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ABSTRACT
Quantization is spearheading the increase in performance and ef-
ficiency of neural network computing systems making headway
into commodity hardware. We present SWIS - Shared Weight bIt
Sparsity, a quantization framework for efficient neural network in-
ference acceleration delivering improved performance and storage
compression through an offline weight decomposition and sched-
uling algorithm. SWIS can achieve up to 54.3% (19.8%) point accu-
racy improvement compared to weight truncation when quantizing
MobileNet-v2 to 4 (2) bits post-training (with retraining) showing
the strength of leveraging shared bit-sparsity in weights. SWIS ac-
celerator gives up to 6× speedup and 1.9× energy improvement over
state of the art bit-serial architectures.
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1 INTRODUCTION
Creating custom silicon for a particular application requires a robust
economic case due to the immense costs of such endeavors. Deep
neural networks (DNNs) have created such a case in a span of a few
short years and both training and inference accelerators are prolifer-
ating in server and edge-class devices [7].Many of these accelerators
double down on further specialization to improve efficiency, fre-
quently through the use of quantization going as low as 4-bit or
binarized precision [9]. However, only a subset of applications can
take advantage of such aggressive precision reduction.
Recently, a lot of research has gone into hardware support for

configurable levels of quantization, for example bit-serial and decom-
posable arithmetic [8, 11, 13]. Recent works for bit-serial arithmetic
haveattempted toavoidunnecessary computationswith zero-valued
bits in activations at runtime [1, 3]. Those approaches lead to limited
latency improvements [3], significant hardware overheads [1, 3],
no storage compression [3], or non-trivial scheduling issues [1].
Moreover, most existing bit-serial, precision-scalable architectures
show benefits when quantizing from 16-bit networks [3, 8]. How-
ever, recent efforts have shown that 8-bit quantization does not lose
accuracy for most networks [6], so the value of precision-scalable
approaches must be shown below bitwidth of 8.
To address these issues, we propose SWIS - Shared Weight bIt

Sparsity Scheduling, a methodology for training, compressing, and
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executing convolutional neural networks on bit-serial hardware
that can significantly reduce the effective required bitwidth. SWIS
achieves this through configurable, non-consecutive shift values on
a very fine granularity of small groups of weights. This results in
efficient hardware implementation and amore compressed represen-
tation.Withofflineprofilingofweights, SWIS can achieve significant
storage compression and efficient scheduling, which is not achiev-
able in accelerators that process activations in a bit-serial manner.

The main contributions of this work are as follows.
• We show that Shared bit sparsity achieves up to 3.7× neural net-
workweight compression compared to conventional quantization
approaches at similar inference accuracy.

• The proposed SWIS architecture gives up to 6× (1.8×) improve-
ment in inference latency (energy) compared to state-of-the-art
bit-serial accelerators of same size.

• We develop filter scheduling approaches that maximize the bene-
fits of SWIS by optimizing distribution of shift cycles among filters
on a fine granularity, giving up to 4.6p.p. improvement in accuracy
over unscheduled version for ResNet-18.

2 SWIS QUANTIZAION
2.1 What Should be Quantized?
Quantization and reduced precision have proven to be low-hanging
fruits for improving the efficiency of neural network inference
[8, 10, 13, 17]. When these techniques are applied, a question arises -
which values should be quantized: weights or activations? Commod-
ity hardware, like CPUs or GPUs, will often enforce symmetric quan-
tization, with both weights and activations using the same precision,
while conventional bit-serial hardware can only effectively quantize
one of the two [8]. Most bit-serial work has opted for reducing the
precision of activations while keeping weight precision unchanged
[1, 8]. We argue that this approach is flawed and that reducing the
precision of weights should be prioritized in such architectures.
Firstly, prior works have shown that weights can be quantized

much more aggressively than activations without significant accu-
racy drops [10, 17]. With quantization-aware training, weight pre-
cision can be reduced to just 1 or 2 bits, and results for post-training
quantization also suggest quantizing weights to lower precision is
better than doing the same for activations in most cases [2]. Unlike
activations,weights are not input-dependent; thus, they can be quan-
tized offline at a much finer granularity without inducing hardware
overheads. Architectures that use different precision weights and
activations have opted to reduce precision more on the weight side
[13], except for the aforementioned bit-serial accelerators.

Secondly, there are performance considerations. InmodernDNNs,
theoverallnumberofweightswill oftendwarf thenumberof interme-
diate activations generated. Consider the ratio of external memory
weight to activation accesses in the ResNet-18 model, shown in Fig-
ure 1, for a systolic array accelerator. For some convolutional layers,



TinyML Research Symposium’21, March 2021, San Jose, CA Shurui Li, Wojciech Romaszkan, Alexander Graening, Puneet Gupta

0.1 0.2
1.5

11.9

6.1

0

5

10

15

DRAM Weight to Ac!va!on Ra!o

Convolu!onal Layer Number

95.3

Figure 1: Ratio of DRAM weight to activation accesses
(RD+WR) in different convolutional layers of ResNet-18 in
a systolic array accelerator.

there can be two orders of magnitude more weight than activation
accesses. Considering how system performance can be dominated
by memory accesses, reducing the precision of weights can yield
much greater improvements than doing this for activations.
We will now describe SWIS - a computation scheme that can

quantize weights in a much more efficient manner than traditional
bit-serial approaches.

2.2 SharedWeight Bit-Sparsity
The multiply-accumulate (MAC) operation, which is the workhorse
of deep neural networks, between an activation vector ®𝑎 and weight
vector ®𝑤 can be written as:

®𝑎 · ®𝑤 =

𝑀−1∑
𝑖=0

𝑎𝑖×𝑤𝑖 (1)

Where 𝑎𝑖 and𝑤𝑖 are the i-th elements of vectors ®𝑎 and ®𝑤 respec-
tively and𝑀 is the width of the multiply-accumulate. We will refer
to the𝑀 as a group size from now on. Each weight𝑤𝑖 can be further
decomposed to its bit-wise form:

𝑤𝑖 =𝑆𝑖𝑔𝑛(𝑤𝑖 )×
𝐵−1∑
𝑗=0

2𝑗 ×𝑤𝑖 [ 𝑗] (2)

Where𝑤𝑖 [ 𝑗] is the j-th bit (from LSB) of weight𝑤𝑖 , and 𝐵 is the
bitwidth of the weight. Equation 1 can now be rewritten as:

®𝑎 · ®𝑤 =

𝐵−1∑
𝑗=0

2𝑗
𝑀−1∑
𝑖=0

𝑆𝑖𝑔𝑛(𝑤𝑖 )×𝑎𝑖×𝑤𝑖 [ 𝑗] (3)

If we consider that multiplication by a single bit is a bit-wise AND
operation (&), and multiplication by a power of 2 is a logical shift
operation (<<), Equation 3 can be rewritten as:

®𝑎 · ®𝑤 =

𝐵−1∑
𝑗=0

(
𝑀−1∑
𝑖=0

𝑆𝑖𝑔𝑛(𝑤𝑖 )×(𝑎𝑖&𝑤𝑖 [ 𝑗])
)
<< 𝑗 (4)

This formulation is used in bit-serial accelerators, although most
prior works use activations in their bit-serial representation and
weights in their parallel representation [3, 8]. This allows activations
to bepositive andnegative.Wenowexplainwhy theweight bit-serial
formulation, as in Equation 4, can be much better.

Naive implementation of bit-serial multiplication requires going
through all bits of one of the operands. However, as multiple previ-
ous works have pointed out, every bit equal to 0 will not contribute
to the final result, effectively wasting computation cycles [3]. One
solution is to clip all MSB and LSB positions containing zeroes and
only process bits within that clipped range [3]. However, that does

not eliminate zero-bits within the clipped range. For example, the
above scheme applied to a value of 129, represented as an 8-bit value
(1000_0001 in binary), results in no cycle savings, despite 75% of bits
not contributing to the result.

Further, this will cause synchronization problems that are difficult
to solve in highly-parallel architectures unless the above scheme is
applied on a group basis [1]. However, when applied to a group of
values, clipping is constrained by the worst-case number, reducing
achievable benefits. Consider grouping 129 (1000_0001 in binary)
with 8 (0000_1000). The former will require processing all 8 bit posi-
tions, while the latter only requires a single one. Overall, over 80% of
computation would effectively be wasted. While more sophisticated
techniques of removing all activation zero bit computations have
been proposed, they suffer from the above synchronization issue and
significant hardware overheads. [1]. While training optimizations
for such architectures have recently been proposed, they do not fully
solve the scheduling issues [16].
What limits the efficacy of the methods described above is that

they are attempting what is effectively "lossless compression" of
computation, requiring representation of exact values. We argue
that through careful pre-processing, amuchmore hardware-friendly
"lossy compression" can be achieved without significantly reduc-
ing inference accuracy, as we will show in Section 5.1. However,
pre-processing implies that it can only be applied to weights and
not activations, which are input dependent. This insight, together
with the reasons outlined in Section 2.1 justify our "reverse" weight
bit-serial formulation in Equation 4. Furthermore, these existing
approaches quantize using consecutive bit positions (usually trun-
cating the LSBs). Next we show SWIS approach to leverage the
sparsity in bit representations of weights.

Letusassumeweconstrainagroupofweights toonlyusea specific
subset of active bit positions, while all the other inactive positions
are assumed to be 0. We can define a supporting vector ®𝑠:

®𝑠 = (𝑠0,𝑠1,...,𝑠𝑁−1) :𝑠𝑖 ∈ ⟨0,𝐵⟩ (5)
We can then rewrite Equation 2 as:

𝑤𝑖 =𝑆𝑖𝑔𝑛(𝑤𝑖 )×
𝑁−1∑
𝑗=0

2𝑠 𝑗 ×𝑚𝑖 [ 𝑗] (6)

Where𝑚𝑖 is amask bit indicatingwhetherweight𝑤𝑖 has an active
bit in position 𝑠 𝑗 . After combining Equations 4 and 6 we arrive at the
shared weight bit sparsity formulation, the foundation of the SWIS
methodology:

®𝑎 · ®𝑤 =

𝑁−1∑
𝑗=0

(
𝑀−1∑
𝑖=0

𝑆𝑖𝑔𝑛(𝑤𝑖 )×(𝑎𝑖&𝑚𝑖 [ 𝑗])
)
<<𝑠 𝑗 (7)

The stark similarity between Equations 4 and 7 means that SWIS
is fully compatible with bit-serial MAC processing elements (PEs).
There are three crucial differences between bit-serial and SWIS pro-
cessing. First is the change in the outer loop bound from 𝐵 (weight
bitwidth) to 𝑁 (size of the support vector). Second is the sparse
(non-consecutive) nature of the supporting vector - most prior bit-
serial architectures either constrained themselves to consecutive
shift ranges [8], or ran into non-trivial scheduling problems when
attempting to exploit bit-sparsity in dynamic activations [1]. SWIS
does not have this problem as long as the number of active bits,
henceforth referred to as shifts, is the same for all computations
scheduled at the same time.
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The thirddifference is theflexibility to select shifts on thegranular-
ityof an individual group.Traditional bit-serial approaches constrain
themselves to per-layer profiling of consecutive shifts, which, as we
will show in Section 2.3, can be overly restrictive. We refer to this
approach as layer-wise static quantization. Through a careful select-
ing and scheduling approach, described in Section 4.1 and 4.3, SWIS
can ensure that 𝑁 <<𝐵, without sacrificing inference accuracy.

Recent works have shown that using a consecutive subset of bits
of a given value, where that subset can differ between weight values,
can also yield acceptable accuracy for certain datasets and networks
[15]. SWIS can support such consecutive bit subsets by treating them
as a series of shifts, without any additional overheads. It can also
take advantage of the higher weight compression ratio enabled by it,
since only a single shift offset needs to be stored per group ofweights,
instead of individual sparse shift values. We refer to this configu-
ration as SWIS-Consecutive (SWIS-C). The important distinction
between SWIS-C and typical quantization approaches is that the
offset being used can be set on a very fine granularity of a group of
weights, instead of a per-kernel or per-layer basis, hence allowing
more aggressive quantization without sacrificing accuracy.

2.3 Granularity ofWeight Quantization
We discuss the relative accuracy of three quantization approaches
in this section, namely layer-wise static quantization, SWIS-C, and
SWIS. To establish the superiority of both SWIS methods, we will
first discuss their approximation ability, which can be reflected by
the probability of losslessly quantizing an 8-bit integer 𝐴 into 𝐴

using a given number of shifts𝑁 . The 8-bit number is assumed to be
randomly generated so that each bit will have a 50% probability of
being 1. In reality the bit distribution tends to shift towards the lower
end since most weights are around zero, but taking this factor into
account will make the analytical calculation of probability imprac-
tical. For simplicity of analysis, we stick with random bits and group
size of one for the probability of lossless quantization calculation,
and we will factor in the actual weight distribution and group size
is subsequent analysis.
First, for SWIS, as the bit selection is sparse, the quantization is

lossless if the number of bits that are 1 in𝐴 is less than or equal to
𝑁 . The probability of lossless quantization for SWIS given 𝑁 can be
formulated using cumulative binomial distribution:

𝑃𝑆𝑊 𝐼𝑆 (𝐴==𝐴)=
𝑁∑
𝑛=0

(
8
𝑛

)
·0.58 (8)

Second, for SWIS-C, the probability can be calculated based on
the probability of SWIS, multiplied by the fraction of total bit permu-
tations that can be losslessly quantized. The probability of lossless
quantization of SWIS-C for given 𝑁 can therefore be formulated by:

𝑃𝑆𝑊 𝐼𝑆−𝐶 (𝐴==𝐴)=
𝑁∑
𝑛=0

(
8
𝑛

)
·0.58 ·

(𝑁
𝑛

)
(9−𝑁 )−(8−𝑁 )

(𝑁−1
𝑛

)(8
𝑛

) (9)

Last, for layer-wise static quantization, the bit selection is fixed
for the entire layer, therefore the probability of lossless quantization
of an individual 8-bit value is:

𝑃𝑙𝑎𝑦𝑒𝑟−𝑤𝑖𝑠𝑒 (𝐴==𝐴)=
𝑁∑
𝑛=0

(
8
𝑛

)
·0.58 ·

(𝑁
𝑛

)(8
𝑛

) (10)

Figure 2 shows the computed probability of lossless quantization
for all three approaches at every 𝑁 . The results are expected, SWIS

Figure2:Probabilityof losslessquantizationofa8-bit integer
using layer-wise static quantization, SWIS-C and SWIS.

outperforms the other two by a large margin in most cases due to its
bit sparsity, while SWIS-C also outperforms layer-wise quantization
noticeably, since it allows a finer quantization granularity.

The relative accuracy of lossless quantization also holds for lossy
quantization. We use root mean square error (RMSE), instead of
probability, to compare the above three methods. Table 1 shows
quantization RMSE against original weights for a typical layer of
8-bit ResNet-18 [4] and MobileNet-v2 for a different number of shift
values and group sizes. Group size of 1 shows the ideal case perfor-
mance while group size of 4 shows results for a more realistic case,
which we will explore further in Section 4.2. Both networks show
a similar trend, and the huge RMSE of static layer-wise quantization
(implemented using LSB truncation) suggests that it does not work
well for lower bit widths. SWIS outperforms SWIS-C in all cases,
and the gap is large for the combination of a hard-to-quantize net-
work (MobileNet-v2) and a small number of shift values. This trend
holds for larger group sizes, but the difference between SWIS and
SWIS-C becomes smaller, suggesting SWIS-C can be considered an
alternative for some use cases, with a better weight compression.

Table 1: RMSE of three weight quantization methods for
a typical layers of 8-bit ResNet-18 and MobileNet-v2, for
group size of 1 and 4.

Group size = 1 Group size = 4

# shifts SWIS SWIS-C SWIS SWIS-C layer-wise
trunc.

ResNet-18 first convolution layer
5 shifts 0.0013 0.0020 0.0022 0.0027 0.0168
4 shifts 0.0019 0.0037 0.0044 0.0053 0.0314
3 shifts 0.0038 0.0070 0.0091 0.0103 0.0556
2 shifts 0.0094 0.0146 0.0197 0.0214 0.0895

MobileNet-v2 first point-wise convolution layer
5 shifts 0.0007 0.003 0.0039 0.005 0.0158
4 shifts 0.0023 0.0055 0.0078 0.0095 0.0227
3 shifts 0.0051 0.0112 0.0162 0.019 0.0394
2 shifts 0.0126 0.0208 0.0358 0.0401 0.0774

3 ARCHITECTURE
We architect SWIS as a bit-serial processed systolic array with each
processing element (PE) and dataflow optimized to leverage SWIS
quantization.

3.1 SWIS PE
The conventional processing element (PE) implementation of Equa-
tion7wouldconsist ofN (groupsize)parallel bitwiseANDoperations
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(masking), conditional sign inversion, an adder tree for summing
masked activations, a barrel-shifter for power-of-2 multiplication
and a serial accumulator, similar to the one proposed in [8]. It com-
putesoneof theoperandsonebit at a time.While thegroup size is spe-
cific to a given hardware, the number of shifts used can be configured
at runtime, anddifferent for eachPE.Werefer to this style of bit-serial
PE as a single-shift PE. While inverting the order of addition and
multiplication results in certain gains in efficiency, bit-serial process-
ing by itself does not provide higher throughput per area or energy
efficiency compared to conventional fixed-pointwhen processing all
of the bits. Only by aggressively reducing the number of bits (shifts)
being used andmaximizing the PE group size, performance improve-
ments over fixed-point can be achieved. While such improvements
are trivial when 16-bit fixed-point precision is used as a baseline,
they are much harder when the baseline is reduced to 8-bits, the
de-facto standard precision in quantized networks nowadays. [8].

To quantify the possible benefits of using bit-serial computation,
we have designed the 8-bit fixed-point, and a single-shift bit-serial
PEs with different group sizes (2-16) using Verilog RTL and synthe-
sized them using a commercial 28nm TSMC library and Cadence
Genus synthesis tool. Since we intended to use them in a systolic
array style accelerator, all PEs include activation and weight buffers.
We then compared their area, energy per MAC, and throughput
per area for different number of shifts used in the bit-serial version
(2/4/6). Results, normalized to the fixed-point PE using the same
group size, are shown in Figure 3. The single-shift PE only comes out
ahead in terms of energy and throughput per area when fewer than
4 shifts are used.When using conventional quantization approaches,
this level of precision reduction might not be tolerable, as we will
show in Section 5.1. SWIS, with its ability to implement sparse quan-
tization on amuch finer granularity, can reduce the number of shifts
required much more aggressively than those approaches.
However, even with SWIS, improving the performance requires

using PEswith large group sizes, as shown in Figure 3. Below a group
size of 8, performance improvements, even with a low number of
shifts used, are modest at best. This limited improvement is due to
overheads which cannot be reduced compared to fixed-point PEs.
To recover accuracy for larger group sizes, more shifts are required,
and as shown in Figure 3, efficiency gains are quickly lost when
more than 4 shifts are used. Therefore, a way to improve hardware
efficiency is needed. To better amortize the fixed costs mentioned
above, we propose to process multiple bits (shifts) simultaneously.
By computing, for example, two shifts at the same time, performance
break-evenpoints compared tofixed-point canbe improved, through
amortizing the cost of buffering the activations and sign inversion.
We show the performance comparison of this double-shift PE in

Figure 3, for the same group sizes and number of shifts being used as
the single-shift one. It has a lower normalized energy per MAC and
throughput per area than a single-shift one with double the group
size. This means we can effectively halve the group size while im-
proving both performance and inference accuracy. For that reason,
we opt to use double-shift PEs in our SWIS accelerator architecture,
as shown in Figure 4. However, this double-shift processing comes
at an increased rigidity in terms of the number of shifts used. Using
an odd number of shifts would result in underutilization of the avail-
able compute - going from four to three shifts would therefore not
improve inference latency. However, SWIS allows us to assign the
number of shifts on a sub-layer granularity, meaning that effective
number of shifts is not constrained to even numbers. For example,

if half of the kernels in a given layer use 2 shifts, and the other half 4
shifts, the effective, layer-wise number of shifts is 3. See Section 4.3
for network accuracy when using a scheduled odd effective number
of shifts on the double-shift configuration.

3.2 SWIS Systolic Array and Dataflow
We use systolic array as a baseline architecture, shown in Figure
4, due to simple scheduling, low complexity processing element
architecture, and low bandwidth requirements when processing
convolutional layers [7]. We assume the same structure, consisting
of the systolic array itself, together with activation, weight, and
output buffers, as described in [12]. While the systolic array itself
is a 2D array of PEs, each individual PE processes weights in groups,
effectively adding a third dimension to the dataflow. That being said,
SWIS is not inherently tied to a particular implementation and could
be used in any accelerator that can support bit-serial processing.
Compared to conventional systolic array, where each element

consists of a single multiplier and accumulator, SWIS systolic array
uses group-wise PEs, where multiple MAC operations are executed
in parallel on a vector of activations and a corresponding vector of
weights, one shift at a time. For simplicity, we assume that all such
vectors are depth-wise - all activations and weights have the same
x and y positions but correspond to different input channels. We
also assume that those vectors are packed in memory, and on-chip
buffers have interfaces scaled by a factor equal to the group size.
Those assumptions are easy to fulfill for commonly used convolu-
tional layers where the number of input channels is a power of 2. For
depthwise-separable convolutions, such as those used byMobileNet,
we underutilize the PEs in the systolic array, for the simplicity of
scheduling. We plan on exploring a more efficient implementation
of such layers in future work.

In terms of scheduling,we use the output stationary dataflow (OS),
as it has been shown to provide the best performance and minimal
number of memory accesses in most cases [12]. There are several
ways bit-serial computation can be scheduled in a systolic array.
The most naive would be to perform a full computational pass for
each shift.While straightforward to implement in the OS dataflow, it
would also increase the number of on-chipmemory accesses roughly
proportional to the number of shifts being used. Another alternative
is to send all shift masks to the PE at the same time and execute each
operation in multiple cycles. Unfortunately, this would require scal-
ing both theweight buffer interface and PEweight buffers to support
the worst case, 8 shifts, drastically increasing their area. Instead, we
opt for a "staggered" approach, where weights (shifts) flow through
the array normally, but each activation is fed in repeatedly over
multiple cycles, equal to the number of shifts being used. Such an
approach requires minimal control and buffering overhead, without
over-provisioning the PE buffers or increasing the number of activa-
tion buffer accesses. It also enables efficient reuse of activations for
different shifts, as they do not need to be fetched multiple times. For
SWIS-C, we assume that a shift (offset) is fetched only once, and in-
cremented outside of the array, incurring negligible area overheads.

3.3 SWIS Compression
Theperformanceof a computing systemcannotbeevaluatedwithout
considering the impact ofmemory. Increasingly,memory bandwidth
and access energy have the dominant impact on overall latency, and
energy [5]. Approaches that rely solely on point improvements to
arithmetic efficiency will quickly fall victim to diminishing returns.
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One of the main advantages of SWIS is the weight storage compres-
sion it offers. Assuming 8-bit underlying precision, for each group of
weights, we only need to store their signs (one bit per weight), shift
values (3 bits per group, per shift), and shift masks (1 bit per weight,
per shift).
The resulting weight compression ratios for different number

of shifts and group sizes are shown in Figure 5. We compare our
compression scheme of 8-bit weights to the one used by DPRed [3],
profiled across one example convolution layer, for different groups
sizes. DPRed stores weights using per-group bitwidth, determined
by the highest active bit position in a given group. We also show
compression ratios for SWIS-C, which only needs to store one shift
value per group.

Those compression ratios further translate to external memory
bandwidth reduction. Comparing with an iso-area, 8-bit fixed-point
accelerator, SWIS can require up to 2.3× lower DRAM bandwidth,
while for SWIS-C bandwidth reduction can go as high as 3.3×, at
similar accuracy (within 1% of 8-bit Resnet-18).

While it is important tonote thatunlikeSWIS,DPRedcompression
is lossless (retainsall information), it is also toorestrictive, at least at8-
bit precision, to deliver any significant storage savings. Meanwhile,
SWIS and SWIS-C can deliver close to 3.7× reduction in weight
storage when large groups are used with an aggressive reduction
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Figure 5: Weight storage compression ratio for different
number of shifts andPE sizes, for SWIS, SWIS-C, andDPRed.

in the number of shifts. For a group size of 4, which we use in our
architecture, compressionvaries from1.1× to2.9× forSWISand from
1.5× to 2.9× for SWIS-C. Accuracy-performance trade-offs between
the number of shifts and group sizes are explored in Section 5.

4 SWIS SCHEDULING&GROUPING
4.1 SWIS Shift Selection
4.1.1 Selection Algorithm. The shift selection process for SWIS con-
sists of selecting the optimal shift values 𝑠 𝑗 for each group and gener-
ating the bitmasks𝑚𝑖 for individual weights to minimize the quanti-
zationerror for thegivennumberof shifts.As the total numberof pos-
sible combinations of selecting𝑁 shift values out of 8 is manageable,
we use an enumeration algorithm for best results. For each group,we
quantize the weights using all possible shift value combinations and
select the combination with the least error based on our error metric
(Section4.1.2) over the entiregroup. For each shift value combination,
the corresponding values for all possible bitmasks are generated, and
eachweight is quantized to the nearest value (bitmask). This enumer-
ation algorithm ensures that the optimal shift values and bitmasks
are selected for every group and every weight to minimize the error.

4.1.2 Error Metric. We introduce an error metric based on mean
square error (MSE) for SWIS shift value selection called MSE++.
AlthoughMSE provides decent baseline results, it only considers the
absolute error. MSE++ includes a signed error term to reduce drift
of the average value of a multiply accumulate due to quantization
rounding errors. The formulation we used for signed error is shown
in equation 11 where 𝑁 is the group size:

SignedError=
𝑁∑
𝑖=1

(
𝑋𝑖−𝑋𝑖

)
(11)

For MSE++, we squared the signed error term to guarantee a posi-
tive value and scale the magnitude closer to MSE so the overall error
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Figure 6: ResNet-18 top-1 inference accuracy for different
group sizes and number of shift values.

is not dominated by the signed error. We also added a coefficient
to the signed error term to allow us to fine-tune its contribution
for each network. The complete equation for MSE++ is shown in
equation 12 where 𝛼 is the coefficient term:

MSE++= 1
𝑁

©«𝛼
(
𝑁∑
𝑖=1

(
𝑋𝑖−𝑋𝑖

))2

+
𝑁∑
𝑖=1

(
𝑋𝑖−𝑋𝑖

)2ª®¬ (12)

Using MSE++ resulted in direct quantization inference accuracy
improvements from 0.5% to 10% compared to MSE for each evalu-
ated network and nearly all sets of group size, number of shifts and
SWIS configuration. When fine-tuning is not practical, MSE++ still
outperforms pure MSE with the coefficient set to one.

4.2 SWIS Grouping
Theprevious analysis of different quantizationgranularities assumes
that the group size is one, but that does not result in efficient hard-
ware implementation or storage compression. However, increasing
the group size will increase the quantization error and impact net-
work accuracy as the shift values for the entire groupofweights need
to be shared. Figure 6 shows the inference accuracy of ResNet-18
on ImageNet, with different group sizes and number of shift values.
As expected, inference accuracy drops as group size increases, but
the exact amount differs significantly for different number of shift
values. SWIS performs better than SWIS-Cwhen the number of shift
values is small, but their performance converges when the number
of shift values increases, which verifies the analysis in section 2.3.
For a group size of 4, which tends to be a good accuracy/efficiency
trade-off point, we need 3 shifts to maintain a similar performance
of 8-bit baseline. In the next section, we will discuss how to obtain
even finer granularity of the number of shifts being used.

4.3 SWIS Scheduling
Within a layer, not all filters are equally sensitive to the loss of pre-
cision. SWIS scheduling takes advantage of this to decrease the
quantization error calculated using MSE++ for a given layer com-
pared to the quantization error achieved by naively quantizing the
entire layer to the same number of shifts. We do this by increasing
the number of shifts for some filters while decreasing it for oth-
ers to keep the total number of shifts constant for the layer. This
scheduling approach’s main benefit is that it allows us to choose an
average quantization level that would not be possible without filter
scheduling. For instance, it allows the double-shift architecture to

use a target number of shifts that is not an even number without
under-utilizing the hardware.
The SWIS scheduling heuristic starts by placing all filters at a

number of shifts higher than the target value. We then calculate the
MSE++ cost of decreasing the number of shifts used to quantize each
filter by one shift. The filters are then sorted based on this cost, and
the lowest cost𝑛 filters are moved down to the next lowest shift. The
new cost for the filters which changed their number of shift values
are then recomputed, and the filter costs are sorted again to find
the 𝑛 lowest cost filters. This process is repeated until the average
number of shifts in the layer is equal to the target number of shifts.
At this point, the filters are sorted based on their number of shifts.

The above method does not guarantee that all filters scheduled
simultaneously on the systolic array have the same number of shifts,
a restriction that is necessary to ensure simple scheduling and the
absence of synchronization issues. To enforce such behavior, the sec-
ond part of the algorithm assigns the number of shifts to each group
of filters that are scheduled simultaneously, based on previous order-
ing.We first enumerate the possible per-filter-group number of shift
assignment sequences that are nondecreasing and guarantee the
desired overall average number of shifts per layer. For each sequence,
we compute the quantization error and select the combination with
the lowest error.

AllSWISvariationsbenefit fromschedulingonallbenchmarksand
the benefit is larger for lower base accuracy. Accuracy improvement
using SWIS scheduling for ResNet-18 single-shift is shown in Table 2.

Table 2: ResNet-18 top-1 accuracy with SWIS scheduling for
single- and double-shift PEs, compared to a single-shift PE
accuracy with no scheduling for different systolic array (SA)
sizes. PE group size is 4.

2 Shift % Accuracy 2.5 Shift % Accuracy

SA Single Double None Single Double None

8 65.9 66.0 61.4 68.5 67.9 N/A
16 65.0 63.9 61.4 68.3 67.7 N/A

3 Shift % Accuracy 4 Shift % Accuracy

8 69.2 68.6 68.3 69.5 69.5 69.05
16 69.1 68.3 68.3 69.4 69.4 69.05

5 EVALUATION&RESULTS
All PE area, power, and latency numbers are derived from synthesis
results in a commercial 28nm library with Cadence Genus tool. We
used SCALE-Sim, a systolic array simulator, to obtain cycle-accurate
execution traces [12]. As a baseline, we used an 8x8 bit-serial systolic
array with 64KB activation and weight buffers, and 16KB output
buffer. The PE group size has been set to 4, as it provides a good
balance between performance and accuracy.We compare the follow-
ing versions of SWIS: single-shift SWIS-SS, double-shift SWIS-DS,
single-shift consecutive SWIS-C-SS and double-shift consecutive
SWIS-C-DS.
As a baseline, we use a systolic array with conventional (single-

shift) bit-serial PEs using per-layer activation truncation. Computa-
tion is done in the same way as [8], however the accelerator organi-
zation is different.We also compare to the same architecture, but use
weight truncation. Further, we compare SWIS to BitFusion, a sys-
tolic array using decomposable arithmetic [13]. The area and energy



SWIS - SharedWeight bIt Sparsity for Efficient Neural Network Acceleration TinyML Research Symposium’21, March 2021, San Jose, CA

numbers have been scaled appropriately to 28nm, whenever neces-
sary.We evaluate BitFusion using 4-bit weights and 8-bit activations,
as the architecture is constrained to power-of-2 precision. Finally,
we include conventional 8-bit fixed-point numbers for reference.
All configurations have the same amount of on-chip memory. All
comparison points use the same size of the systolic array (8×8) as it
allows us to isolate the benefits coming from each scheme.We evalu-
ate the performance only on convolutional layers of tested networks,
as they dominate overall performance and latency. We leave SWIS
optimizations targeting fully-connected layers for future work.

For network accuracy evaluation, we use Pytorch and implement
all custom quantization functions using Pytorch’s built-in functions.
Table 3 includes the networks and datasets we used as benchmarks
and their baseline accuracies.We select ResNet-18 andMobileNet-v2
on ImageNet 2012 and VGG-16[14] on CIFAR100 to evaluate the re-
sults. For MobileNet-v2, the floating point weights are downloaded
fromPytorch’smodel zoo and then retrained for 10 epochswith 8-bit
quantization to generate the 8-bit baseline weights, as MobileNet-v2
performs poorly on post-training INT8 quantization. For ResNet-18,
the 8-bit baseline is the layer-wise static INT8 quantization of py-
torch’s pretrained floating point weight. For VGG-16, the network
structure is adjusted slightly to fit CIFAR-100 dataset and trained
from scratch for 100 epochs to obtain the baseline accuracy. For
quantization-aware retraining, all baseline results are trained for 10
epochs with learning rate decay. Some SWIS variants also fine-tune
based on scheduling algorithm’s output to enable odd number of
shifts (for DS) and half shifts. All activations are also quantized to
8 bits unless specified.
We use the method introduced in Section 4.1 for SWIS weight

quanization. To simulate the activation quantization in [3, 8], we
implemented a layer-wise LSB truncation algorithm on all activa-
tions, where the last 8−𝑁 bits are truncated and 𝑁 is the number
of shifts allowed.When reporting the number of shifts for a given
configuration, we report the "effective" number of shifts across the
whole network, which is averaged across all of the weights.

5.1 Network Accuracy Evaluation
5.1.1 Post-trainingQuantization. In this section we compare the
accuracy of the 4 SWIS configurations to layer-wise activation trun-
cation (similar to the approach used in [8]) and layer-wise weight
truncation+clipping,which is a standardbaselinemethod forweight
quantization. Table 3 shows the post training quantization accuracy
for all SWIS configurations on three networks along with base-
lines for 32-bit floating point and 8-bit integer quantization. All
SWIS/SWIS-C results are after scheduling. SWIS configurations out-
perform weight and activation truncation in all cases. In general,
SWIS outperforms SWIS-C and SS outperforms DS slightly due to
better scheduling flexibility. In most cases, the accuracy difference
betweenDS and SS is small, andDS is preferred due to its better hard-
ware efficiency. The accuracy difference between SWIS and SWIS-C
depends on networks, the gap is relatively small for more redundant
networks likeVGG-16onCIFAR100while it is large forMobileNet-v2,
where SWIS shows advantage of its bit sparsity quantization. Post-
training activation quantization (as in [8]) below 8 bits has unusably
low accuracy. Even for weight quantization, for example at 4 bits (or
shifts), SWIShas 9.3%, 54.3%, 1.5%higher accuracy than conventional
quantization for Resnet-18, MobileNet-v2 and VGG-16 respectively.

Table 3: Post-training quantization top-1 accuracy of the
three networks, using different algorithm and hardware se-
tups, Wgt. and Act. means weight truncation and activation
truncation. Results for weight and activation truncation
with 6 and 7 shifts are included for reference.

SWIS SWIS-C Trunc.
N_shift SS DS SS DS Wgt. Act.

Resnet-18 ImageNet (Baseline FP32: 69.6 and INT8: 69.5)

2 65.9 66.0 62.2 62.5 3.6 0.1
2.5 68.5 67.9 66.8 66.6 N/A N/A
3 69.1 68.6 68.6 68.0 30.8 0.1
4 69.5 69.5 69.4 69.3 60.2 45.9
6 / / / / 69.2 66.7
7 / / / / 69.5 69.1

MobileNet-v2 ImageNet (Baseline FP32: 71.9 and INT8: 70.1)

3 58.3 28.8 41.2 30.5 0.6 0.1
3.5 65.6 55.8 47.4 43.4 N/A N/A
4 67.5 67.2 65.4 67.2 13.2 0.3
5 69.9 68.3 68.4 68.3 60.6 25.8
6 / / / / 68.0 60.3
7 / / / / 70.1 68.1

VGG-16 CIFAR100 (Baseline FP32: 64.8 and INT8: 64.8)

2 61.3 61.4 56.1 57.9 31.1 1.0
2.5 63.6 62.7 61.5 60.8 N/A N/A
3 64.5 63.3 63.4 62.6 60.5 3.6
4 64.7 64.7 64.5 64.7 63.2 24.7
6 / / / / 64.7 62.8
7 / / / / 64.8 64.1

5.1.2 Quantization-awareRetraining. Thoughour focus is on theen-
ergy/latency benefits of SWIS for post-training quantization, retrain-
ing can reduce the number of shift values needed by 1-3 shifts. This
is especially helpful for MobileNet-v2, since it needs more shifts to
maintain accuracy for post-training quantization compared to other
networks. During retraining, the shift value selection is treated as a
special quantization, and is updated per batch input. The shift value
selection is applied to quantize theweight in the forwardpass and the
error is back-propagated to update weights, similar to conventional
quantization.Table 5 shows the retraining results, all SWISconfigura-
tions outperformweight truncation in all cases (5%, 19.8%,4.5% point
accuracygain over conventional quantization at 2-shifts for the three
networks). For ResNet-18, SWIS at 2 shifts in all its variants is far su-
perior in accuracy compared to conventional quantization at 3 shifts.

5.2 Performance Comparison
Performance results, in terms of frames per Joule (F/J) and frames
per second (F/s) for each evaluated configuration are listed in Table
4. Performance for each SWIS configuration is evaluated at 2 accu-
racy points, with corresponding activation- and weight-truncation
results, as well as BitFusion 4×8 where applicable. First, we show
that SWIS-SS can be between 1.75× and 4.8× faster than activation-
truncation bit-serial. For SWIS-DS that speedup ranges from 2.8×
to 6×. SWIS can also improve energy efficiency by 1.04-1.7× and
1.1-1.9× for SWIS-SS and SWIS-DS respectively, due to weight com-
pression and more efficient computation. When using the same
number of shifts, SWIS-C has higher energy efficiency than SWIS,
but that benefit is often offset when additional shifts are required
to maintain iso-accuracy with it.

Evenwhencomparing toweight truncation, SWISoffersup to1.6×
and 3.2× speedup for SWIS-SS and SWIS-DS respectively, with up to
1.6× reduction in energy across all SWIS configurations. Compared
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Table 4: Energy (Frames/J) and latency (Frames/s) comparison between different SWIS configurations, bit-serial with activation
and weight truncation, BitFusion, and 8-bit fixed-point, at different accuracy points for different networkmodels and datasets.
Best Fr/J and Fr/s for each accuracy points are highlighted. "S" indicated the number of shifts used.

Archi- SWIS SWIS-C Trunc Bit 8-bit
tecture SS DS SS DS Act Wgt Fusion 4×8 FXP

Area [𝑚𝑚2] 0.54 0.55 0.54 0.55 0.54 0.54 0.57 0.54

Network ResNet-18 ImageNet

Accuracy S F/J F/s S F/J F/s S F/J F/s S F/J F/s S F/J F/s S F/J F/s S F/J F/s F/J F/s

>69.1% 3 317.8 28.6 4 292.5 42.9 4 326.3 21.4 4 353.6 42.9 7 215.8 12.2 6 230.7 14.3 - - - 238.5 23.2
>60.2% 2 390.8 42.9 2 416.5 85.7 2 410.6 42.9 2 439.1 85.7 6 230.7 14.3 4 267.7 21.4 4 218.9 42.9 - -

Network MobileNet V2 ImageNet

Accuracy S F/J F/s S F/J F/s S F/J F/s S F/J F/s S F/J F/s S F/J F/s S F/J F/s F/J F/s

>68.0% 5 475.6 4.0 5 490.0 8.0 5 496.3 4.0 6 495.8 6.7 7 456.1 2.9 6 466.1 3.3 - - - 391.2 6.1
>60.3% 3.5 511.4 5.7 4 511.6 10.0 4 515.8 10.0 4 529.4 10.0 6 466.1 3.3 5 476.6 4.0 - - - - -

Network VGG-16 CIFAR-100

Accuracy S F/J F/s S F/J F/s S F/J F/s S F/J F/s S F/J F/s S F/J F/s S F/J F/s F/J F/s

>64.1% 3 763.6 124.7 4 626.5 187.1 4 815.1 93.5 4 843.5 187.1 7 553.0 53.4 6 569.5 62.4 - - - 522.3 94
>62.5% 2.5 878.2 149.7 2.5 905.6 299.3 3 942.1 124.7 3 980.3 299.3 6 569.5 62.4 4 605.6 93.5 4 799.8 187.1 - -

Table 5: Retraining top-1 accuracy of the three networks,
using different algorithm and network setups

SWIS SWIS-C Trunc.
N_shift SS DS SS DS Wgt.

Resnet-18 ImageNet

2 68.3 68.3 68.1 68.1 63.3
3 69.1 68.7 68.4 68.3 66.3

MobileNet-v2 ImageNet

2 67.4 67.4 65.5 65.5 47.6
2.5 68.0 67.8 66.9 66.0 N/A
3 69.3 68.5 69.0 67.2 65.8

VGG-16 CIFAR100

2 64.1 64.1 64 64 59.6

with iso-accuracy BitFusion, SWIS can have up to 2× lower latency
and up to 1.9× lower energy consumption, thanks to the SWIS’s abil-
ity to reduce thenumberofbitsusedmuchmoreaggressively, improv-
ing both storage compression and computation energy efficiency.

6 CONCLUSION
In this work, we propose SWIS, a framework for neural network
quantization for efficient inference on edge devices. We show con-
ventional bit-serial designs donot fully utilize their flexibility asmost
of them only apply to activations. We utilize the bit level sparsity
inherent in weights to quantize them beyond the conventional "pre-
fix" or "suffix" style truncation. For example, SWIS quantization can
achieve MobileNet-v2 accuracy within 1% of INT8 with 5 effective
bit quantization without any retraining and 3 bits with retraining.
For bit-serial architectures, SWIS compresses weights and improves
latency and energy by as much as 6× and 1.9×, respectively, without
loss of accuracy. Based on SWIS, we further purpose SWIS-C and
double-shift SWIS (SWIS-DS), one for better weight compression
and the other for better hardware efficiency. Further, we develop a fil-
ter scheduling algorithm, to allow for fine-grained tradeoff between
accuracy and energy/latency. Our ongoing work includes design
space exploration of SWIS systolic array architectures as well as
approaches for efficient SWIS execution of fully connected layers.
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