
1                                                              IEEE ASSCC 2022/ Session 3/ Paper 3.3                                                                      

A 65nm 8-bit All-Digital Stochastic-Compute-In-Memory 

Deep Learning Processor  

Jiyue Yang, Tianmu Li, Wojciech Romaszkan, Puneet Gupta, 

Sudhakar Pamarti. 

University of California, Los Angeles, CA.  

 High compute density improves the data reuse and is the key to 
reducing off-chip memory access and achieving high energy 
efficiency in ML accelerators. Compute-in-Memory (CIM) promises 
high compute density but requires ADCs, DACs that add to the 
macro’s energy and area [1][2] limiting its compute density. Besides, 
CIM’s analog compute is sensitive to process variability and 
mismatches. The transistor nonlinearity also significantly degrades 
the compute accuracy. Stochastic Computing (SC), which 
represents numbers as probability of 1s in random binary streams, is 
a digital-compute scheme that uses tiny MACs and offers high 
compute density without ADC/DAC (Fig. 1). Simulations show 4x 
reduction of memory access compared to 8b fixed-point digital 
accelerators due to the massive parallelism it can achieve using the 
tiny digital logic gates (AND/OR). However, SC suffers from high cost 
of binary to stochastic number conversion and compute error.  

 In this work, we combine SC and CIM to achieve much higher 
compute density and solve their respective problems. The proposed 
Stochastic Compute-In-Memory (SCIM) machine learning processor 
embeds SC MAC logic onto the SRAM’s bitline and only makes 1-bit 
decisions that don’t need DACs/ADCs. By storing the pre-generated 
random bitstreams: Stochastic Numbers (SNs) in the memory, 
stochastic number generation (SNG) cost is amortized over reuse by 
32x. The SNG uses maximum-length LFSR and accurately converts 
binary numbers. A computation skipping technique is implemented 
that reduces the required bitstream length by 4x. A programmable 
SCIM-based CNN processor is demonstrated in 65nm and achieves 
6x higher macro density and system energy efficiency of 
7.96TOPS/W and macro energy efficiency of 20 TOPS/W for 8-b 
compute. A training algorithm that accounts for the specifics of SC is 
employed and accuracy comparable to 8b fixed point networks is 
demonstrated for MNIST and CIFAR10 datasets. 

 Previous in-situ SC accelerator [3] proposed to embed SC’s 
multiplication in the memory and perform accumulation externally, 
which significantly limits the macro’s throughput. The proposed 
SCIM accelerator uses 1-bit OR-based accumulation, which is 0 
when all the inputs are 0 and is 1 when at least one input is 1. The 
OR-based accumulation approximates the summation. For example, 
for two inputs A and B, the output becomes A+B-AxB, Fig.1. 
However, the error term -AxB can be accounted for during the 
gradient descent of the neural network’s backpropagation to update 
the weights. Comparable neural network accuracy to the fixed-point 
implementation is achieved [4]. The OR-based accumulation 
enables the SC MAC to be efficiently realized using the bitline of a 
memory array (Fig.1). Each SRAM bit cell adds two nMOS 
transistors that AND the bitcell (storing inputs) and the compute 
wordline (sending weights), while the shared compute bitline realizes 
a wired-OR operation between N cells.  

     Given their structural similarities, we compare SCIM with CIM. 
Since the SC MAC produces only 1-bit at a time, a simple SA is 
sufficient. The result is a DAC/ADC-free, digital architecture that can 
follow a traditional digital design flow. Note that each 1b SCIM MAC 
needs to be evaluated 2N times to achieve N-bit computation 
precisions whereas CIM makes a single N-bit decision. A 
computation skipping technique is employed in conjunction with 
average pooling to cut down the SC’s stream length by 4x [4]. 
Consider an average pooling of a 2x2 window. It is realized by a 4:1 
mux that selects each input for ¼ of the output sequence (Fig.2). 
With computation skipping, the unselected input streams are not 
computed, resulting in 4x fewer SC computations. The reduced 
computation latency along with the low energy SC MAC unit 
embedded in the memory results in 10x energy reduction of the 8-bit 
MAC compared to CIM (Fig.2). 

     A bottleneck with conventional SC is the large energy cost of the 
conversion from binary to SNs: an SNG consumes 25x more energy 
than a SC MAC unit (Fig. 2). The proposed SCIM amortizes 
activation SNG costs by storing pre-generated activation SNs in the 

SRAM. They are reused between multiple sliding windows of the 
filter. It amortizes weight SNG costs by sharing the weight SNs 
between 32 different MAC rows. Overall SNG cost is reduced by 32x. 
Note that alternatively weight SNs could be stored in the SRAM and 
activation SNs streamed in.    

     The proposed SCIM CNN accelerator (Fig.3) is highly 
programmable and provides a large on-chip buffer to store all the 
weights. It has an on-chip FSM that supports different layer types, 
sizes and batch norm/pool options. It employs 32 SCIM cores in 
parallelly. Each SCIM core has a 32x256 CIM macro, SNGs and a 
near memory compute unit. The activations are stored inside the 
macro since they only have positive values and require half the 
storage. Each cell supports two MACs, with positive and negative 
weights on CPWLP/N. A simple inverter-based sense amp detects 
ON or OFF state and converts to a 1b result.     

     Note that storing SNs inside the memory requires generating SNs 
in parallel. This is achieved by duplicating the SNGs in each SCIM 
core but programming the LFSRs to start at different phases, Fig. 3. 
All SCIM cores receive the same binary numbers and convert them 
to full SNs in one cycle. MACs’ output SNs are generated in one 
cycle. The convolution layer uses the row-serial data flow (Fig.4). 
Each input row is stored in separate rows and each weight row is 
applied to SCIM macro serially. After compute, the MAC output is 
shifted and accumulated to produce the result of a 2D convolution. 
Those results are converted back to fix-point domain by parallel 
counters. Two pipeline stages are followed to perform average 
pooling, batchnorm and ReLU, but they can be bypassed. The 
training process of the SC network is also shown in Fig. 4. It accounts 
for the OR-based accumulation and the randomness of the LFSR to 
improve the accuracy.  

 The test chip is fabricated in TSMC 65nm GP technology and 
occupies 9.4mm2. SCIMA chip has 520Kb SC MAC embedded in the 
memory, achieving 6x higher macro density than state-of-art CIMs 
due to simple operation without the ADC/DAC. Fig.5 summarizes 
accelerator’s network performance measured at 0.8V supply. The 
clock frequency is 4MHz and can be much higher given a stronger 
on-chip power delivery network.  A 4- and 5-layer NN for CIFAR10 
and MNIST are trained and tested on multiple chips. All parameters 
are loaded on chip once and no off-chip memory accesses are made 
during operations. The measured CIFAR-10 and MNIST accuracy 
are comparable to the same network trained in 8b fixed point. The 
SC matrix vector multiplier (MVM) has 100% utilization and achieves 
the peak energy efficiency of 5.75TOPS/W. Activations and weights 
have 8-bit precision. A MAC is defined as 2 operations and accounts 
for the processing the full 256b SNs. Fig.5 also shows the die photo 
and the area breakdown of the chip. The energy efficiency is 
measured over different voltage and frequency conditions. The chip 
performs robustly over 0.7-1.05V supply voltage with the best system 
efficiency of 7.96TOPS/W and macro efficiency of 20 TOPS/W at 
0.7V and 3.2MHz. Fig.6 shows a performance comparison with state-
of-the-art in CIM. For a fair comparison, prior art’s reported efficiency 
numbers are scaled to a 65nm node and to equivalent 8b precision. 
The proposed SCIM achieves 2.5x higher peak energy efficiency and 
it is the only work that achieves robust operation under a wide range 
of supply voltages. 

References: 

[1]  H. Jia et al., "A Programmable Neural-Network Inference 
Accelerator Based on Scalable In-Memory Computing," ISSCC, 
2021. 
[2] J. Yue et al., "A 2.75-to-75.9TOPS/W Computing-in-Memory NN 
Processor Supporting Set-Associate Block-Wise Zero Skipping and 
Ping-Pong CIM with Simultaneous Computation and Weight 
Updating," ISSCC, 2021. 
[3] S. Li et al., “SCOPE: A Stochastic Computing Engine for DRAM-
Based In-Situ Accelerator” MICRO, 2018. 
[4] W. Romaszkan, T. Li, T. Melton, S. Pamarti and P. Gupta, 
"ACOUSTIC: Accelerating Convolutional Neural Networks through 
Or-Unipolar Skipped Stochastic Computing," DATE, 2020. 
[5] Q. Dong et al., "A 351TOPS/W and 372.4GOPS Compute-in-
Memory SRAM Macro in 7nm FinFET CMOS for Machine-Learning 
Applications," ISSCC, 2020. 
[6] Y. Chen et al., "Eyeriss: An energy-efficient reconfigurable 
accelerator for deep convolutional neural networks," ISSCC, 2016. 



                                                                IEEE ASSCC 2022/ Session 3/ Paper 3.3                                                                            2 

 

Fig. 1. Concept of Stochastic Computing (SC); . ADC-less 1-bit 
OR-based SC accumulation embedded in memory; Computation 
skipping reduce latency 

Fig. 2. SCIM reduces SNG cost; Energy comparison vs CIM. 
 

Fig. 3. System architecture of the SCIMA; Details of the SCIM 
macro; Illustration of unrolling SC in space. 

Fig. 4. Row-serial dataflow and near memory compute unit; SC 
training procedures; Fixed point processing pipeline. 
 

Fig. 5. Measurement result; Die Photo; Area breakdown; Energy 
efficiency vs Vdd and CLK. 

Fig. 6. Comparison Table 
 

 

 BLCIM   

                   

                 
         

         

          

          
   

 

   

               

    

   

 
     

 
     

    

                         

                                 

 

 

      

          

                 

  

  

  
  

          
          

           

                           

               

            

           
                

 

 

 

 

 

  

          

            

 

    

                       

 
 
 
 
  
  
  
 
 
 
 
 

 
  

  
 

                   

             

  

    

         

             

                                      

 BLSCIM                       

              

                    

      

        

 

   
      

  
    

   

  

  

  

                     

  
    

   

  

  

                    

      

                 

                 

3b 4b  b 8b

4x

                                   

skip   of the compute

4
:1
 M
u
x

0,1..

1,1..

0,0..

1,0..

 1

 2

 3

 4

Pout    

  1  2  3  4 

0,1.. 1,1.. 0,0.. 1,0..

                                   

          
   

                

10x

        
         

3x

   
   

  
   

  
       

    
      

                          

10x

     
   

       

      

      

       

 
 
 

 
 
 

            

   

                 
                 

                                
                          

        
       

30

           
          

    

            
          
      

       
    

1

32x 32x
2 x

 
 
  
 
  
  

 
  
  
  
 
 

  
 
  

  
  
  

 

                                              

               
            

            

             

                                            

      

         

 
         

 
 
 
   

                                

        

     

        

           
       

         

               
       

 
     

  
 
   

 
 
 
 
 
  

 
 
 
   

 

            

        

     

        

           
       

         

               
       

 
     

  
 
   

 
 
 
 
 
  

 
 
 
   

 

           

          

        

          

                       

 
     

  
 
   

 
 
 
 
 
  

 
 
 
   

 

           

    

                   

 

                        

S
N
 
1

 

 

 

Fix Pt 32
SC

Se uential SC

Core1

Core32

In 32
Cycle

S
N
 
3
2

S
N
 
2

S
N
 
1

 

 

 

 

Fix Pt
32

SC

LFSR 
L P 
 able  

  
  

 
  
  

 
  
  
 

 nroll

SC

Core1

Core32

Seed

In 1
Cycle

  

     

   

   

   

   

     

  

     

   

   

  

        

        

    

    

    

    

    
    

    
    

    
    

    
    

      

          

      

   

   

 
 
 
 
 
  

   

         

     

           

   
       

     

         

          

     

          

                    

 
  
  
  
   
  
  
  

SC MACs

    

        

      

                   

        

                             

   

              
        

2 Cycle 1 Cycle

 
  
  
  
  

 
  
  
  
  

Float Pt/

 uanti ed 

CNN

 raining

SC Forward

 LFSR,

OR Based MAC 

LFSR Seed 

Extract

   R L

SC Backward

  Mult: axb

Add: a b ab  

           
                        

                       

Input Row 1

SCIM Macro

   

   
Input Row 2

Input Row 32
S
ig
n
e
d
 N
u
m
 C
o
n
v
e
rt

 
 
  
B
a
rr
e
l 
S
h
if
te
r

R
o
w
 A
c
c
u
m
u
la
to
r

  

                       

                

                         

                          

                 

             

             

                            

                           

                           

               

       

      

       

     

                                  

                            

                                                    

                                      

                

              

                                    

                                                            

                                        

                                               

  1 SC MAC is 2 Ops   Processing 2   SC bits

           

   

             

   

             

           

              

      

       

      

    

    
      

      

      

    

      

      

       
        

    

    
    

    

    

                   

                    

                                
               

              

           
    

      

    

  
 
 

      
    

    
    

             

  
  

 

     

         

     

            

     

            

    

           

    

            
         

                                                                

                     

                                                                        

                                                                    

                                                                

                                                             

                   

                   

                

      

        
                         

            

         

               

          

            

               

                   

                          

               

       
                                              

              

         
      

                    

       
                  

                       

                      

                                                                                                               

                                        

 


