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ABSTRACT

Approximate computing methods have shown great potential for
deep learning. Due to the reduced hardware costs, these methods are
especially suitable for inference tasks on battery-operated devices
that are constrained by their power budget. However, approximate
computing hasn’t reached its full potential due to the lack of work
on training methods. In this work, we discuss training methods for
approximate hardware. We demonstrate how training needs to be
specialized for approximate hardware, and propose methods to speed
up the training process by up to 18X.
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1 INTRODUCTION

Machine learning using neural networks has grown in popularity in
recent years. Neural networks have grown in size and complexity to
improve accuracy. Due to the increasing model complexity, approxi-
mate computing methods including approximate arithmetic, stochas-
tic computing, and analog computing have been proposed to trade
some computation accuracy for better performance. However, errors
introduced by approximate computing methods affect inference ac-
curacy and make it difficult to use models trained for floating-point
or fixed-point computation. Very few previous works have focused
on the training techniques needed for approximate hardware. As a
result, approximate computing has been limited to simple models
and datasets or has to sacrifice performance to maintain accuracy.
In this work, we propose methods to improve the training of
models using approximate computing. Our contributions include:

o Use activation functions to approximate computation error in the
backward pass.

o Use error injection to reduce the time per training iteration by up
to 36.6X.

e Combine error injection with accurate modeling to maintain
model accuracy.

e Reduce end-to-end training time by up to 18X, allowing training of
models previously impossible to train on a single consumer GPU.
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2 MOTIVATION

In this section, we discuss the benefits of computation with error for
neural networks and motivate the need for specialized training.

2.1 Inaccurate computation for neural networks

While there are multiple ways to improve computation performance
with inaccurate computation, we focus our study on three types:

(1) Stochastic computing (SC). SC represents numbers using ran-
domized bit streams and allows single-gate additions and mul-
tiplications. The low area of stochastic computing allows high
compute density and improved memory efficiency, offering up
to 38.7X higher energy efficiency compared to traditional fixed-
point accelerators [17].

(2) Approximate arithmetic. Approximate arithmetic focus on re-
ducing the cost of expensive computation, typically in the form
of approximate multiplication, without reducing the input and
computation bit width. Removing components from an accurate
multiplier reduces area and power at the cost of increased error
[9]. By introducing different levels of inaccuracy, approximate
computing can achieve various accuracy and performance levels,
reducing the power and area of a multiplier by 4X or more for
extreme cases [14].

(3) Analog computing. There is a growing interest in analog neural
network accelerators including processing-in-memory (PIM)
[1, 11] and on-chip photonics [12, 18]. The main advantage of
analog accelerators is that they require significantly less power
to compute dot products compared to their digital counterparts,
making the overall computation more power efficient, and can be
more than 10X more power efficient than modern digital acceler-
ators [18]. Analog accelerators usually consist of multiple arrays,
and each array computes a single dot product. Analog-to-digital
converters (ADC) are required to convert the dot product results
from the analog domain back to the digital domain.

Most of the mentioned methods can build upon traditional model
compression methods like weight pruning and weight/activation
quantization to further improve execution efficiency.

2.2 Need for specialized training

Neural networks typically assume no error during training, and can-
not work reliably when errors are introduced into the computation.
Stochastic computing is random by nature, and SC accumulation
using bit-wise adders cannot perform accurate accumulation [17].
Approximate multiplication introduces errors in multiplications by
design and can have very high errors for specific input combinations
[9]. Limited by the array size, in many cases, an analog accelerator
cannot compute the entire convolution in a single array, instead,
partial sums will be computed [7]. The partial sum will then be quan-
tized by the ADC before further accumulation in the digital domain
since ADCs have limited precision and range. However in normal
training partial sums will not be quantized, and can introduce signif-
icant errors if ADC bitwidth is low, making learned weights invalid
for the actual hardware. All of these effects need to be taken care of
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during training. As shown in Tab. 4, running a model pretrained for
fixed-point computation directly with approximate computing can
drop accuracy by 8-57% pts compared to modeling the computation
properly during training.

Modeling approximate computing accurately in the forward pass
is expensive compared to accurate multiplication and addition, as
shown in Tab. 1. In practice, the runtime difference can be even larger,
since floating-point conv2d/linear layers can use optimized kernels
from libraries like cuDNN [4], while functions to model approximate
computing methods require additional coding (i.e., implementing
custom kernels). As a result, specialized methods to reduce train-
ing time are necessary for approximate hardware.

Table 1: Relative multiplication and addition cost. FP32
multiplication and addition are used as the baseline. The
number of operations in C++ is used as the cost value.

Method Multiplication Addition
Floating point 0.5(fused) 0.5(fused)

. . e 64(unrolled) 64(unrolled)
Stochastic Computing (32-bit) 2(packed) 2(packed)
Approximate Multiplication 86 1

. 1(within channel)
Analog Computing ! 9(between channel)

2.3 Previous works
on training for approximate hardware.

Due to the difficulties in modeling computation errors during train-
ing, inaccurate computing methods have not been able to fully utilize
their benefits in previous works. For analog computing, there are a
few works discussing the quantization of partial sums (or ADCs) of
PIMs [7, 22] and photonic accelerators [8, 15]. However, the main ob-
jective of these works is accuracy optimization using their proposed
quantization methods and they usually focus on simpler datasets and
models so that runtime is relatively manageable. The runtime issue is
not addressed in these works, which is the primary focus of our work.

Previous works have also tried to model the computation error ac-
curately during training, but the expensive emulation cost prevents
training of more complicated models [13] in the case of stochastic
computing, or limits the approach to computation suitable for map-
ping to commercial training hardware (typically GPUs) [5] in the
case of approximate multiplication. Other works try to reduce the
error of approximation so that models trained for fixed-point compu-
tation can be used directly for inference. For stochastic computing,
SC additions are replaced with fixed-point additions to reduce error
[19]. For approximate multiplication, approximation is limited to
locations that don’t affect model accuracy too much [20, 21]. Since ap-
proximate computing relies on the error for performance, reducing
the error comes at the cost of diminished performance benefits.

3 METHODOLOGY

Our training improvements include three components: activation
approximation for non-linear computation, error injection during
training with fine-tuning, and gradient checkpointing. We will dis-
cuss the three components in detail in this section. We will use the
smaller CIFAR-10 dataset for most of this section due to the runtime
limitations on larger datasets. This setup limits the performance
benefits of our methods and also makes the runtime results less
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reliable due to large run-to-run variations, but we will demonstrate
the full performance benefits in Sec. 4. We focus on three types of
approximate computing methods mentioned in Sec. 2 to showcase
the benefits of our approaches:

o Stochastic computing. We use linear feedback shift registers for
stream generation, AND gate for multiplication and OR for ad-
dition, which is similar to the setup in [17]. We use 32-bit split-
unipolar streams (64 total bits).

e Approximate multiplier. We use an approximate multiplier from
EvoApproxLib [14]. Specifically, we use the mul7u_09Y setup. It
is a 7-bit unsigned multiplier in the paretal-optimal set for mean-
relative error, which is suitable for neural networks and has 8-bit
input precision when combining the sign bit. Compared to an
accurate 7-bit multiplier, the approximate multiplier has 4X lower
error and power consumption.

o Analog computing. To make a more generic argument, we set the
effective array size of analog accelerators such that the partial sum
of every convolution channel is quantized by the ADC. That is 9
for Resnet-tiny (Resnet-18 shrunk for TinyML applications used
in [2]) and Resnet-18 [6], and 25 for TinyConv (a four-layer CNN
used in [10]). Since analog accelerators usually only support posi-
tive inputs and weights, we use split-unipolar accumulation in our
training setup to handle negative weights, which results in 2X com-
putation. We assume 4-bit ADCs are used for all evaluations in this
paper. A relatively low ADC bitwidth is selected since the ADCs
are usually the power bottlenecks of analog accelerators, therefore
low-biwidth ADCs are always preferred if the accuracy impact is
not significant. The bitwidth for inputs and weights is set to 8-bit
for all cases to focus on the impact of partial sum quantization.

While there are other approximate hardware implementations, we
limit our study to the above three methods as they cover a wide
variety of approximate computing. Our method is applicable to other
approximate hardware setups with minimal change.

3.1 Approximation Proxy Activation

One issue of inaccurate computation is the non-linearity introduced
to multiply-accumulate operations, which is separate from non-
linear activation functions like ReLU. We use stochastic computing
and analog computing as examples. Approximate multiplier does
not suffer from the non-linearity issue, as error is only introduced
during multiplication. For SC, if the two input values a, and b are
uncorrelated, the OR adder performs a+b—ab on average. For analog
computing, partial sum and output results need to be clamped and
quantized. Accurately modeling the imperfections in computation
can be costly in the backward pass. For instance, the previously-
mentioned OR adder requires tracking almost all inputs in the adder
(aiaiOR(aj) =[1;4i(1—aj)) during backpropagation, whereas accu-
rate addition is much simpler in the backward pass (partial deriv-
ative=1). On top of being expensive to model, the nonlinearity can
hinder convergence if it is not taken into consideration. Using ac-
tivations as a proxy during backward pass is first proposed in[17] to
simulate the effect of SC OR accumulation. Contrary to normal activa-
tion functions, the added activation proxy is only used during training
in the backward pass and is not used during inference. With proper
implementation of the activation function, the overhead of the acti-
vation function can be negligible. As is shown in Tab. 2, modeling the
non-linearity using an activation function is necessary. TinyConv is
afour-layer CNN used in [10], and Resnet-tiny is Resnet-18 shrunk
for TinyML application used in [2]. Models are trained with accurate
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Table 2: Accuracy benefits of using activation functions.

Setup [ TinyConv [ Resnet-tiny
Stochastic Computing
No Activation 41.64% 10.00%
With Activation 72.18% 79.76%
Analog Computing (4-bit)
No Activation 74.85% 69.21%
With Activation 79.20% 77.23%
- : ..
E &
P o5 2o
- N Norm‘;\ Sum : ‘ - - Normgl Sum : !
(a) (b)

Figure 1: Activation modeling behavior of unipolar and
bipolar (a) stochastic and (b) analog computation. The bipolar
versions performs subtraction between two unipolar (positive
and negative) inputs to achieve the full range. For analog
computation, the ADC saturation is modeled as a clamp at
2 in this example, and other effects (e.g. size of accumulation)
are not considered.

modeling of stochastic and analog computing in the forward pass.
For analog computing, accuracy is noticeably lower when trained
without the activation function. For stochastic computing, training
does not converge at all without the activation function.

Usingan activation function requires the computation to be (mostly)
associative. Take the previously used OR accumulation and analog
computing as examples. Computation is broken up into positive and
negative parts since both work on unipolar (positive-only) inputs.
Accumulation within each part is associative, but subtracting the two
parts isn’t. This behavior can be visualized in Fig. 1. While the acti-
vation function can approximate unipolar OR accumulation, a single
activation cannot be used to model the entire accumulation when
subtraction is factored in. As such, accumulations need to be split
into positive and negative parts in the backward pass, so that each
part can be modeled using accurate accumulation with an activation
function. Similar effects can be seen in the analog computing setup.
Since the positive and negative parts saturate individually, a single
activation function is also insufficient. Tab. 3 lists the activation
functions used for stochastic computing and analog computing.

Table 3: Activation functions for stochastic computing and
analog computing. x is the output of a layer before activation.
Xpos is the output of positive weights and x;, is the output
of negative weights. Inputs are assumed to be non-negative
due to ReLU activation.

Method Activation Function
Stochastic Computing SC_act(x)=(1—e *ros)—(1—e *neg)
Analog Computing Analog_act(x) =HardTanh(xpos) —HardTanh(xpeq)
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3.2 Error injection

Despite resolving the issue of backpropagation, the activation func-
tion method cannot fully replace the forward propagation. Train-
ing models for non-floating-point computation typically involves
modeling the computation accurately in the forward pass, be it low-
precision fixed-point computation (including extreme precision like
binarization [16]) or approximate computation [5]. For fixed-point
computation, modeling the computation in the forward pass is rela-
tively cheap. An element-wise fake-quantization operator followed
by a normal convolution/linear operator is sufficient. The same
cannot be said for approximate computing methods. SC requires
emulating the stream generation and bit-wise multiplication in hard-
ware. The approximate multiplier described in Sec. 2 is made up of
hundreds of lines of bit manipulation. Analog computing requires
emulating the limited hardware array size and ADC precision dur-
ing computation. Tab. 1 demonstrates the high cost of emulating
approximate computing. In all cases, emulating the computation
is expensive, requires additional coding, and cannot be completely
overcome even with abundant programming resource.

Table 4: Accuracy impact of modeling approximate compu-
tation. "With Model" models the approximate computation
method accurately in the forward pass.

TinyConv Resnet-tiny
Method Inference Only | With Model | Inference Only | With Model
Stochastic Computing 14.87% 72.18% 48.57% 79.76%
Approximate Multiplication 71.88% 83.35% 76.95% 85.25%
Analog Computing (4b) 58.43% 78.94% 47.15% 77.23%

While it is expensive to model approximate computing accurately
in the forward pass, skipping modeling degrades accuracy, as shown
in Tab. 4. Despite being sufficient for the backward pass, the activa-
tion method defined in Sec. 3.1 is not sufficient for the forward pass.
To combat this limitation, we propose to replace accurate modeling
with two types of error injection coupled with normal training.

Type 1. The first type of error injection models the difference be-
tween activation function and accurate modeling as functions of
the output values of a layer, and we use it for stochastic computing
and approximate multiplication. Fig. 2 shows the error average and
variation of the four layers of TinyConv using stochastic computing.
Compared to the value expected from the simple activation function
y=1-e~%, the actual layer output differs significantly. The vari-
ance (represented as "std") in the plots means that it is impossible to
fully capture the computation details using only an activation func-
tion. Given that the activation function is only an approximation by
design, it cannot capture all the characteristics of the inaccurate com-
putation. On the other hand, the non-zero average error means that
the activation function doesn’t represent the target computation ac-
curately on average. Activation functions are derived under certain
assumptions. In the case of OR accumulation, the assumption is that
the size of accumulation n is large and all input values are small and
similar in value. These assumptions don’t always hold in a real model,
and the difference in average error between layers meansit’s impossi-
ble to have a single activation function for the entire model. For deep
models, the error of the activation function accumulates and results
in non-usable models after training. To resolve this issue, we propose
to add correction terms to the activation function during training.

Take the error profile shown in Fig. 2 as an example. The mean
and variance of the error are plotted with respect to the output after



tinyML Research Symposium’22, March 2022, San Jose, CA

010

005

0.00 - bias
. st

—— approx bias
— approx std

0.100

0.075

0.050

0.025 —— approx bias
: ~0.05

— approxstd e
0.0001 .
-0.10
-0.025
-0.050 <o . -015

00 02 04 06 08 00 02 04 0% 05
SC output SC output

(b) Layer 2

(a) Layer 1

0.050 M
00s| . 0.025
0.000

000] ¥

-+ bias
. st
—— approx bias
— approx std

+ bias

. st
—— approx bias
— approx std

-0.025

~0.050

-0.075

-0.100

—0.125

00 02 04 06 08 02 04 06
SC output SC output

(d) Layer 4

08

(c) Layer 3

Figure 2: Difference between outputs from stream compu-
tation and normal computation+activation.

the activation function, and both appear to be smooth functions.
From this observation, we model the average as a function of acti-
vated output values on top of the original activation function, and
the variance as a normally distributed random error with variance
dependent on the activated value. Both curves are fitted to a poly-
nomial function that’s different for each layer and calibrated 5 times
per epoch. Though it is possible to lower it further, this frequency
sufficiently amortizes the cost of calibration.

Type2. Thesecond type of error injectionis used in training analog
accelerators. The method is similar to the mentioned error injection
method used for stochastic computing and approximate multiplica-
tion, but with slight differences. In this case, the overall quantization
error of output activations (the sum of individual partial sum quanti-
zation errors) is modeled and injected. We first perform an accurate
forward pass for one batch, which quantizes the partial sum of every
channel before accumulation. The accurate results are subtracted
from the results separately generated by the normal Conv2d function
(does not quantize partial sums) to obtain the actual overall quantiza-
tion error. Then the mean and variance of the quantization error are
calculated and stored for each convolution layer. Instead of obtaining
the statistics on a per activation or per filter granularity, we only cal-
culate a single mean and variance for an entire layer. There are two
reasons for this choice: 1) empirical results suggest that the accuracy
of a single mean and variance is better than calculating mean and
variance at other granularity, and 2) memory saving, since only two
values need to be stored per layer. We calibrate the error statistics ev-
ery 10 batches, which achieves a good trade-off between accuracy and
runtime. For the majority of batches that do not require calibration,
we only compute a normal Conv2d in the forward pass (partial sums
not quantized). Then we simulate the quantization error by generat-
ing random error according to a normal distribution with mean and
variance set to the values obtained from the last calibration batch. The
simulated quantization error is directly added to the Conv2d outputs.
This way, for non-calibration batches, the runtime should be almost
identical to normal convolution, since generating quantization error
takes significantly less time compared to the convolution operation.
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Using error injection in the place of accurate modeling improves
accuracy compared to not modeling at all, as shown in Tab. 5. How-
ever, training with error injection alone is not sufficient to completely
bridge the gap, especially for analog computing with a low ADC
bitwidth. Later we will show the accuracy gap can be eliminated
through a fine-tuning step. Runtime is improved up to 6.7X with error
injection compared to using an accurate model during training, as
shown in Tab. 7. In most cases, the error injection runtimes are com-
parable to those in normal training (the "Without Model" column).
The slightly longer error injection runtime for analog computing is
due toits higher calibration frequency. Onrelatively alarger network
and dataset (Resnet-18 on Imagenet), the runtime improvement of
error injection can be larger for analog computing (Shown in Sec. 4).

3.3 Fine tuning

While the error injection mentioned in Sec. 3.2 cannot achieve the
same accuracy as training with accurate modeling, it reduces the
amount of fine-tuning with accurate modeling required to achieve
the same accuracy. The goal of error injection is to simulate the error
during training, which can make the model more robust to errors.
However, since the injected error is randomly generated while the
actual error is input-dependent, error injection cannot achieve the
same accuracy as accurate modeling. Still, error injection makes the
model more robust such that with a small amount of accurate mod-
eling, the model weights can quickly converge to the optimal point.
Fig. 3a compares the convergence behavior when error injection is
combined with accurate modeling for SC when trained for CIFAR-10.
For stochastic computing, error injection combined with 5 epochs
of fine-tuning is sufficient to achieve the same accuracy as using an
accurate model throughout the training. In contrast, convergence
is poor without error injection, and the model does not converge to
the same accuracy even with 20 epochs of fine-tuning.

Fig. 3b compares the convergence behavior for approximate mul-
tiplier on the same model. Since the accuracy gap is smaller with
approximate multiplier, training without error injection can also
converge properly with 5 epochs of fine-tuning. However, error
injection reduces that further to 2 epochs.

In the case of analog computing with 4-bit partial sum quantiza-
tion, training with an accurate model usually converges between
10-15 epochs for the CIFAR-10 dataset from pretrained INT8 weights.
Itis not necessary to train from scratch using accurate model or error
injection. Empirical results of analog computing training suggest
that using one-fourth of an epoch can achieve the same accuracy
compared to fine-tuning with a complete epoch. Therefore only the
last one-fourth epoch is used for fine-tuning, which adds minimum
runtime overheads. Unlike SC or approximate multiplication, fine-
tuning cannot fully recover the accuracy gap for alow ADC bitwidth,
but the accuracy drop compared to the accurate model is usually
small (around 1%). Fig. 3c compares the convergence behavior for
analog computing, with calibration and fine-tuning, error injection
can achieve similar accuracy compared to accurate model. Without
error injection, even keeping the same calibration and fine-tuning
setup as the error injection version, the training fails to converge to
the same accuracy as the version with error injection.

Overall, fine-tuning on top of error injection removes the accu-
racy deficit of error injection alone. As shown in Tab. 5, accuracy
after fine-tuning ("Fine-tuning” columns) is at most 1% pt lower than
training completely using an accurate model.
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Table 5: Accuracy impact of error injection training,.

TinyConv Resnet-tiny
Method Inference Only | With Model | Error Injection | Fine-tuning | Inference Only | With Model | Error Injection | Fine-tuning
Stochastic Computing 14.87% 72.18% 64.01% 73.09% 48.57% 79.76% 76.71% 81.29%
Approximate Multiplication 71.88% 83.35% 79.06% 83.05% 76.95% 85.25% 81.06% 84.85%
Analog Computing (4b) 58.43% 78.94% 62.02% 77.95% 47.15% 77.23% 71.10% 76.05%
%
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Figure 3: Convergence behavior of TinyConv with and without error injection using (a) stochastic computing, (b) approximate
multiplication, and (c) analog computing. Stochastic computing and approximate multiplication trains from scratch for 100
epochs and the first 20 epochs and the last few epochs are shown. Analog computing trains from an INT-8 pretrained weight for
10 epochs since training from scratch is not required. "Error X" means training with error injection with X epochs of fine-tuning
with an accurate model". "No Error X" means training without error injection with X epochs of fine-tuning. "Model" means

accurate modeling throughout training.

3.4 Gradient checkpointing

Both the activation function in Sec. 3.1 and error injection in Sec.
3.2 add additional steps in the computational graph during train-
ing, which increases memory requirement and limits batch size for
larger models. To reduce memory consumption, we use the gradient
checkpointing setup from [3]. Since the added functions are point-
wise functions and have low compute intensity (< 20 OPS/memory
access), checkpointing all added computations have minimal effect
on runtime even when not memory bound. Tab. 6 compares the run-
time and memory consumption with and without checkpointing for
Resnet-18 on the ImageNet dataset. Checkpointing allows training
with a larger batch size, which improves GPU efficiency and reduces
runtime required per epoch by 22% in this case.

Table 6: Training runtime and memory requirement of

make the best effort to optimize the kernels used for modeling approx-
imate computing, we cannot guarantee that the implementations are
optimal. Models are trained from a checkpoint provided by PyTorch
to reduce training time, which uses fp32. Because of this, the number
of epochs required to converge is different between the three ap-
proximate computing setups. Tab. 8 lists the detailed training setup.

Table 7: Runtime impact of error injection training. Shown
is the time (seconds) required per epoch. Runtimes are
measured on an RTX 3090 using TF32 precision and batch
size=256. SC and approximate multiplication are slower
due to the need to split positive and negative computations
discussed in Sec. 3.1. Fine-tuning runtime is the same as the
runtime with accurate model (the "With Model" column).

stochastic computing without and without gradient check- Method Without Model | With Model | Error Injection
pointing. We use the maximum batch size achievable which i i TinyConv
is a power of 2 Stochastic Computing 3.86 9.50 3.90
p . Approximate Multiplication 3.86 283 4.20
Analog Computing (4b) 2.13 3.91 2.73
Setup ‘ Memory (MB) ‘ Batch Size ‘ Runtime (s/epoch) Stochastic C _ : Resr;et—tmy
With Checkpoint 19840 256 1326 tochastic Computing 8> 33 8.65
Without Checkpoint 12766 128 1692 Approximate Multiplication 8.13 38.4 9.11
P Analog Computing (4b) 4.88 851 6.53
Tab. 9 shows the accuracy achieved for all three setups. While
4 RESULTS

In this section, we demonstrate the benefits of our techniques on a
more complicated workload. We use Resnet-18 training on the Ima-
geNet dataset to demonstrate the benefits. Models are trained on a sin-
gle RTX 3090 using mixed precision. We use PyTorch 1.12 as the base-
line framework, and implement the additional operators as CUDA
C++ extensions, including accurate modeling for stochastic comput-
ing, approximate multiplication, and analog computing. While we

there are no previous accuracy results that we can compare against,
the accuracy results follow the same trend as that seen for smaller
models discussed in Sec. 3. Approximate multiplication and analog
computing take too long to train without our improvements, as we
will show later.

Tab. 10 showcases the performance benefits of the proposed meth-
ods when combined. The improvements shown here underestimate
the benefits of the proposed methods due to the following factors:
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e The "Without Improvements" column assumes that the activation
function mentioned in Sec. 3.1 is used in the backward pass. If the
activation function is not used, the backward pass also needs to
be modeled accurately.

o Models are validated after each epoch. Since validation uses ac-
curate modeling and is the same with and without improvements,
the performance gap will be even more significant if the validation
frequency is reduced.

Despite these limitations, our methods reduce end-to-end training
time by 2.4X to 18.2X. For stochastic computing and approximate
multiplication, the performance benefit roughly follows the runtime
difference shown in Tab. 7, as runtime was bottlenecked by accurate
modeling even for smaller models. Approximate multiplication espe-
cially benefits from error injection, as iteration time reduces by 36.6X
compared to accurate modeling. For analog computing, the runtime
difference onImageNet is larger than that on CIFAR-10, as both Tiny-
Conv and Resnet-tiny cannot fully utilize the GPU on CIFAR-10.

5 CONCLUSION

In this work, we propose several methods to improve training perfor-
mance for inference on approximate hardware. Through the use of
activation modeling, error injection with fine-tuning, and gradient
checkpointing, we achieve convergence on a wide range of approx-
imate hardware. Our method makes it feasible to train large models
like Resnet-18 on the ImageNet dataset using a single consumer GPU.
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