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Abstract—Approximate hardware trades acceptable error for
improved performance and previous literature focuses on optimiz-
ing this trade-off in the hardware. We show in this paper that the
application (i.e., the software) can be optimized for better accuracy
without losing any performance benefits of the approximate
hardware. We propose LAC: learned approximate computing as
a method of tuning the application parameters to compensate for
hardware errors. Our approach showed improvements across a
variety of standard signal/image processing applications delivering
an average improvement of 5.82db in PSNR and 0.23 in SSIM of
the outputs. This translates to up to 87% power reduction and
83% area reduction for similar application quality. LAC allows the
same approximate hardware to be used for multiple applications.

Index Terms—approximate computing, machine learning

I. INTRODUCTION

Approximate computing trades off quality for better perfor-
mance in error-tolerant applications like digital signal processing,
multimedia, and neural networks [1]. By purposefully lowering
voltage [2] or introducing error into computation to simplify the
logic [3], [4], the area, energy consumption, and latency of a com-
putation can be significantly reduced at the cost of computation ac-
curacy. However, directly using approximate computing elements
in an application can result in noticeable output quality reduction.

Previous works have tried to reduce the overall error of approxi-
mate computing elements. This includes finding better ways to sim-
plify the compute logic [5], generating error-compensation circuits
[6], [7], or by having parameterized designs [4], [8], [9]. Some
works have tried to improve the error profile for a specific appli-
cation, including finite impulse response [10], [11] and Gaussian
smoothing filters [12]. This approach limits the generalizability of
the proposed approximate multipliers or adders. Another work has
attempted to map approximate computing to specific parts of an
application to prevent quality loss [13]. Some recent works [14],
[15] have observed that customized training of neural networks
can improve inference accuracy with inaccurate hardware. We
generalize this observation to near arbitrary applications.

In this work, we propose LAC: learned approximate computing,
where the application kernel learns the approximate computing
element. Using machine learning techniques, the coefficients of
an application kernel automatically adjust to the error properties
to maximize output quality without changing the computation.
Our contributions are as follows:

o We develop the LAC methodology, not limited to just machine
learning, to train almost arbitrary parameterizeable application
kernels.

o We show that LAC, for example in applications trained for
approximate multipliers, improves structural similarity (SSIM)
by up to 0.55 and peak signal-to-noise ratio (PSNR) by up

to 9.68dB. The improved quality allows 87% power reduction
and 83% latency reduction for the same application quality.
o Learned approximate computing approach allows optimal
performance and quality without needing to change the
approximate computing hardware or computations performed
across different applications.
In Section II, we give an overview of LAC. Section III
describes our evaluation setup while Section IV discusses LAC
experimental results and we conclude in Section V.

II. LEARNED APPROXIMATE COMPUTING METHODOLOGY
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Fig. 1: Difference between traditional and LAC setups. LAC
focuses on optimizing the application kernels rather than
optimizing the hardware approximations.

Most previous works try to reduce the error of the approximate
hardware for a particular application, sacrificing the performance
of the approximate hardware in other applications. As a result, dif-
ferent applications require separate approximate hardware for the
best quality and performance, as is shown in Figure 1. In this paper,
we focus on modifying the application coefficients given the ap-
proximate hardware. The overall application algorithm still looks
the same in terms of the types and order of computation performed,
and the same approximate hardware can be used for different
applications improving the versatility of approximate computing.
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Fig. 2: Overview of LAC.

Error distributions in approximate computing units are strongly
input-dependent. An example is the Kurkarni [3] multipliers,
which only have errors when multiplying three by three within



a 2-bit multiplier and no error for any other multiplication. One
way to get around this issue is by modifying the application
coefficients so that computations avoid the high-error regions of
the approximate hardware. However, approximate compute units
differ in their error characteristics. Dynamic Range Unbiased
Multiplier (DRUM) [16] lowers average error at the cost of
introducing error in more multiplications. As a result, manually
tuning the coefficients of an application to achieve optimal
accuracy becomes difficult. LAC tries to simplify this process by
training the coefficients. If a learning algorithm has access to the
expected accurate result and all the properties of the approximate
hardware, it should be possible to avoid the high-error regions.
LAC is not limited to machine learning type applications and
works as long as the application kernel is parameterizable.
Figure 2 demonstrates the overall setup of LAC. Before
training, application performance is verified by using the
traditional setup, where computation uses the approximate units
and the application itself is unaltered. During training, inputs
enter an approximate branch and an accurate branch. The accurate
branch keeps the original application coefficients and produces
precise results. The approximate branch accurately models the
approximate hardware while using flexible coefficients. The
difference between the two branches is then used as the error
to train the coefficients in the approximate branch. Training is
performed using any optimization solver (Matlab surrogateopt
optimizer in our case). The optimizer used will depend on the
size of the application kernel and the nature of the approximate
computing unit involved (e.g., integer vs. floating point).

III. EXPERIMENTAL SETUP

A. Approximate hardware

Multiplier Variant Area | Power
) B-bit 017 | 0.10
Kulkarni [3] 16-bit 060 | 068
Bbit 0.14 | 0.04

ETM [4] 16-bit 050 | 025
T6-bicd 025 | 0.12

DRUM [16] 16-bit-6 039 | 029
mul8uJV3 | 003 | 0.02

mul8u_FTA | 0.07 | 004

mulgu_185Q | 0.13 | 0.09

EvoApprox [8] | mul8s_1KR3 0.07 0.02
mulgs_IKVL | 021 | 0.12

mull6s_GK?2 1.01 0.89

mull6s_GAT | 074 | 058

TABLE I: Multiplier summary. Performance numbers are
normalized to 16-bit multipliers.

We chose to focus on approximate multipliers since they add the
most energy and time delay costs. The multipliers we use are sum-
marized in Table I. We used a variety of multipliers with different
error and performance characteristics including multipliers from
the EvoApprox library [8], the Kulkarni multiplier [3], the error-
tolerant multiplier (ETM) [4] and the Dynamic Range Unbiased
Multiplier (DRUM) [16]. We used both an 8-bit and 16-bit imple-
mentation of the Kulkarni multiplier, an 8-bit ETM with the bits
split at k = 4 and a 16-bit ETM with the bits split at k = 8, and used
two implementations of the 16-bit DRUM with k = 4 and k = 6.
Signed multiplications are achieved by using the method proposed
in [16], which computes the absolute value and sign of the result
separately. Area and power numbers in Table I are normalized to

accurate 16-bit multipliers. Coefficients are constrained to [0,2" —
1] for applications using unsigned values, and [—(2"—1),(2™ —
1)] for signed values, where m is the bit width of the multiplier.

B. Applications

Application | Coefficients
Gaussian blur 3x3
Edge detection 3x3
Image sharpening 3x3
Discrete Cosine Transform 8x8
Discrete Fourier Transoform | 12x12(complex)

TABLE II: Application summary

Table II summarizes the applications used for evaluating LAC.
Performance is first evaluated for three applications using 3x3
filters. The three filters include the 3x3 versions of Gaussian blur
for image blurring, Sobel filter for edge detection and Laplacian
filter [17] for image sharpening. Gaussian blur uses unsigned
values, so the unsigned multipliers are used for the experiments,
while the other two use signed values in the filters. For image
sharpening using the Laplacian filter, the outputs of the filter
are scaled to [0,255] and then added to the original image for
the final result. Average Structural Similarity Index (SSIM) [18]
is used to measure the performance.

To analyze the performance of more complicated applications,
we also trained the Discrete Cosine Transform (DCT) and the
Discrete Fourier Transform (DFT). The DCT uses a quality level
of 50, as described in [19], and requires an 8x8 filter. The size
of the DFT had to be reduced to 12x12 as larger sizes failed
to converge. The scalability of our approach beyond the problem
sizes demonstrated here might be addressed in future studies.
The coefficients for DCT and DFT are scaled up by 2™ and
then rounded to fill the integer input range. The final values
are scaled down by 22 since they are performed twice - on
the x and y axes. Quality of DCT and DFT are measured using
the peak signal-to-noise ratio (PSNR) between outputs using
approximate multipliers and outputs using accurate multipliers.

C. Optimization Solvers

The optimization problem was framed as pure integer
optimization - for the blurring, edge detection, and sharpening
- since in these cases all the variable weights are constrained
to being integers by the input requirements of the multipliers.
In the case of the DFT and DCT, weights are scaled to force
them into integers. These integer or range constraints were also
provided to the optimizer.

The Matlab optimizer used is a gradient-free optimizer that
works well for applications with a relatively small number of
coefficients, but it can run into runtime issues for larger applica-
tions. We also tried using PyTorch for more efficient training. The
training setup is similar to training binarized neural networks [20].
The forward pass uses the approximate compute units to accurately
model computation in the approximate hardware. The backward
pass uses straight-through estimators and treats the approximate
units as if they are accurate. The PyTorch version finishes the
training using 55% less time compared to the Matlab version when
both are run on an Intel i5-11400 CPU when training a 12x12 DFT
(more details in Section III). The applications used in Section III
all finish in a reasonable time, so all the evaluations use the Matlab
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Fig. 3: Quality improvements of Gaussian edge detection, image blur and image sharpening

optimizer, but PyTorch or other gradient-based optimizers are

also possible for larger applications that run into runtime issues.

IV. RESULTS AND DISCUSSION

In this section, we experimentally demonstrate the benefits of
learned approximate computing. We show that LAC dramatically
improves application quality on the same approximate hardware
or conversely allows for use of cheaper/more energy-efficient
approximate hardware for the same application quality. We also
show that, as expected, LAC learns characteristics of hardware
approximation via training rather than learning the characteristics
of the input data itself. Unless otherwise mentioned, application
kernels are trained on 100 images drawn randomly from the
CIFARI10 dataset, and application quality is measured on 20
CIFAR10 images different from the training set.

A. Application quality improvement

Figure 3 shows the quality improvements from LAC. As is men-
tioned in Section III, Gaussian blurring, edge detection, and image
sharpening use SSIM for training and evaluation, while DCT and
DFT use PSNR. On average, SSIM improves by 0.55, 0.16, and
0.14 for the three applications.! PSNR improves by 9.68dB and
3.50dB for DCT and DFT respectively. Quality improvements
from LAC depend on the application and characteristics of the
approximate multipliers. The improvement is dramatic in many
cases, making previously unusable approximate hardware accept-
able (for example, see results on one sample image in Figure 5).

B. Hardware efficiency impact of LAC

The improved quality from LAC results in a better quality-
performance tradeoff for all the applications. Figure 4 shows the
tradeoff before and after optimization using LAC. The dashed
line shows the Pareto optimal points. The SSIM values are taken
as the geometric mean of Gaussian blur, Sobel filter, and image
sharpening algorithms, and the PSNR values are taken as the
geometric mean of DCT and DFT. Optimization with LAC results
in 87%, 84%, and 63% power reduction and 83%, 64%, and
449% area reduction with similar SSIM values. For DCT and DFT,
LAC achieves 4.1dB improvements for the same area and power
on a Pareto optimal point or 9.1dB peak PSNR improvement. The
same behavior can be seen in the sample images in Figure 5. LAC
reduces the gap between expensive and cheap approximate multi-
pliers and allows us to use cheaper and less accurate multipliers.

C. LAC Sensitivity to Training Data

To check whether our approach is sensitive to the training
dataset, we used three training datasets: 100 images from the
CIFAR-10 dataset [21], 100 images from the MNIST dataset,
and 100 random 32x32 values using the same [0,255] range as
the other two. Validation is performed on the same 20 CIFAR-10
images separate from the training set for all three cases. Figure 6
shows the comparison results without a clear trend separating the
three choices. This indicates that LAC training learns the hardware
approximations rather than the data itself, as intended. Expanding
the size of training and validation dataset size had little impact
on the results, so we stuck to the smaller size for faster training.

D. Importance of application-specific training

We used DCT to demonstrate the importance of application-
specific training. The DCT is trained as a stand-alone operator
and as a part of the JPEG compression algorithm. When training
alone, LAC tries to maximize the PSNR between DCT outputs
using accurate and approximate multipliers. When training as
part of the JPEG compression, LAC tries to maximize SSIM
between JPEG compressed images using approximate multipliers
for the DCT transforms and the original image.

Figure 3d shows the performance of training the DCT alone,
where the PSNR of DCT outputs improves after training.
However, training the coefficients within JPEG compression
improves SSIM by 0.05 on average while training DCT only
improves SSIM by 0.008, as seen in Figure 7. Training the
coefficients within an application allows improvements that
aren’t achievable when training the approximate kernel alone.
This highlights the importance of application-specific training.

V. CONCLUSIONS

Approximate arithmetic units are a promising method to
reduce energy, cost, and latency in error-tolerant applications.
So far, research has focused on the optimization of the
hardware approximation to minimize application quality loss.
In this work, we flip the argument and propose the learned
approximate computing approach wherein the application kernels
are optimized to improve application quality in presence of
approximate hardware. We have shown improvements of 0.23
in SSIM and 5.82db in PSNR on average across a variety of
signal/image processing applications, showing the utility of LAC
as an approach to making the use of approximate hardware more
broadly viable. The improved performance enables 87% power

Note that SSIM lies between 0 and 1 with 1 being best.
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Fig. 6: Sensitivity of results to training data choice. The
multiplier used here is the 8-bit ETM multiplier [4].

reduction and 83% area reduction with no drop in application
quality. LAC bridges the gap between different approximate
hardware and enables the same hardware in multiple applications.
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