
els, which will be a part of our future work.

7.5 Slow light
One concept that has been used to design area-efficient optical
delay lines is called ’slow light’. The speed of light is significantly
reduced as it propagates through a medium in this type of delay line,
achieved by manipulating the properties of the medium. With a
lower light speed, the length of the waveguide, and hence the delay
line area can be greatly reduced. There are works that reported
’slow light’ based delay lines with promising area efficiency [9, 66].
Given the number of cycles that inputs can be delayed is constrained
by the delay line area, having more compact delay lines will further
improve the system efficiency. Slow slight-based delay lines are not
used in ReFOCUS as they currently have relatively large loss [9]
and require further development.

8 RELATEDWORK
As mentioned in Section 1, on-chip photonic neural network accel-
erators can be roughly split into two categories - dot product or
matrix multiplication accelerators based on MRRs/MZIs, and con-
volution accelerators based on Fourier-optics. PhotoFourier [32],
being the only published Fourier-optics based accelerator so far, is
the most closely related prior work. Hence, we extensively com-
pare ReFOCUS to PhotoFourier. PhotoFourier proposed the first
on-chip JTC based neural network accelerator and demonstrated
state-of-the-art power efficiency. It uses plain JTCs as building

blocks that do not feature WDM or optical buffer and the perfor-
mance advantage mostly comes from the complexity reduction of
JTC. In contrast, ReFOCUS innovatively integrates two versions
of optical buffers and WDM. This distinct approach substantially
enhances both the area and power efficiency of JTC-based accel-
erators, thus differentiating ReFOCUS from PhotoFourier. Besides,
ReFOCUS further optimizes the dataflow and memory hierarchy
to improve power efficiency. Other on-chip photonic neural net-
work accelerators [36, 39, 52, 53, 56, 71] are fundamentally different
than ReFOCUS as ReFOCUS leverages the convolution theorem to
reduce the complexity of CNNs through Fourier optics.

9 CONCLUSION
In this paper, we introduce ReFOCUS, a Fourier-optics on-chip
photonic neural network accelerator featuring optical reuse. We
present two innovative optical buffer designs tailored to enhance
light reuse and energy efficiency. To mitigate the area overhead of
optical buffers, we incorporate WDM in ReFOCUS, significantly
improving the area efficiency of the system. Compared to state-of-
the-art photonic neural network accelerators, ReFOCUS demon-
strates remarkable gains: 2× throughput, 2.2× energy efficiency,
and 1.36× area efficiency. Furthermore, ReFOCUS achieves over
25× power efficiency when compared to photonic neural network
accelerators not utilizing Fourier optics, highlighting its potential
for future high-performance computer-vision applications.
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