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Abstract—The last few years have seen a lot of work to address
the challenge of low-latency and high-throughput convolutional
neural network inference. Integrated photonics has the potential
to dramatically accelerate neural networks because of its low-
latency nature. Combined with the concept of Joint Transform
Correlator (JTC), the computationally expensive convolution
functions can be computed instantaneously (time of flight of
light) with almost no cost. This ‘free’ convolution computation
provides the theoretical basis of the proposed PhotoFourier
JTC-based CNN accelerator. PhotoFourier addresses a myriad
of challenges posed by on-chip photonic computing in the
Fourier domain including 1D lenses and high-cost optoelectronic
conversions. The proposed PhotoFourier accelerator achieves
more than 28× better energy-delay product compared to
state-of-art photonic neural network accelerators.

I. INTRODUCTION

Convolutional neural networks (CNNs) play a key role in
modern Artificial Intelligence (AI) technologies and are the
core of many computer vision applications including image
classification [28], [33], [63], object tracking [22], [52], medical
imaging [19], [25], etc. Over the past decade, there have
been many efforts of designing domain-specific accelerators
utilizing parallel architectures to accelerate the computation
of neural networks in an energy-efficient way [4], [15], [16],
[43], [57]. However, the rapidly growing size of modern CNNs
and the slowdown of Moore’s law have limited CMOS digital
accelerators in terms of the energy cost of data movement and
computation [16], [38]. Silicon photonics has emerged as a
promising approach to deliver massive compute parallelism and
high efficiency [41], [61], [62]. Photonic components can easily
operate above 10 GHz while still being relatively low-power
[46], [56], and photonic waveguides do not suffer from RC delay
or energy losses [39], [51]. These features give photonics an
unmatched advantage in low-latency and low-power computation.

Photonic neural network accelerators can be roughly classified
into two main categories: Mach-Zehnder Interferometer (MZI)
and micro-ring resonator (MRR) based dot product accelerators
[8], [10], [24], [41], [44], [61], [62], [65], [75] and Fourier optics-
based convolution accelerator [13], [26], [45]. Most MZI/MRR
dot product accelerators resemble compute-in-memory analog
accelerators [6], [7], [59], but with high clock frequencies
(5-10 GHz). The large number of large-sized MZIs and/or
MRRs required can become a problem. On the other hand,
Fourier optics-based designs typically utilize the convolution
theorem to accelerate the convolution operation, which states
that convolution in the space domain is equivalent to point-wise
multiplication in the Fourier domain. Such systems, typically

called 4F systems (total system length is 4 times the focal
length of the lens), leverage time-of-flight (and passive, hence,
zero energy) Fourier transform using Fourier lenses to reduce
the complexity of convolution from O(N2) to just O(N). A
point-wise multiplication unit is required at the Fourier plane
(after the Fourier transform) and the filter weights are directly
loaded into the multiplication unit [45]. Theoretically, compared
to dot product accelerators, 4F systems can perform the same
computation with significantly fewer optical components because
of the complexity reduction. However, 4F systems require Fourier
domain filters that are complex-valued, with sizes same as
inputs. This constraint makes 4F systems harder to implement as
supporting complex multiplication is hard. Moreover, it makes 4F
systems less efficient when executing conventional CNNs, which
typically use 3×3 real-valued filters. All prior works on 4F-based
CNN accelerator are prototypes using free-space optics [13],
[45], which are slow and bulky compared to on-chip photonics.

In this work, we propose using Joint Transform Correlator
(JTC) to accelerate CNNs by reducing the computation
complexity through Fourier optics, while addressing the issues
faced by typical 4F systems. JTC is a variant of Fourier optics
that computes the auto-convolution of two input signals using
a pair of Fourier lenses. Just like 4F systems, JTC also takes
the advantage of the ‘free’ Fourier transform but uses spatial
filters instead of complex-valued Fourier filters. Therefore, JTC
systems allow filters to be smaller than inputs and only need
to support real-valued multiplication.

In this paper, we present PhotoFourier, a photonic CNN
accelerator based on Joint Transform Correlator (JTC). The
main contributions can be summarized as follows:
• We propose the row tiling/partitioning algorithm to implement

2D convolutions using 1D on-chip lenses.
• We develop a temporal accumulation approach to cut down

Analog-to-Digital Converter (ADC) power by 16X and
improve neural network accuracy significantly.

• To the best of our knowledge, this is the first work to propose
the architecture design of an on-chip Fourier-optics based
photonic neural network accelerator. PhotoFourier can achieve
as much as 28× better energy-delay product compared to
state-of-art photonic neural network accelerators.

II. A PRIMER ON THE JTC SYSTEM

A. Background of JTC

JTC has been widely used for many applications including
optical encryption [49], [55], [68], image filtering [30], [67],
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and object tracking [36], [42], [66] over the past two decades.
Recently there has been a growing interest in optical and
photonic neural networks, with some works trying to realize
JTC-based optical neural networks. [17], [20], [21], [29]
provides theoretical analysis and experimental demonstration of
a free-space JTC system designed for low latency convolution
operations while [50] demonstrates the concept of a basic
on-chip JTC-based photonic neural network.

In physics, an optical lens can achieve Fourier transform
F [Ẽ(x,y,f)] [23] on its back focal plane if an input image
Ẽ(x,y,f) illuminated by a coherent light (usually a laser) is at
the front focal plane of the lens. Ẽ is the amplitude of the light
at the front focal plane, F is the symbol of the Fourier transform.
Adopting the Fourier transform of the lens, [71] first made an
optical JTC to generate the optical convolution with both phase
and amplitude. Based on the traditional 2D optical JTC, a baseline
1D on-chip photonic JTC can be built with slight modifications.
Figure 1 (a) depicts the layout of a baseline on-chip JTC system,
which consists of five key components: (1) a 1D multi-channel
input beam with a signal s(x+xs) and a kernel k(x−xk) (where
xs and xk are offsets of s and k from the global origin in x direc-
tion, respectively) passes through (2) the first on-chip metasurface-
base lens functioning as a traditional free-space lens, to achieve
1D Fourier transform F [s(x+xs)+k(x−xk)], (3) a nonlinear
function component implemented using photodetectors (to
transfer optical signals to electrical signals meanwhile achieve a
square function) and electro-optic modulators (EOM) (to transfer
electrical signals back to optical signals), (4) the second on-chip
metasurface-base lens, and arrives at (5) photodetectors recording
the intensity pattern of the convolution computed by the JTC:

s(x+xs+xk)∗k(−x)+s(−x)∗k(x−xs−xk)+O(x) (1)

, where ∗ means convolution, O(x) = F
[
|S(x)|2+|K(x)|2

]
.

The first and second terms are the computed auto-convolution
between the two inputs whereas the third term O(x) is a
non-convolution term. The convolution terms in Equation 1 can
be shifted off the center non-convolution term O(x) by adjusting
the distance between two inputs, so that the convolution
would not be affected by the non-convolution term O(x). The
photodetectors only need to detect one of the convolution terms
to get the convolution result. To demonstrate this, we simulate
the JTC output of a 256-element input which is a partitioned
and tiled CIFAR-10 input, with a tiled convolution kernel (refer
to Section III for tiling details), and the JTC output is shown
in Figure 2. The simulated output clearly shows the three terms
in the output are spatially separated with no overlap.

In the baseline system, the non-linear function is a square
function achieved by photodetectors. One photodetector and one
MRR are required for each waveguide. EOMs in this design
are tunable MRRs [46], which transfer electrical signals back to
optical signals. MRRs that implement the square function can be
directly controlled by the output of the photodetectors, without
conversion between analog and digital domains. The distinction
between on-chip JTC and conventional free-space JTC is that
2D lenses are replaced with 1D on-chip lenses, hence 1D
convolutions are computed instead of 2D convolutions.

Fig. 1. (a): The annotated layout diagram of a baseline on-chip JTC system.
(b): The PCB photo of the fabricated prototype.

B. A JTC accelerator prototype

We have designed and fabricated a prototype of the baseline
system, which is the first on-chip JTC system. Figure 1 (b)
shows the fabricated JTC chip inside a PCB. The detailed
experimental evaluation of the prototype system is out of
the scope of this paper, as we focus on the architecture
design and analysis of an upscaled system. Still, the prototype
system demonstrates that on-chip JTC systems are suitable and
realizable in terms of accelerating CNNs.

Fig. 2. Simulated JTC output for a 256-element input (partitioned from a
CIFAR-10 input) with tiled convolution kernels.

C. Issues faced by on-chip JTC accelerators

The advantage of reducing the complexity of convolution
operation without adding weight bandwidth overhead makes
JTC a potentially better candidate than other photonic systems
for efficiently accelerating CNNs. However, there are still many
challenges that need to be addressed. Some issues are faced
by photonic accelerators in general while the others are specific
to on-chip JTC accelerators.

1) 1D lens: Being on-chip means the lenses can only be
one-dimensional, hence only 1D Fourier transform is supported
and results in 1D convolution. Most CNNs use 2D convolution
to capture information on both x and y dimensions. Clearly, just
using 1D convolution will lead to poor accuracy and make JTC
systems not able to execute conventional CNNs. To overcome
this challenge, we propose the row tiling method to approximate
2D convolutions with 1D convolutions accurately.

2) Component redundancy: The baseline JTC system
described in Section II-B can be split into two identical
parts. Each part contains a set of MRRs, Fourier lens, and
photodetectors. When processing a convolution, both parts can
not be utilized at the same time, resulting in a 50% utilization.
Such inefficiency leads to potential optimizations including
pipelining the system, which will be discussed in Section IV.

3) Overhead of the non-linear function implementation: A
baseline JTC system uses MRRs to implement the required
non-linear function, which results in undesired power and area
overhead. In fact, the non-linear function could be implemented
passively using optical non-linear materials, which can massively
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reduce the total number of active photonic components. Promis-
ing research results have been reported on optical non-linear mate-
rials [3], [5], [48] and JTC systems with non-linear materials [21],
[31], [69]. The reason for not using non-linear materials in the
baseline JTC system is that such materials are not mature enough
to be fabricated with silicon photonics. However, in the near
future, passive non-linear materials could be used to implement
the non-linear function, making designs more power efficient.

4) O-E and E-O conversion overhead: Theoretically, the
power efficiency of photonic accelerators should be an advantage
over digital accelerators but the components required for O-E
and E-O conversions (ADC, DAC, and modulators) are active
and draw a large amount of power. If the architecture is not
carefully designed to compensate for the conversion overhead,
the overall power efficiency of photonic accelerators can
easily be worse than CMOS accelerators. A key part of our
architecture and dataflow design is to minimize the number of
O-E and E-O conversions for optimal power efficiency.

5) Mismatch between the frequency of photonics and
CMOS: One advantage of silicon photonics is that they can
be clocked extremely fast. Optical components like MRRs can
operate above 30 GHz. Most existing photonic neural network
accelerators set clock frequency between 5 to 10 GHz. However,
it is extremely challenging to design and fabricate CMOS
components with 10 GHz frequency. CMOS circuit is required
to generate inputs, receive outputs, communicate with memory,
and compute operations that the photonic accelerator is not able
to compute. How to address the frequency mismatch between
CMOS circuits and photonics is a challenge toward realistic
photonic neural network accelerator designs.

III. 2D CONVOLUTION COMPUTATION ON JTC
As discussed in Section II, an on-chip JTC can compute the

convolution between two inputs, but is limited to 1D. To address
this issue, we propose a generic algorithm to compute 2D
convolution using 1D convolution, which can be applied to any
hardware that supports 1D convolution, including JTC systems.
The key idea of the proposed algorithm is row tiling (and
partitioning), where the rows of 2D inputs and kernels are tiled
to form 1D inputs and kernels for 1D convolution. The proposed
algorithm can achieve identical results as 2D convolutions in
‘valid’ mode (without zero padding, output size smaller than
input size), and can closely approximate 2D convolutions in
‘same’ mode (with zero padding, output size same as input size).
In the rest analysis, we assume 2D convolution uses the ‘same’
mode, which is more common. Assuming a 2D input has size
Si×Si, a 2D kernel has size Sk×Sk, and the maximum 1D
convolution size supported Nconv . Depending on Si,Sk, and
Nconv , the algorithm is split into three variations.

A. Row tiling
Row tiling can be applied when Nconv>Sk×Si, which is

the most common case. The process is best explained with the
visualizations of sliding window convolution, which are shown
in Figure 3. The first step is to tile the rows of the 2D input
and kernel. The number of input rows that can be tiled each
time is

⌊
Nconv

si

⌋
, which depends on the maximum size of 1D

convolution. All kernel rows are tiled, but they are separated
by zero-padding with size Si−Sk to ensure input and kernel

rows are aligned after tiling (Figure 3 (b)). Zeros are added to
the end of tiled input and kernel rows, to make both of them
have length Nconv . For conventional CNNs, the 2D convolution
process can be visualized by sliding the kernel over the input,
and in each step the overlapped regions between the kernel and
input are multiplied and accumulated (dot product) to generate
a single output value. This step is repeated until the kernel is
convolved with the entire input (Figure 3 (c)). Similarly, for 1D
convolution, the 1D kernel is sliding from left to right and the
dot product is computed for the overlapped region. Since kernel
rows and input rows are aligned after tiling, 1D convolutions
essentially perform the same computation as 2D convolutions
and generate the same results (first two rows of Figure 3 (d)).
The outputs are valid 2D convolution results as long as the
tiled kernel is fully inside the tiled input rows. However, when
continuously sliding the 1D kernel as shown in the last row of
Figure 3 (d), the dot product results are invalid, since filter row
3 (g,h,i) is not convolving with the correct input row (row 5 of
original input cannot be tiled). For the example in Figure 3, a
20-element output is generated, but only the middle 10 elements
are valid convolution results (two valid output rows). For the
cases where the entire 2D input cannot be fully tiled, the tiling
will be repeated until all the valid output rows are generated. The
general formula for the number of valid output rows Nor that can
be generated through row tiling in one convolution operation is

Nor=

⌊
Nconv

si

⌋
−Sk+1

, and the total number of 1D convolution required is
⌈

Si

Nor

⌉
.

Therefore the computation efficiency (measured by the percentage
of valid outputs) is higher when Nconv is large or Si is small.

Edge effect: 2D convolution in ‘same’ mode pads input edges
with zero. The output of the proposed row tiling algorithm will be
different in the regions where a single kernel row overlaps with
two input rows because row tiling does not pad inputs (Figure 3
(e)). The difference only happens at the edges of original input
rows and the impact is minimal, especially for small kernels. Zero-
padding can be applied during tiling so that the proposed algo-
rithm can generate identical results compared to 2D convolution.
However, adding zero-padding will make the output size larger
than the input, which leads to additional overheads caused by
extracting the desired output. Since the impact of the edge effect
is small (Section III-D), zero-padding is not applied by default.

B. Partial row tiling

When Si <=Nconv <Sk×Si, not enough input rows can
be tiled to generate an entire row of 2D convolution output
in one step. In this case, tiling can still be applied but multiple
cycles are required to obtain the full results of one output row.

For example, when NWA = 2×SA, the computation of a
single output row is split into two cycles and the results are
accumulated after both cycles complete the execution. In cycle
1 the first two rows of the input and the kernel are tiled while
in cycle 2 only the third row of input and kernel are processed
(under-utilizing the convolution hardware). Number of cycles
required to compute a full 2D convolution is Si×

⌈
Sk

Nir

⌉
, where

Nir=
⌊
Nconv

Si

⌋
(the number of input rows can be tiled).

3



Fig. 3. Visualization of row tiling with an example of 5×5 input, 3×3 kernel, and maximum 1D convolution size of 20. Different rows of the input are represented
using different colors. (a): 2D input and kernel. (b): Tiled 1D input and kernel. Kernel rows are zero-padded to match the input row size. The last row of input is not
tiled due to the limit of 1D convolution size. (c): Sliding window convolution process of normal 2D convolution to produce rows 1-3 of the output. (d): Sliding window
convolution process of 1D convolution. For the first two rows, the tiled kernel rows are aligned with their corresponding input rows and produce valid results. Row 3
illustrates the case where the tiled kernel ‘slides’ outside the input, and generates invalid results (since input row 5 is not tiled). (e): Edge effect. For 2D convolution with
zero-padding when the filter is sliding outside of the inputs, the part outside the input (c,f,j) will convolve with zero. However, for 1D convolution they will convolve
with the next input row, producing different results compared to 2D convolution. (f): Output format of 1D convolution. Invalid results are marked with red color.

C. Row partitioning

When Nconv<Si, a single row of input needs to be split into
multiple partitions. The partitioning is similar to the case where
Nconv=Si (dividing the 2D input into individual rows), except
that each input row is further divided into partitions. The total
number of cycles required to compute a full 2D output plane
is Si×Sk×

⌈
Si

Nconv

⌉
. Row partitioning is typically only used

for the first layer of CNNs with high-resolution inputs. In later
layers, the size of inputs usually will be reduced through pooling.

D. Accuracy of row tiling/partitioning

We evaluate the accuracy of the proposed row tiling method
with 1D convolution (theoretical accuracy of PhotoFourier) on
three common CNNs using ImageNet dataset, which are AlexNet
[33], VGG-16 [63], and ResNet-18 [28]. Prior works on photonic
accelerators that focus on system architectures either did not
report any accuracy [61], [62] (accelerate uncompressed neural
networks) or just reported theoretical accuracy of their compres-
sion method [41], [75] (accelerate compressed neural networks).
Therefore the theoretical accuracy is the only metric to compare
the relative accuracy between different on-chip photonic accelera-
tors, and we compare them whenever possible in this evaluation.

TABLE I
ORIGINAL ACCURACY OF THREE CNNS AND THE ACCURACY DROP OF

DIFFERENT NEURAL NETWORK ACCELERATORS (%). T-1 AND T-5 MEAN TOP-1
AND TOP-5 ACCURACY. OURS STANDS FOR THE PROPOSED ROW

TILING/PARTITIONING METHOD WITH 1D CONVOLUTION. ACCURACY DROP IS
REPORTED INSTEAD OF RAW ACCURACY BECAUSE WE HAVE SLIGHTLY

DIFFERENT ORIGINAL ACCURACY THAN WHAT IS REPORTED IN [41] AND [75].
TOP-1 ACCURACY IS NOT REPORTED IN BOTH PRIOR WORKS.

Original Ours [41] [75]

T-1 T-5 T-1 T-5 T-5 T-5
AlexNet 56.5 79.1 -0.7 -0.4 -0.8 N/A
VGG-16 73.4 91.5 -0.8 -0.4 N/A N/A
ResNet-18 69.8 89.1 -1.3 -0.9 -0.6 -1.5

The evaluated accuracy results are shown in Table I, original
accuracy is the floating-point accuracy. We use the row tiling
algorithm in this evaluation, but partial row tiling and row
partitioning should achieve the same accuracy. In general,
PhotoFourier with the proposed row tiling/partitioning method
can achieve less than 1% drop in top-1 and top-5 accuracy
for most cases and performs on par with or better than [41]
and [75]. The accuracy results for the row tiling method are
inference only using weights trained with 2D convolutions, and
the accuracy drop could be eliminated with retraining.

IV. PHOTOFOURIER COMPUTE UNIT

We name the building block of the proposed PhotoFourier
accelerator PhotoFourier Compute Unit (PFCU). Each PFCU
is essentially an optimized version of the JTC system shown
in Section II-B.

A. Pipelining the PFCU

The baseline JTC system requires photodetectors and MRRs
in the middle of the system to implement the square function
in the Fourier domain, hence the system can be split into two
identical parts each with a set of MRRs, Fourier lens, and
photodetectors. The reaction time of photodetectors is usually
the bottleneck and prevents the system from operating at higher
frequencies. Figure 4 depicts the pipelined version of the JTC
system. The pipelining is implemented by adding a sample
and hold unit at the Fourier plane to buffer the output of the
photodetectors. This two-stage pipelined PFCU, processing two
convolutions at the same time, can double the throughput with
a negligible increase in energy per convolution.

B. Optimizing PFCU for small filters

JTC is originally designed to compute the convolution
between two input signals of the same size. Therefore, the
number of input waveguides is the same as the number of filter
waveguides in the baseline JTC system However, for CNNs,
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Fig. 4. Visualization of pipelined PFCU.

the filter size is typically much smaller than the size of input
activations. Each filter waveguide requires a DAC and an MRR
to generate the corresponding weight value, and these devices
are redundant if the waveguide is inactive, which means the
waveguide never needs to generate non-zero values. To improve
the area and power efficiency of the JTC system, DACs that
correspond to inactive weight waveguides should be removed.
Since the locations of active waveguides depend on the input
activation size according to the proposed row tiling method,
MRRs should not be removed so that every filter waveguide can
be active if necessary. MRRs require far less area and power
compared to DACs, and can be power gated to save power when
inactive. In modern CNNs, the filter size is rarely larger than
5×5, therefore most of the waveguides are inactive. PFCU keeps
25 active waveguides with corresponding DACs for backward
compatibility considerations. For the rare cases where the filter
size is larger than 5×5, the inputs and filters can be partitioned
to fit onto PFCUs (discussed in Section III-B). The inactive
waveguides act as zero-padding, they are still fabricated on the
JTC, but they do not receive any inputs and consume zero energy.

V. ARCHITECTURE DESIGN

We will introduce the high-level architecture and configuration
of PhotoFourier first. The optimizations and reasons behind
the choice of design parameters will be covered later in this
section (Section V-B to Section V-F).

A. Overall system architecture
We architect two versions of PhotoFourier, PhotoFourier-CG

(current generation) and PhotoFourier-NG (next generation).
PhotoFourier-CG, as its name suggests, uses conservative
estimations on area, power, and integration technology. Figure
5 shows the high-level architecture of PhotoFourier-CG. We
architect PhotoFourier-CG as a two-chiplet system, with one
CMOS chiplet and one photonic integrated circuits (PIC) chiplet.
The PIC contains 8 PFCUs, each with 256 input waveguides,
and is clocked at 10 GHz. PhotoFourier-CG by default operates
at 8-bit precision. PhotoFourier-CG uses input broadcasting and
OS dataflow, and implements 16-channel temporal accumulation
to reduce the ADC and CMOS (except for the input generation
circuit) frequency to 625 MHz. The input and weight DACs still
operate at 10 GHz while SRAM operates at 625 MHz. Data
buffers are used to communicate between two clock domains
during input/weight generation. PhotoFourier also contains 8
CMOS tiles that are designed to handle the input and output
of PFCUs, as shown in Figure 5 (a). The CMOS tile contains
two sub-circuits, one is for input generation and one is for
output processing. The input generation circuit has two clock
domains, the slower clock is for weight memory access while the
faster clock is used to control the DACs. The output processing
circuit is used to read and accumulate photodetector outputs as

well as to apply scaling/normalization and activation functions.
Each CMOS tile has a 512 KB local weight SRAM while the
entire PhotoFourier shares a 4 MB global activation SRAM. The
activation memory size is set to be large enough to store the
activations of common CNNs [28], [33], [63] locally with ping-
pong buffering (2 × maximum activation size), such that the
number of DRAM access is minimized and activations storing and
loading can happen at the same time. Similarly, the weight SRAM
size is set to store the weights of an entire layer of common CNNs
[28], [33], [63]. We have taken pseudo-negative processing into
account when determining the size of weight SRAM, which will
double the storage requirement (see Section VI-A). PhotoFourier-
CG has an activation tile that is similar to the input generation
circuit in Figure 5 (a), but is connected to activation SRAM and
generates input activations that are shared among all PFCUs.

We choose to not assume CMOS and photonics can be
fabricated on the same chip monolithically with advanced
technology nodes in PhotoFourier-CG, unlike some other
works that are based on such assumption [41], [61], [62], [75].
The reason is the current state-of-art commercial available
technology for monolithic CMOS and photonics integration can
only fabricate 45nm CMOS [51], which is several technology
nodes behind the state-of-art 5nm technology [72].

a) PFCU layout optimization: Figure 5 (c) shows a
simplified layout diagram of the PFCU. Compared to the
baseline JTC system in Figure 1 (a), the system is flipped after
the first set of photodetectors which is in the middle of the
system and signals travel towards the CMOS chip in the second
part of the system. This folded layout is adopted to place the
weight MRRs and the final photodetectors on the same side
of the PFCU and close to the CMOS chiplet, which can reduce
the length of the analog signals to/from the CMOS chiplet.
In the 2-chiplet based system, ADCs and DACs are placed
on the CMOS chiplet, hence analog signals need to travel
between the chiplets. The loss of analog link due to IR drop
will be troublesome if the link length is too long, therefore final
photodetectors cannot be placed on the other end of the PIC.

Another layout optimization is the MRRs and PDs are
grouped into rows with the size of 32 and stacked vertically
to reduce the PFCU width (if oriented as in Figure 5 (c)).
Placing 512 MRRs and PDs in one row horizontally will lead
to more than 10 mm width of a single PFCU, which makes the
multi-PFCU layout impossible. Even with this optimization, each
PFCU still has about 2.32 mm width due to a large number of
waveguides and the folded layout. This width makes the layout
and fabrication of 16-PFCU challenging as all PFCUs need to be
placed close to the CMOS chiplet. Therefore, PhotoFourier-CG
only uses 8 PFCUs to make the PIC width reasonable.

b) PhotoFourier-NG: We also architect an advanced ver-
sion of PhotoFourier, PhotoFourier-NG, which assumes next-
generation technologies that are not mature enough currently,
but will be available in the near future. On the architecture level,
there are two main differences compared to PhotoFourier-CG:
(1) PhotoFourier-NG assumes non-linear materials are used to
implement the square function of JTC passively instead of pho-
todetectors and MRRs; (2) PhotoFourier-NG assumes monolithic
integration of CMOS and photonics with advanced technology
node, which eliminates all layout constraints discussed in the
previous paragraph. In this case, PFCUs no longer need to have a
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folded layout and can be placed in just one dimension. Therefore,
PhotoFourier-NG uses 16 PFCUs instead of 8 to improve power
efficiency. Besides these two differences, all other design param-
eters are the same for PhotoFourier-CG and PhotoFourier-NG.

B. Bottleneck analysis of baseline system
To optimize the system for power efficiency, it is important

to understand the power bottleneck of a baseline system. The
baseline system is configured as having 1 PFCU, 256 input
activation waveguides, and clocked at 10 GHz. We evaluate
the system on VGG-16 [63] and profile the power contribution
of different components. Figure 6 shows the power profiling
results. ADCs and DACs dominate the system power and
contribute more than 80% of the total system power. Therefore
the architecture and dataflow should be designed to minimize
the number of O-E and E-O conversions.

C. Temporal accumulation
From the results of Section V-B, it’s clear that O-E and E-O

conversions are the bottlenecks of the baseline system. It is
crucial to reduce the power consumption of DACs and ADCs
to improve overall power efficiency. Thus, DACs and ADCs
should be as low-frequency and low-precision as possible (lower
frequency also makes the CMOS receiving circuit operate slower).
However, lower precision usually leads to worse accuracy,
especially for ADCs since they quantize partial sums which
typically require higher precision than activations and weights.

To address these issues, we propose the temporal accumulation
method, which is a key optimization of PhotoFourier. Temporal
accumulation is a method to accumulate the convolution results
temporally using photodetectors (before the O-E conversion),
which can reduce the ADC and CMOS frequency and the output
data bandwidth, as well as improve the accuracy for designs
with 8-bit ADCs. Since the accumulation happens before the
ADC readout which applies quantization, temporal accumulation
can be considered as full-precision and can improve the accuracy.
In other words, temporal accumulation allows 8-bit ADCs to
be used without significant accuracy drop, which is otherwise
impossible for certain cases. The accumulation happens at the
photodetector and can be achieved through capacitors which
accumulate the charges to be read at a later time.

In a typical CNN, the convolution results of different input
channels need to be accumulated to compute the final output
activation, therefore the dataflow needs to be organized in a way
that the innermost loop is the input channel such that the output
of the channels can be accumulated by the photodetector. There
are both accuracy and performance considerations when choosing
the number of channels that are accumulated by the photodetector
(temporal accumulation depth). The accuracy results suggest
that the temporal accumulation depth of 16 achieves the best
accuracy and can restore the accuracy drop due to ADC
quantization. Further increasing the temporal accumulation depth
will not improve the accuracy, but will make photodetectors
larger and slower (and harder to design). Also, for small CNNs,
the number of input channels can be quite small and can result
in under-utilization if the temporal accumulation depth is too
large. Therefore, we set the temporal accumulation depth to 16
in PhotoFourier, which significantly improves overall accuracy,
while still being flexible and implementable. This leads to 16×

reduction in ADC frequency, CMOS frequency on the receiving
end, and output bandwidth. Consequently, the power of ADC
can be massively reduced while the CMOS circuit can operate
below 1 GHz (except for the input/weight generation circuit).
Temporal accumulation addresses two issues faced by photonic
neural network accelerators with minimal hardware overhead,
hence is the de-facto design choice of PhotoFourier and is
prioritized in our dataflow and parallelization scheme analysis.

1) Temporal accumulation accuracy: To demonstrate temporal
accumulation can improve accuracy, we generate the accuracy
results of ResNet-s (a pruned version of ResNet-18 used in
[9]) on CIFAR-10 with different temporal accumulation depths.
ResNet-s is selected since it is a compressed network and is more
sensitive to quantization. The model simulates the impact of
photodetection, which includes applying square function to partial
sums and adding sensing noise. The signal-to-noise (SNR) ratio
is obtained by computing the average signal power at the pho-
todetectors and compare to the noise power due to dark current.
The results in Figure 7 suggest that temporal accumulation can
significantly improve the accuracy for designs with 8-bit ADCs.
The reason is that 8-bit precision is not enough for partial sums
even though it is typically enough for inputs and weights. Since
each ADC quantization incurs a large quantization error, having a
greater temporal accumulation depth results in fewer partial sum
quantization operations (temporal accumulation is full precision),
and leads to smaller overall quantization error and better accuracy.

D. Choice of parallelization scheme
We architect PhotoFourier as a system that consists of multiple

PFCUs, hence the suitable parallelization scheme needs to be
determined for optimal power efficiency. Given a set of available
PFCUs, there are three parallelization schemes that can be
considered, namely input broadcasting, weight broadcasting, and
channel parallelization. Input broadcasting broadcasts the input
activations to all PFCUs, and each PFCU computes a unique
filter. In this scheme, the DACs and MRRs used to generate input
activations can be shared among all PFCUs. Weight broadcasting
broadcasts a single filter to all PFCUs, and each PFCU processes
a unique convolution window or a full input activation (requires
batched processing). Similarly, the DACs and MRRs required to
generate filter weights can be shared.In channel parallelization,
each PFCU processes one input channel, and the convolution out-
puts of all PFCUs are accumulated with a single set of photode-
tectors and ADCs. Channel parallelization scheme shares ADCs
among PFCUs rather than DACs and MRRs. The three paralleliza-
tion schemes can also be mix-and-matched for optimal results.

In our parallelization scheme analysis, we exclude the weight
broadcasting scheme and only consider input broadcasting and
channel parallelization. There are two reasons for this choice: (1)
The number of DACs required to generate filter weights is signif-
icantly less than input activations, so the benefit of weight broad-
casting is less than input broadcasting; (2) For many situations an
entire input activation can be loaded on a single PFCU, thus multi-
batch processing is required for weight broadcasting, which is not
always possible for inference tasks. Output stationary dataflow is
used in this analysis, which is required for temporal accumulation.

The optimal parallelization scheme can be formulated as
a minimization problem of minimizing the sum of ADC and
DAC power since they dominate the power consumption. Table
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Fig. 5. High-level architecture diagram of PhotoFourier-CG. WS stands for weight SRAM, BUF stands for buffer and PD stands for photodetector. (a): CMOS
processing tile assigned to one PFCU. It contains two parts, one part for filter weight data generation and the other part for output processing. (b): PhotoFourier-CG
architecture with 8 PFCUs, using 2.5D integration. (c): Simplified layout diagram of PFCU, MRRs, and photodetectors are grouped to reduce the width of PFCU.

Fig. 6. Power contribution of different components of a 1-PFCU baseline system.

Fig. 7. Accuracy of ResNet-s versus different temporal accumulation depth.
fp psum is the accuracy without ADC quantization.

II summarizes the notations used in the analysis. Given a fixed
NPFCU , the design parameter we want to find a solution is
IB, and CP can be computed by CP = NPFCU

IB . Assuming
the power of ADC scales linearly with frequency, the sum of
ADC and DAC power can be computed as:

Ptotal=PADC×
IB×Ni

NTA
+PDAC×(CP×Ni+NPFCU×Nw)

Since the power of ADC and DAC with the same frequency are
similar, they can be removed from the minimization formulation.
After some simplification, the minimization problem can be
formulated as:

Mimimize
IB

NTA
+CP

Subject to: IB×CP =NPFCU

TABLE II
TABLE OF NOTATIONS USED IN THE ANALYSIS AND THEIR MEANING.

Notation Definition
Ni # input waveguides of each PFCU
Nw # active weight waveguides of each PFCU
NPFCU # PFCUs available
IB # PFCUs that inputs are broadcasted to
CP # PFCUs that share ADCs
NTA # channels accumulated at photodetector
PDAC Power of DAC
PADC Power of ADC

This minimization problem can be solved by rewriting CP to
NPFCU

IB . The exact solution depends on hyperparameters NTA

and NPFCU . By setting NTA=16, we can sweep IB to find
solutions for different NPFCU .

Fig. 8. Value of IB
NTA

+CP with different IB, for three different number
of PFCUs.

Figure 8 plots the value of IB
NTA

+CP for all IB values.
For the cases where NPFCU is 8 or 16, the system power
minimizes when IB = NPFCU . When NPFCU = 32, the
system power is same when IB = 16 and IB = 32, and the
minimum system power is achieved when IB=23. However,
the solution is not valid as the valid solutions for IB can
only be 1,2,4,8,16,32 (due to the constraints of IB and CP ).
Therefore, both 16 and 32 are optimal solutions of IB when
NPFCU =32. The result suggests that when NTA is set to 16,
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and the number of PFCUs is less than or equal to 32, input
broadcasting is always the best parallelization scheme.

E. Number of waveguides and PFCUs
The number of input waveguides per PFCU and the total

number of PFCUs are two design parameters that need to be de-
termined, and they are discussed together because of the trade-off
between them. Given a fixed area budget, the more waveguides
per PFCU, the fewer number of PFCUs can be placed. Assuming
input broadcasting is used, increasing the number of PFCUs
improves the power efficiency by sharing the input activation
with more filters, while increasing the number of waveguides per
PFCU can also improve the power efficiency by effectively shar-
ing a filter with more convolution windows (weight broadcasting
within PFCU). However, PFCU can be under-utilized if the num-
ber of input waveguides is too large. Under-utilization typically
happens when the system is executing later layers of a CNN,
where the input activation size can be small (caused by pooling).
For example, assuming the number of input waveguides is 512,
then the PFCU will not be fully utilized if the input size is less
than 23×23, which is common in the later layers of CNNs (e.g.,
ResNet-34 has 18 convolution layers with input size ≤14×14).

The optimal choice of the number of waveguides and the
number of PFCUs is determined through benchmarks on real
CNNs. We set the area budget of PhotoFourier-CG to 100 mm2,
which is around the upper limit of chip area due to the layout
constraint discussed in Section V-A0a. For consistency, we use
the same area budget for PhotoFouirer-NG. We select 5 values
for the number of PFCU and compute the maximum number of
input waveguides per PFCU under the area budget for both Photo-
Fouirer versions. We then evaluate the selected configurations
on 5 different CNNs, which are AlexNet [33], VGG-16 [63],
ResNet-18 [28], ResNet-32, and ResNet-50, and compute the
geometric mean of the normalized FPS/W on these 5 CNNs. The
results are listed in Table III. PhotoFourier-CG achieves the best
average FPS/W with 8 PFCUs and 270 waveguides per PFCU,
while PhotoFourier-NG achieves the best average FPS/W with 16
PFCUs and 267 waveguides per PFCU. Therefore, for the given
area budget, we architect PhotoFourier-CG to have 8 PFCUs
with 256 input waveguides per PFCU and PhotoFouirer-NG to
have 16 PFCUs with 256 input waveguides per PFCU.

TABLE III
MAXIMUM NUMBER OF INPUT WAVEGUIDES PER PFCU AND THE GEOMETRIC
MEAN OF NORMALIZED FPS/W ON 5 CNNS FOR PHOTOFOURIER-CG AND
PHOTOFOURIER-NG WITH DIFFERENT NUMBER OF PFCUS, GIVEN A 100

mm2 AREA BUDGET.

PhotoFourier-CG PhotoFourier-NG

# PFCU # waveguides avg. FPS/W # waveguides avg. FPS/W

4 412 0.70 576 0.55
8 270 0.97 395 0.75

16 172 0.89 267 0.97
32 105 0.72 177 0.82
64 61 0.74 114 0.81

F. Dataflow and reuse
1) Reuse analysis: Output stationery (OS) dataflow is

used in PhotoFourier to implement temporal accumulation. In
OS dataflow, every cycle processes a new channel of input

activations and filters, so that the convolution results (partial
sums) can be accumulated locally at the photodetectors. OS
dataflow minimizes output data bandwidth at the cost of higher
input/weight bandwidth. If input broadcasting is used without
any data reuse scheme (e.g., OS dataflow), then the output
bandwidth will be 8-16× higher than the input bandwidth, which
may prevent the architecture to scale efficiently. OS dataflow
addresses the imbalance between input and output bandwidth.
By accumulating 16 channels at the photodetector, output
bandwidth reduces by 16×. Although the input broadcasting +
OS dataflow scheme does not lead to a direct reduction in weight
bandwidth, the weight bandwidth requirement is much smaller
than the input and output bandwidth for a sigle PFCU. There are
two factors that contribute to the small weight bandwidth. (1):
filters are much smaller than activations in general. (2): the local
weight reuse over different convolution windows within each
PFCU. This reuse is inherently implemented by JTC, which
computes an entire convolution in one cycle so the weights
are effectively shared among the inputs loaded onto the JTC.
The weight reuse can be seen as weight broadcasting within
the PFCU. When executing a 3×3 convolution layer, the total
weight bandwidth can be 1.78× lower than the input and output
bandwidth. Overall, PhotoFourier utilizes data reuse (sharing) on
all three dimensions, which are input, weight, and partial sum.
Input reuse is achieved by broadcasting the inputs to all PFCUs,
weight reuse is achieved inherently by the JTC, and partial sum
reuse is achieved by temporal accumulation at photodetectors.

2) Execution sequence: During the execution, PhotoFourier
processes 8/16 filters in parallel and computes the convolution of
one input channel tile per cycle. After completion of one cycle,
PhotoFourier processes the next input channel, until all input
channels are processed. Since many convolution layers have more
than 16 input channels, two-level accumulation is implemented.
Input channels are divided into groups of 16 and partial sums
are accumulated by the photodetector within each group, while
CMOS accumulators are used to accumulate partial sums between
groups. Once all input channels are processed, the accumulated
results are sent to activation units to generate the output activation,
which will then be stored in the activation memory. This process
will be repeated until all the filters and input tiles are processed.

Figure 9 visualizes the activation memory mapping and the
execution process of one input tile (tile 2). 16 channels of the
input tile are loaded from the activation memory to the data buffer
in parallel. This is possible since they are contiguous in memory.
The data buffer connects the slower clock domain to the faster
clock domain. The data buffer loads the 16 channels in one cycle
of the slow clock domain and the input generation circuit operates
16X faster to generate one channel of the input tile in every cycle
of the fast clock domain, which is then broadcasted to all PFCUs.
Each PFCU processes a unique filter so 16 filters are processed in
parallel, which produces the partial sums of 16 output channels.

VI. EVALUATION

A. System Setup

We build a custom Python-based simulator to simulate the
latency, power, area, and efficiency of PhotoFourier on actual
CNN inferences. For PhotoFourier-CG, we use Cadence Genus
with a commercial 14nm library to simulate the delay, power,
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Fig. 9. Visualization of the activation memory mapping and the execution
process of input tile 2. IT: input tile, OT: output tile, IC: input channel, OC:
output channel, F: filter. (a): Accessing input activation from memory. (b):
Storing output activation to memory.

and area of the CMOS circuit of PhotoFourier shown in Figure
5 (a). We use a commercial 14nm memory compiler to obtain
the area, leakage power, and access energy of activation and
weight SRAMs. For PhotoFourier-NG, we scale the technology
node to 7nm, using the scaling equations proposed in [64] (for
CMOS circuit, based on our 14nm results). We use PCACTI
[58] to model the 7nm FinFET SRAM. The simulation results
of the CMOS circuit are embedded into the python simulator
and combined with the simulation results of photonics to obtain
the performance of the entire accelerator. Table IV lists the
power of different components that we used in our simulator and
the high-level design parameters, for both PhotoFourier-CG and
PhotoFourier-NG. Since there are no references of ADC and DAC
with the exact bitwidth, frequency, and technology node, we find
8-bit ADC and DAC with similar technology nodes (14nm and
16nm), but with higher frequency than required. We then linearly
scale down the power of the cited ADC/DAC according to the fre-
quency ratio to obtain the value we used in PhotoFourier-CG. We
scale the power of ADC by 5.81× in PhotoFourier-NG, which is
obtained using the Walden ADC Figure-of-merit (FOM) formula
[70] with the envelope line (best achievable FOM of published
ADCs for different frequencies) constructed in [47]. We obtain the
best FOM for 625 MHZ to estimate the optimal 8-bit ADC power
from the FOM equation. We scale the DAC with the same number
since DAC and ADC have similar scaling properties (SAR-ADCs
are based on DACs). Table V lists the dimension of the optical
components we used to compute the PFCU area, and we keep
them the same for both PhotoFourier-CG and PhotoFourier-NG.
The laser power is set to maintain larger than 20 dB SNR at
photodetectors in most cases, estimated using the dark current of
photodetectors and the system loss of PhotoFouirer. The simulator
implements the proposed row tiling/partitioning algorithm when
simulating CNN inferences, and uses a batch size of 1. As
PhotoFourier is designed as a convolution accelerator, only
convolution layers are accelerated and benchmarked. This will
not affect the overall speedup on common CNNs [28], [63] since
more than 99% of total MAC operations are from convolution
layers. We use PyTorch with custom convolution functions to
generate all the accuracy results used in this paper.

Dealing with negative weights: PhotoFourier uses the pseudo-
negative method [13] to deal with negative weights, which can
be troublesome for photonic accelerators to process. The pseudo-

TABLE IV
POWER OF DIFFERENT COMPONENTS AND HIGH-LEVEL DESIGN PARAMETERS

USED FOR PHOTOFOURIER-CG AND PHOTOFOURIER-NG

PhotoFourier-CG PhotoFourier-NG

Component power

MRR 3.1mW [46] 0.42mW [56]

Laser 0.5mW per waveguide 0.5mW per waveguide

ADC @ 625 MHz 0.93mW [40] 0.16mW

DAC @ 10 GHz 35.71mW [11] 6.15mW

High-level design parameters

# PFCUs 8 16

# input waveguides 256 256

# chiplets 2 1

technology node 14nm 7nm

TABLE V
DIMENSIONS OF THE PHOTONIC COMPONENTS USED IN AREA ESTIMATION

Component Dimension

MRR [2] 15 um × 17 um
Optical splitter [73] 1.2 um × 2.2 um

Photodetector [2] 16 um × 120 um
Waveguide pitch [74] 1.3 um

Laser [18] 400 um × 300 um
On-chip lens 2 mm × 1 mm

negative method breaks every filter into a pair of positive-value
filters using the formula x = p− n, where x is the original
weight and p,n are two positive-value filters. Pairs of filters are
processed as normal in PFCUs and they are subtracted digitally in
the CMOS circuit. The method makes photonic accelerators able
to process negative weights but at the cost of 2× computation.

B. Effect of optimizations

We first demonstrate the effect of proposed optimizations in
terms of the geometric mean of FPS/W on the same five CNNs
used in Table III, and the results are shown in Figure 10. The
baseline system is a single-PFCU system with 256 input channels,
and we stick with the power number of PhotoFourier-CG in this
evaluation to exclude the effect of technology scaling. We order
the optimizations from PFCU-level optimization to architectural-
level optimization. Small filter optimizations reduce the number
of weight DACs per PFCU, PFCU parallelization shares 256
input DACs with 8 PFCUs, temporal accumulation reduces ADC
frequency by 16×, and non-linear material (used in NG version
only) removes the MRRs used to compute the square function.
The proposed optimizations significantly improve the power
efficiency, and can be 15× better than the baseline system.

C. Area

Figure 11 shows the total area and area breakdown for two
PhotoFourier versions, with photonic components dominating the
area for both versions. While having 2× PFCUs, PhotoFourier-
NG has roughly the same area as PhotoFourier-CG. The area
reduction of individual PFCUs is the result of using non-linear
materials to replace MRRs and photodetectors that implement
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Fig. 10. Geometric mean of FPS/W for PhotoFourier with different
optimizations. Starting from the baseline, each column adds one optimization
to the system, and includes all previous optimizations (columns on the left).

Fig. 11. Area breakdown of PhotoFourier. Waveguide routing includes
waveguides area and redundant area due to layout constraints. (a): CG version.
PIC chiplet: 92.2mm2, SRAM: 5.85mm2, CMOS tile: 10.15mm2. (b): NG
version. PFCU: 93.5mm2, SRAM: 5.3mm2, CMOS tile: 16.5mm2.

the non-linear function. For PhotoFourier-CG, waveguide
routing (including redundant space) uses nearly half of the
chip area. Such low area utilization is caused by the layout
constraint discussed in Section V-A0a, which makes the layout
less compact. In PhotoFourier-NG, the monolithic integration
of CMOS and photonics, together with non-linear materials,
greatly relaxes the layout constraint and makes the layout more
compact. Since photodetector and MRR consume a very small
portion of the total area in both versions, shrinking their sizes
can barely improve area efficiency. Instead, more compact
on-chip lenses should be studied to further reduce the footprint.

D. Power
We benchmark the two versions of PhotoFourier on the same

5 CNNs used in Section V-E to evaluate their performance. The
average power of PhotoFourier CG and NG over the five networks
are 26.0 W and 8.42 W respectively. Figure 12 shows the power
breakdown of PhotoFourier-CG and PhotoFourier-NG. The power
distribution of PhotoFourier-CG is somewhat evenly spread across
MRR, DAC, and other components. The DAC and ADC no
longer dominate the power consumption when compared to a
baseline JTC system (Figure 6), as temporal accumulation and
input broadcasting greatly reduce the power of ADCs and DACs.
Temporal accumulation can reduce ADC power by more than
30× compared to 10 GHz ADCs [27], which makes ADC power
significantly less than DAC power. For PhotoFourier-NG, the
SRAM access power replaces MRR/DAC to become the largest
contributor to the total system power. There are two reasons, one
is the power of MRRs, DACs, and ADCs is further reduced in the
NG version, and the reduction is larger than SRAM power reduc-
tion due to technology node scaling. Another reason is the SRAM
access energy for PhotoFourier is on the higher end, as wide mem-
ory buses are required to keep up the bandwidth requirement of
the 10 GHz photonic circuits, which increases the access energy.

We make the following observations: Since data movement
(memory accessing + interconnect) dominates the power of
PhotoFourier-NG, the priority of further improving power effi-
ciency with next-generation technologies is no longer optimizing
O/E conversions. Reducing the data movement cost should be
the main focus, which we will discuss more in Section VII.

Fig. 12. Power breakdown of the two PhotoFourier versions. (a):
PhotoFourier-CG. (b): PhotoFourier-NG.

E. Comparison with prior works

We mainly compare the performance of PhotoFourier with the
recently published Albireo accelerator which reports state-of-art
power efficiency results for uncompressed CNNs. For reference
purpose, we also compare with some other photonic neural
network accelerators (DEAP-CNN [10], Lightbulb [75], two
versions of Holylight [41]) and one digital accelerator (UNPU
[37]). Albireo is a CNN accelerator based on MZIs and
MRRs. DEAP-CNN, Lightbulb, and Holylight are based on
only microdisks/MRRs. Albireo and Holylight-m target 8-bit
CNNs, DEAP-CNN targets 7-bit CNNs, while Holylight-a and
Lightbulb target power-of-two quantized and binary CNNs
respectively. Therefore, PhotoFourier is best compared to Albireo
and Holylight-m since they can accelerate uncompressed 8-bit
CNNs, which is not possible for Holylight-a and Lightbulb. We
benchmark PhotoFourier on AlexNet, VGG-16, and ResNet-18
as each of the selected accelerators reports results on some of
these networks. We compare with both Albireo-c (conservative)
and Albireo-a (aggressive), which is similar to PhotoFourier-CG
and PhotoFourier-NG. Albireo has more aggressive assumptions
for their advanced version since Albireo-a reduces the ADC and
DAC power by 10× compared to Albireo-c, while we reduce
them by 5.8× in the NG version based on FOM analysis. All
results of other works are obtained directly from the original
papers without modification except for DEAP-CNN (targets
for small CNNs), for which we use a scaled version to generate
results for our benchmarks. The results of Holylight and
Lightbulb are estimated based on bar charts and are not precise.
Albireo uses a 7nm library to model the CMOS components
and UNPU uses 65nm technology node.

Figure 13 (a) shows the throughput results in terms of frames
per second (FPS). PhotoFourier-CG and PhotoFourier-NG have
5-10× higher throughput compared to Albireo-c and Albireo-
a. Given that Albireo’s chip area (124.6mm2) is similar to
PhotoFourier, PhotoFourier has 5-10× better area efficiency than
Albireo. Holylight-a and Lightbulb have higher throughput in
general since they target quantized CNNs, but are still less than
PhotoFourier-NG, except for AlexNet where PhotoFourier-NG is
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Fig. 13. Inference performance of common CNNs on ImageNet dataset, compared to prior works. Missing bars indicate the data are not available from the
original papers. (a) Inference throughput in terms of frames per second (FPS). (b): Inference efficiency in terms of frames per Joule (FPS/W). -nm means
PhotoFourier versions without memory access power. To the best of our knowledge, Albireo does not report memory access power, so -nm versions are included
for reference. (c): Energy-delay Product (EDP) in terms of 1

EDP
, inverse is used for better visualization, therefore larger is better.

on par with Holylight-a. PhotoFourier is less efficient on AlexNet
due to its first convolution layer with 11×11 filter and stride of
4. PhotoFourier is less efficient when processing strided convolu-
tions as PhotoFourier handles them by computing with unit stride
and then discarding unnecessary results, limited by the underlying
JTC operation which only supports unit stride convolution.

Figure 13 (b) shows the FPS/W result, which measures
the power efficiency. Compared to 8-bit accelerators and with
memory access power modeled, PhotoFourier-CG achieves
around 3-5× higher FPS/W than Albireo-c on benchmarked
networks, and is 532× and 704× better than Holylight-m and
DEAP-CNN respectively. Compared to Albireo-a, PhotoFourier-
NG is slightly ahead for VGG-16, but is slightly behind for
AlexNet because of the inefficiency of strided convolutions.
PhotoFourier-NG achieves similar power efficiency compared
to Albireo-a, despite modeling memory access power and using
less aggressive ADC/DAC scaling. Even when compared to
Holylight-a and Lightbulb which target heavily quantized CNNs,
both PhotoFourier versions achieve better FPS/W, demonstrating
superior power efficiency. While having low throughput,
UNPU achieves decent power efficiency and is on par with
PhotoFourier-CG (but behind PhotoFourier-NG). Figure 13 (c)
visualizes the energy-delay product (EDP) in terms of 1

EDP .
Given PhotoFourier’s high throughput and power efficiency,
PhotoFourier-NG achieves the best EDP on all three networks.
Even PhotoFourier-CG has better EDP than other accelerators in
most cases, except for the less efficient AlexNet where it falls
behind Holylight-a, which targets heavily quantized networks.

We also compare PhotoFourier with another recent MRR-
based photonic NN accelerator CrossLight [65]. Since CrossLight
does not evaluate using our selected networks, we evaluate
PhotoFourier on their custom 4-layer CNN for the CIFAR-10
dataset. PhotoFourier-CG achieves more than 100× better energy
per inference (4.76µJ vs 427µJ), despite having relatively low uti-
lization on this network. Overall, PhotoFourier achieves state-of-
art throughput and efficiency results of photonic neural network
accelerators. Compared to Albireo which also targets uncom-
pressed CNNs, PhotoFourier-CG achieves up to 28× better EDP
compared to Albireo-c and PhotoFouier-NG achieves up to 10×
better EDP compared to Albireo-a. The better performance is con-
tributed by the complexity reduction of Fourier optics, as well as
the proposed optimizations. PhotoFourier requires fewer optical
components to perform the same convolution operation which re-
duces the area and power of photonic components. Being compact

means PhotoFourier can have more components than Albireo with
a similar area budget, hence can benefit more from parallelism.

VII. DISCUSSION

We discuss some technologies and challenges that are not
implemented or adequately addressed in PhotoFourier, to provide
potential directions for future works that can make PhotoFourier
and photonic NN accelerators in general more efficient.

Data movement: Although PhotoFourier leverages various
reuse to reduce the amount of data movement, it still consumes
more than 30% of total system power in PhotoFourier-NG
(Figure 12). On one hand, this suggests that the NG version
makes compute so efficient that memory access power becomes
the power bottleneck of compute-bound CNN inferences. On
the other hand, it shows the importance of further reducing
data movement cost to continue scaling JTC-based (and other)
photonic accelerators. There are both hardware and software
approaches to achieve that. On the hardware level, photonic
memory [1], [53], [54] and interconnects [12], [14], [32] should
be further studied since photonics has no RC delay or I2R loss.
Besides, 3D integration can also reduce the data movement cost.
On the software level, compression methods like quantization,
pruning, and parameter sharing can be used to reduce the total
number of bits that needs to be transferred.

3D integration: A potential way to further improve the area
and power efficiency of PhotoFourier is 3D integration, which
allows memory to be stacked on top of compute units to reduce
the data movement cost by making interconnects shorter. Thermal
management is one of the main challenges of 3D integration
[34], [35] because of the increased transistor density. However,
photonics generate less heat than CMOS, which makes them
more suitable for 3D integration and worth further exploring.

VIII. RELATED WORK

4F systems require spatial filters to be transformed into
complex-valued Fourier filters before feeding into the system.
This requires 4F systems to support complex multiplication,
which is hard to implement as it requires both amplitude and
phase modulation. Furthermore, 4F systems require filter sizes to
match input activation sizes (for point-wise multiplication in the
Fourier domain), thereby wasting substantial weight modulation
bandwidth (conventional CNNs all have small filters). Unlike
4F systems, JTC treats filters the same way as inputs, where
the Fourier lens computes the Fourier transform of filters. Thus
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JTC can use real-valued spatial filters with arbitrary size (with
zero padding) and significantly improves overall efficiency
compared to 4F systems. 4F CNN accelerators [13], [26], [45]
are most closely related to PhotoFourier. However, they all
target free-space 4F systems and face the common issues of 4F
systems (discussed above), whereas PhotoFourier is faster, more
flexible, and more efficient for accelerating conventional CNNs.

Most on-chip photonic neural network accelerators [8], [10],
[24], [41], [44], [60]–[62], [65], [75] proposed so far are based
on MZIs and MRRs. They are typically designed to accelerate
dot products and some require IM2COL transformation to
compute convolutions. They share similar architecture with
other General Matrix Multiplication (GEMM) based accelerators
like systolic arrays or compute-in-memory arrays, but can
operate faster and utilize wavelength-division multiplexing for
extra parallelization. Unlike these approaches, PhotoFourier
has a fundamentally different architecture by leveraging the
complexity reduction of “free” Fourier transform of Fourier
optics to deliver large throughput gains with fewer photonic
components (which do not scale well with technology).

IX. CONCLUSION

In this paper, we present PhotoFourier, a JTC-based on-chip
photonic neural network accelerator. We propose an algorithm
to compute 2D convolutions with 1D convolutions that can be
implemented using the 1D on-chip lenses. We also propose
temporal accumulation to improve the accuracy and power
efficiency of the system. Besides, we provide a detailed analysis
of how to determine optimal design parameters for a JTC-based
CNN accelerator including dataflow, parallelization scheme, and
the number of waveguides and compute units. Compared to
uncompressed photonic neural network accelerators, EDP of
PhotoFourier-CG is 28× better compared to Albireo-c, 532×
better compared to Holylight-m and 704× better compared to
DEAP-CNN. There are still many remaining challenges for
on-chip photonic neural network accelerators, which include the
relatively large size and limited flexibility of optical components,
manufacturing variations of photonics, data movement cost, and
neural network architectures and training methods for photonic ex-
ecution. We plan to address these issues in our future work, along
with a large-scale experimental demonstration of PhotoFourier.
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