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Abstract—Stochastic computing (SC) has seen a renaissance in
recent years as a means for machine learning acceleration due to its
compact arithmetic and approximation properties. Still, SC accuracy
remains an issue, with prior works either not fully utilizing the
computational density or suffering from significant accuracy losses. In
this work, we propose GEO – Generation and Execution Optimized
Stochastic Computing Accelerator for Neural Networks, which
optimizes stream generation and execution components of SC, and
bridges the accuracy gap between stochastic computing and fixed-point
neural networks. It improves accuracy by coupling controlled stream
sharing with training and balancing OR and binary accumulations.
GEO further optimizes the SC execution through progressive shadow
buffering and architectural optimizations. GEO can improve accuracy
compared to state-of-the-art SC by 2.2-4.0% points while being
up to 4.4X faster and 5.3X more energy efficient. GEO eliminates
the accuracy gap between SC and fixed-point architectures while
delivering up to 5.6X higher throughput and 2.6X lower energy.

I. Introduction

The rapid growth of deep learning in the past decade has created
an immense demand for computing power at both the cloud and edge.
Multiple algorithmic, architectural, and circuit approaches have been
proposed to meet this demand. Among those, stochastic computing
(SC) has been enjoying a renaissance in deep learning acceleration for
latency-, energy-, and cost-constrained devices [1]–[5]. It offers a very
compact computing footprint, enabling high levels of parallelism and
data reuse not achievable using conventional floating- or fixed-point
architectures [5]. Its approximate nature synergizes well with neural
networks’ inherent error-tolerant properties, enabling new axes of
accuracy and performance tradeoffs [3], [5], [6].

Stochastic computing represents numbers using the proportion of
ones in a random bitstream and enables multiplication and addition
using simple logic gates. Precision remains the most significant barrier
towards wider SC adoption; therefore, the majority of prior works
opted for approximate parallel counter-based accumulation fabric [4],
[6]–[8] or directly converting each multiplication result and adding
them in the fixed-point domain [3], [9], losing computational density.
Custom SC addition circuits have also been used [10], [11]. [5] showed
OR-accumulation using split-unipolar stochastic streams to be a viable,
unscaled accumulation approach for neural network acceleration, but
it suffers from significant accuracy loss. In this work, we show that
those sacrifices are not necessary.

Stochastic bitstream generation has also received much attention.
A typical stochastic number generator (SNG) has a random number
generator (RNG) and a comparator that compares the target value
with the random number [12]. Streams generated from a true random
number generator (TRNG) have a predictable error variance that can
only be reduced through longer stream lengths [13]. Less expensive
TRNGs [14]–[17] as well as quasi-random sequences [3], [4], [9]
have been explored to reduce error and cost of stream generation.
Correlation of the random sources in stream generation can severely

impact accuracy and has forced most prior works to limit the amount
of computation performed in the stochastic domain, sacrificing
potential performance benefits [3], [4], [9].

Most SC literature focuses on SC “component” improvements [3],
[9], [18] or implement dedicated network-specific accelerators [7], [19].
Programmable, full-system SC implementations [2], [5], like the focus
of our work are rare. We account for overheads of generalizability
of programmable accelerators and generate power, performance, and
accuracy numbers for the entire compute+memory system.

We propose GEO - Generation and Execution Optimized stochastic
computing for neural networks - an ensemble of optimization
techniques that can bridge the accuracy gap between stochastic
and fixed-point accelerators while improving inference energy and
latency even when compared to state of the art stochastic inference
accelerators. Our contributions are as follows:
• We show that, with appropriate training, neural networks can

learn the biases caused by the use of pseudo-RNGs and extensive
sharing of them in SNGs and improve accuracy compared to using
non-shared TRNGs by as much as 6.1% points while reducing
energy and area.

• We propose a progressive stream generation and shadow buffering
scheme that reduces required memory bandwidth by up to 4X while
improving latency by as much as 2X.

• We propose using a balanced mix of stochastic OR and fixed-point
accumulation to improve accuracy by up to 9.4% points. The
increase in accuracy allows us to reduce stream length by 4X while
still maintaining 2.2-4.0% points accuracy advantage.

• We leverage aggressive pipelining and near memory computation
to enable high throughput, maximal reuse, and efficient compute
utilization regardless of layer parameters.

II. Stochastic Stream Generation Optimizations
This section proposes two methods optimizing the stream generation

process of SC. Combining shared stream generation and training
improves accuracy, while progressive generation relieves memory
bottleneck.

A. Co-optimized Shared Generation and Training
RNG Sharing has been shown to be detrimental to stochastic

computing accuracy [20], [21], and typically requires complicated
methods to decorrelate streams from the same source to avoid incurring
large stream generation penalties. However, we hypothesize that a
partially-shared generation leads to higher accuracy, especially when
coupled with deterministic stream generation and stream-based training.

Deterministic and repeatable (using a pseudorandom RNG) stream
generators guarantees obtaining the same outputs from the same
inputs, enabling the model to train for a fixed, instead of random error.
We achieve determinism using maximal-length linear feedback shift
registers (LFSR) as RNG. When generating streams of length 2n, an



n-bit maximal-length LFSR is used with a cycle of 2n−1. Apart from
guaranteeing an almost accurate generation, LFSR generates the same
output with the same input and seed and allows multiple uncorrelated
stream generation (by varying the seed or the characteristic polynomial)
suitable for large multiply-accumulate operations. Sharing stream
generation simplifies the error profile caused by SC. Assuming that
all kernels in a layer share the same set of seeds, training only needs
to deal with an error associated with one set of seeds.

To test this hypothesis, we implement three levels of sharing for a 4-
layer CNN [22] on the SVHN dataset. Streams are represented using the
split-unipolar format, and OR is used for accumulation, similar to [5]. In
the “no sharing” case, each SNG gets a different seed for its LFSR. The
“moderate sharing” case shares the same set of seeds across all kernels
in a given layer. Finally, in the “extreme sharing” case, all rows of all
kernels in a layer use the same set of seeds. The same is done when a
true random number generator (TRNG) is used as an RNG1. The results
are shown in Figure 1. At moderate sharing levels, LFSR-based SNGs
show a significant uplift in the accuracy (up to 6.1% points compared
to unshared TRNGs) at both stream lengths, adhering to the hypothesis.
TRNG does not see the accuracy improvement with sharing due to the
lack of determinism. However, both TRNG and LFSR suffer from a
significant drop in accuracy when using extreme sharing. In this case,
stream correlation becomes an issue hard to overcome just by training.

These results also mean that low discrepancy (LD) sequences are
not suitable for OR accumulation due to the difficulty of generating
multiple uncorrelated streams, even though LD sequences can improve
accuracy for single operations [23]. We also compared the validation
accuracy when using LFSR without modeling it during training.
The models are trained using TRNG, but validated using LFSR. No
accuracy can be gained from moderate sharing when the model is
not trained for it, and extreme sharing reduces accuracy to about
20%. We use the moderate sharing scheme in GEO (up to the limit
of availability of unique RNG seeds).
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Fig. 1. Accuracy vs. sharing for TRNG and LFSR-based random number generation.
B. Progressive Stochastic Stream Generation

Once a set of weights and activations finish computation, the SNG
buffers need to be reloaded for the next iteration of generation and
computation. If the underlying architecture needs to reload activations
and weights extensively during computation, reloading can become
a significant bottleneck. We propose using a progressive generation
scheme to alleviate this inefficiency, where stream generation begins
as soon as the first 2 most-significant bits are loaded into the buffers
instead of waiting for all 8 bits, as shown in Figure 3. The rest of
the buffer is padded with 0s. As stream generation continues, the
remaining bits are gradually loaded in groups of 2 bits every two
cycles until the number of bits loaded matches the LFSR length used.
As GEO matches the LFSR length to the stream length being used,
shorter stream lengths effectively truncate the converted fixed-point
values. Our progressive buffering scheme can take advantage of that
truncation to reduce the number of required memory accesses, which is
not possible when all bits for a given value are being loaded in parallel.
Compared to starting generation when all 8-bits are loaded, progressive
generation reduces the latency overhead of reloading by 4X.

1Due to the lack of hardware TRNG, we approximate it using the rand function in
PyTorch
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Fig. 2. Accuracy comparison between normal generation and progressive generation
performing a multiplication of two uniformly sampled inputs. RMS Error is
multiplication error compared to an 8-bit integer.

As shown in Figure 2, performing progressive loading does not hurt
multiplication accuracy. Generation is accurate after eight cycles at
most when the loaded values match LFSR length. Progressive loading
introduces error in at most 8 cycles when using 7-bit lfsr and 128-bit
streams. On a network level using the same setup as Section II-A
on SVHN, using progressive loading only lowers accuracy by 0.42%
when using 32-bit streams and 0.16% when using 64-bit streams. Note
that this is a worst-case scenario where all input and weight streams
are assumed to be generated progressively. Any input or weight reuse
in the architecture leads to fewer reloads.
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Fig. 3. Normal SNG (a) and progressive stream generation (b).

III. Stochastic Computing Execution Optimizations

This section describes the overall GEO architecture and discusses
a variety of micro-architectural optimizations to improve performance
and accuracy on GEO.

A. GEO Architecture

Before describing further execution optimizations, we will briefly
explain the underlying accelerator architecture. The GEO accelerator
uses fully-stochastic computation, which can easily be modified to
support different levels of partial-binary accumulation. Further, it is
agnostic to the stream generation scheme and supports extensive RNG
sharing. We will now briefly describe the architecture functionality.

Figure 4 a) shows the block diagram of the accelerator. It uses
separate weight and activation memories, which are used to load their
respective SNG buffers. Both weight and activation memories are
organized in 2 logical banks, supporting ping-pong operation. For
weights, this allows loading the next set of kernels from external
memory, while the current one is being processed. For activations, it
enables loading activations while writing back partial sums and outputs.
Both sets of memories are sized accordingly to support such operation.

Once all required inputs and weights are loaded into the buffers,
the stream generation begins, and SNG outputs are fed directly into the
compute engine. The compute is organized to maximize density while
minimizing the conversion costs of stochastic streams. It is logically
partitioned into rows, where each row is responsible for one output
channel. This way, the same set of activations can be broadcasted
across multiple rows, amortizing activation stream generation costs.
Due to the benefits of sharing seeds between kernels shown in Sec.
II-A, different rows share the same set of LFSR. Within each row,
the same set of weights is multiplied with different sets of activations,
emulating the convolutional sliding window. This way, the architecture
also achieves high levels of weight reuse.

Output streams of each row are passed to the output converter array,
where individual output converter modules convert them to a fixed-
point format to accumulate the final value into a counter. By using
small, configurable parallel counters before the conversion, the output
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Fig. 4. Overall SC accelerator architecture block diagram. with breakdowns of the MAC row (left) and output converter (right) modules (a). Fixed 8-bit maximum length LFSR
(b), and configurable 8- or 7-bit maximum length LFSR (c).

converter array can add together neighboring outputs, achieving average
pooling with computation skipping on layers followed by pooling oper-
ators as in [5]. Computation skipping allows shorter streams on layers
with pooling since average pooling adds together multiple streams in
fixed-point. Once the stream generation is finished and output values
are completely accumulated, they are passed through the near-memory
batch normalization and ReLU activation blocks, before being written
back to activation memory to serve as inputs to the next layer.

Despite its rigid compute engine, the architecture can support a wide
variety of activation and kernel sizes, as well as padding and pooling
for convolutional layers. It supports fully-connected (FC) layers,
although with compute underutilization. It is also fully programmable,
with its own ISA and instruction memory.

B. Partial Binary Accumulation

As mentioned in Section I, many recent SC works opt to perform
accumulation in the fixed-point domain, as it offers higher accuracy
than SC-based addition [9], [19]. In contrast, a few others have tried
implementing fully-stochastic accumulation to save costs. In contrast
to these two extremes, we propose to use partial SC-fixed-point
accumulation, where the first few levels of accumulation are
implemented in SC using OR gates, before converting the intermediate
results to fixed-point and computing the remainder of the accumulation.

The partition between SC and fixed-point accumulation significantly
affects both accuracy and performance. While using an approximate
parallel counter (APC) [24] allows one layer of SC accumulation
before fixed-point accumulation, the combined use of AND and OR
makes it equivalent to multiplexers and is thus unsuitable for multiple
layers of accumulation. Using OR for accumulation with training
allows an arbitrary trade-off between SC and fixed-point accumulation.
We tested model accuracy with different fixed-point accumulation
levels using the same setup as in Sec. II-A. Assuming weight filters
are arranged into (Cin,H,W) dimensions, performing fixed-point
accumulation in the W dimension (PBW) improves accuracy by
4.5% and 9.4% respectively for 128-bit and 32-bit streams compared
to performing all accumulations using OR. Extending fixed-point
accumulation to H (PBHW) as well improves accuracy by <0.5%
but increases the number of fixed-point adders by 5X for 5×5 filters.

Adding support for partial binary accumulation only requires
replacing the last levels of OR-accumulation with a parallel counter.
While the level of partial binary accumulation is fixed at the design
stage, it still allows for trading off precision with latency through SC
stream length configuration. Since partial binary accumulation fabric
operates on a bitwise basis, it is agnostic to the chosen stream length.
Parallel counters in the average pooling fabric in the output converters
need to be adjusted to handle wider inputs. In Section IV, we show
that those changes have minimal impact on the overall architecture.

Figure 5 shows the overhead, in terms of area, of implementing

SC-based MAC units with partial binary accumulation stages. We
compare the full-or accumulation (SC), PBW, PBHW, and fixed-point
accumulation (FXP) configurations, for different three-dimensional
kernel sizes. While area overhead of PBW and PBHW partial binary
accumulation can be as much as 1.4X and 4.5X for smaller kernels, the
area increase goes down to 4% and 9% for large ones. Implementing
partial binary accumulation is therefore well suited for highly-parallel
SC architectures where such overheads would be negligible. Figure
5 also shows that implementing complete binary accumulation can
increase the area by more than five times for most kernel sizes, empha-
sizing its performance limitation. While approximate parallel counters
[24] (APC) offers noticeable area benefits compared to fixed-point
accumulators, it is still more than 3X larger than PBW and PBHW for
larger kernels. Given that PBW is almost identical accuracy-wise, the
rest of the paper uses PBW as the default unless otherwise mentioned.
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Fig. 5. Area comparison for different hardware implementations of SC-based MAC
units for different kernel sizes and different levels of partial binary accumulation.

Using partial binary accumulation increases the dynamic range of
outputs. Since the increase of output precision comes primarily from
increased range, truncating activations without factoring in the dynamic
range diminishes partial binary accumulation benefits. To deal with this,
we use an 8-bit fixed-point version of batch normalization (BN) before
ReLU activation to minimize the cost of implementing it in hardware.
While still potentially expensive, BN offers 5.5-6.5% points accuracy
improvement. For layers with pooling, pooling is placed before ReLU
activations, so that BN can be performed on pooled activations.

C. Near-Memory Computation
Organizing the GEO accelerator compute hierarchy to mimic a

vertically sliding convolutional window means that it naturally yields to
the weight-stationary dataflow [25]. While the window iterates through
the output tensor, weights can stay unchanged, and only a single
row of activations needs to be reloaded between each computational
pass, therefore minimizing both weight and activation bandwidth
requirements. Indeed, this dataflow choice reduces the overall number
of memory accesses by up to 3.3X compared to input-stationary,
making it the optimal choice in virtually every convolutional layer we
have explored. However, this is only true if a strict, weight-stationary
implementation can be enforced. It requires that the MAC units’
width and the corresponding number of SNGs are sized to fit the
entire activation tensor covered by a kernel in a given layer. This
constraint guarantees that output values can be generated during a
single computational pass, without partial sums, effectively “merging”
weight- and output-stationary dataflows in one.



However, it is not uncommon in modern neural networks to find
kernels with thousands of weights, which cannot be fully unrolled
without sacrificing a prohibitive amount of silicon area. When that
is not possible, the accelerator needs to store converted partial sums
for later accumulation. If the architecture does not support that, it has
to implement a strict output-stationary dataflow, accumulating output
values in output conversion modules over multiple passes, where both
weights and activations need to be swapped between each pass. Such
dataflow can increase memory accesses by as much as 10.3X vs. ideal,
weight-stationary implementation. While progressive generation can
alleviate such dataflow’s bandwidth requirements to a degree, the steep
energy cost of memory accesses remains.

One way to avoid being forced into such suboptimal dataflow is to
couple output conversion modules with small register files. However,
the number of registers required will depend on a particular layer -
to support some of the very deep ones would require register files
that dwarf the size of conversion modules. At the same time, those
register files would remain mostly unused on the shallower layers.
Instead, we propose implementing near-memory accumulation, where
the activation memory is tightly coupled with an array of adders. We
then expand the GEO ISA to support a 2-cycle read-add-write vector
instruction that can be used to accumulate partial sums. Since partial
sums are stored in large activation memory, there is no need to size
it for any specific network or layer.

There are two downsides w.r.t. to local register files. First, activation
memory accesses are much more energy costly than to local registers.
However, in this dataflow, partial sum accesses constitute only 13% to
20% of overall memory accesses, meaning they are not critical to over-
all energy consumption. Second, additional accesses put more strain on
memory bandwidth. However, as we will show in Section IV, progres-
sive shadow buffering can alleviate this problem. We further expand this
scheme to support near-memory batch normalization through an array
of fixed-point MAC units, tightly coupled with activation memory.

D. Pipeline Optimizations
On top of the generation optimizations from Section II and

execution optimizations listed above, the GEO accelerator includes two
microarchitectural enhancements. First, we supplement the progressive
generation with shadow buffers. When current progressive values are
fully loaded, a certain number of bits can be loaded into the shadow
buffers for the next computation. Thanks to that, the following compu-
tation phase can begin immediately after the current one finishes, since
the minimum number of bits required, which in our case is 2, is already
available in the shadow buffer. Without progressive generation, shadow
buffers would need to be the same size as the actual SNG buffers (i.e.,
4X larger), incurring significant area penalty. The overhead of progres-
sive shadow buffers is only about 4% at the whole accelerator level.

Second, we implement a pipeline stage within our compute engine
between the SC and partial-binary accumulation stages. This is because
of a long critical path between the LFSR, SNG, SC MAC, partial
binary accumulation, and output counters. Implementing the pipeline
stage in that location allows us to cut down the critical path by over
30% while minimizing the area required by additional flip-flops (<1%
overhead on the accelerator level). Because of the recovered timing
slack, we can now reduce the operating voltage without lowering the
frequency to achieve better energy efficiency.

IV. Evaluation & Results
We test accuracies on CIFAR-10, SVHN, and MNIST datasets. For

CIFAR-10 and SVHN, we use the same 4-layer CNN [22] (CNN-4) as

in Section III and VGG-16 [26]. VGG-16 has the X/Y input dimensions
of each layer downscaled, and the fully-connected layers reduced to
FC-512 instead of FC-4096 to accommodate the smaller image sizes.
For MNIST we use LeNet-5 [27]. We use PyTorch 1.5.0 to train the
models. We implement the forward pass using both floating-point
and simulated SC. Simulated SC is used to compute output values,
while the floating-point forward pass is used to guide back propagation.
With SC simulation’s speed limitations, we skipped training for more
complex datasets (i.e., ImageNet) due to the prohibitively long training
time. Due to the use of floating point for back propagation, GEO
can only accelerate inference of SC models. Models are trained using
ADAM optimizer with an initial learning rate of 2e-3, and accuracy
is evaluated on the corresponding testing dataset after 1000 epochs.
Each model is trained with different stream lengths using split-unipolar
implementation, and designated by two stream lengths {sp−s}, sp
for layers with pooling and s for layers without. While max pooling is
possible, we use average pooling with computation skipping to reduce
stream length requirements for layers with pooling. Output layers
always use 128-bit streams due to their small performance impact but
noticeable accuracy benefits. The actual stream length used is double
the specified value due to the use of split-unipolar representation.

To estimate the area, power, and latency of the proposed design,
we have written individual blocks (SNGs, MAC arrays, buffers, output
converters) in Verilog, and then synthesized them using a commercial
28nm HVT library. Memories were modeled using CACTI 6.5 [28]. For
the LP variant desribed below, we consider the cost of external memory
accesses, with the bandwidth and access energy modeled after the
HBM2 standard [29]. We used activity factors obtained through RTL
simulations to adjust active power numbers in synthesis (since many
modules, such as SNG buffers and batch normalization modules are
idle most of the time). To obtain accurate energy and latency estimates,
we used a custom performance simulator, which combines the
numbers from individual modules with a compiled code representing
the given network model. Since the proposed enhancements are mostly
agnostic of the control flow, we use the ISA proposed in [5] with
minor modifications. We create two versions of GEO: ultra-low power
(ULP) or low-power (LP) targeted at different area-points and network
sizes. ULP has 25.6K MACs with total on-chip memory of 150KB,
while LP variant has 294K MACs and 0.5MB of on-chip memory.

As a fixed-point baseline, we use Eyeriss [25], scaled to 4-bit or
8-bit precision and 28nm node. The on-chip memory capacity and
the number of processing elements are chosen to achieve close to
iso-area comparison point with GEO. We simulate the execution of
the neural networks using [30]. For SC comparison points, we use
the ACOUSTIC [5], Sign-Magnitude SC (SM-SC) [1] and SCOPE
[2]. ACOUSTIC configurations are sized to have the same amount of
memory and compute as GEO, and we use longer stream lengths to
maintain close to iso-accuracy with GEO. ACOUSTIC architecture
configurations differ from the original, but we use the same simulation
framework, ensuring consistent results. SM-SC is not a fully pro-
grammable accelerator making full comparison impossible. SCOPE is
an in-memory, DRAM-based accelerator with a massive area footprint,
not well suited towards edge applications [2]. Unfortunately, many re-
cent works on SC neural network acceleration only report performance
numbers for the compute part, while omitting the crucial impact of
memory and dataflow, making it impossible for us to compare on the
system level. Numbers are scaled to the 28nm node when necessary,
using the models provided in [31]. We further compare GEO-ULP with
CONV-RAM [32] and MDL-CNN [33] mixed-signal accelerators.



TABLE I
ACCURACY COMPARISON WITH FIXED-POINT, OTHER SC IMPLEMENTATIONS AND SO ON.

Eyeriss ACOUSTIC [5] GEO SCOPE [2] CONV-RAM [32] MDL-CNN [33] SM-SC [1]
Dataset Model 8-bit 4-bit 256 128 64-128 32-64 16-32 128 7a1w 4a1w 128

CIFAR-10 CNN-4 85.1% 82.1% 78.0% 74.9% 80.2% 78.1% —– —– —– —– 80%
VGG-16 90.9% —– —– —– 88.7% 88.7% —– —– —– —– —–

SVHN CNN-4 93.3% 90.5% 89.0% 86.8% 91.9% 90.8% —– —– —– —– —–
VGG-16 96.2% —– —– —– 96.0% 95.9% —– —– —– —– —–

MNIST LeNet-5 —– 99.3% —– 99.3% —– 99.3% 98.9% 99.3% 96% 98.4% —–

To ease future comparisons and benchmarking, we will open-source
our SC training code (heavily optimized for stream-based training
on GPUs and CPUs) and the GEO architecture simulator at
https://github.com/nanocad-lab/geo.

A. GEO Accuracy Comparisons
Table I compares accuracy of GEO with fixed-point and other SC

implementations. Eyeriss results are retrained at respective precision.
2 Results for other works are reported from the respective papers.
GEO offers 2.2-4.0% points better accuracy at quarter stream length
compared to [5] and similar accuracy at the same stream length
compared to [1]. Both shared stream generation and partial binary
accumulation contribute to increased accuracy. For CNN-4 on SVHN
with 32-64 stream length, dropping binary accumulation lowers
accuracy to 79.6%, while using TRNG on top of that drops it further
to 73.7%. Compared to fixed-point, the accuracy with CNN-4 is
comparable to 4-bit fixed-point when using 32-64 setup on SVHN,
but 4% lower on CIFAR-10 when using 32-64 and 1.9% lower when
using 64-1283. Accuracy with VGG-16 is 2.2% lower than 8-bit
fixed-point on CIFAR-10 and comparable on SVHN. Accuracy on
MNIST is already comparable to fixed-point in the baseline, and GEO
optimizations don’t affect it. Compared to CONV-RAM [32], an in-
memory architecture and MDL-CNN [33], a time-domain architecture,
GEO offers superior accuracy even with 16-32 stream length.

B. Performance Impact of GEO Enhancements
We compare the baseline ULP architecture (without GEO optimiza-

tions and 16-bit LFSRs to emulate TRNG) with two GEO variants::
• GEO-GEN-128,128 - uses the generation optimizations from

Section II. Progressive shadow buffers are used in this configuration.
• GEO-GEN-EXEC-32,64 - uses both the generation and execution

(from Section III optimizations. Further, it reduces the stream
lengths being used to remain iso-accuracy with other configurations.
Area, energy, and latency impacts of GEO optimizations on the

ULP architecture are shown in Figure 6. For energy and latency, we
simulated the SVHN CNN inference on each of those design points.
Generation optimizations result in an overall 1% decrease in the
accelerator area, where an increase in area due to progressive shadow
buffers is balanced by more extensive RNG sharing. At the same time,
the use of progressive shadow buffers to hide memory latency results
in a 1.7X speedup and 1.6X reduction in energy. Energy savings come
mainly from SNG optimizations and reduced leakage.

Adding execution optimizations on top of the generation ones
increases the area by 2% w.r.t. to baseline. The impact of pipelining and
partial binary accumulation is minimal due to its limited application
and an overall small contribution of the SC MAC array to the overall

2Original Eyeriss [25] was 16-bit with truncated accumulation which suffers from
substantial accuracy loss at lower 4/8-bit precision. We assume full 16 bit accumulation
bitwidth and as a result Eyeriss accuracy results are somewhat optimistic.

3While intermediate accumulation results for Eyeriss are allowed to have double
the input precision, overflow may still happen and these results are optimistic

area. Similarly, near-memory computation is well amortized because
it is time multiplexed. The combination of shorter stream lengths,
more efficient dataflow enabled by near-memory computation and
pipelining coupled with DVFS results in 4.3X and 5.2X reduction in
latency and energy w.r.t. baseline.
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C. GEO Performance Compared

Table II shows a comparison of the proposed GEO ULP accelerator
with fixed-point and mixed-signal approaches. First, we show that
GEO-32,64 outperforms the 4-bit fixed-point baseline in terms of
throughput, by 2.7X, and energy efficiency, by 2.6X, in the same area.
It also outperforms ACOUSTIC-128, by 4.4X and 5.3X, respectively,
while achieving higher accuracy. It is also highly-competitive in terms
of energy-efficiency with mixed-signal accelerators like Conv-RAM
and MDL-CNN. We refrain from comparing the throughput against
those implementations due to the large area difference.

TABLE II
COMPARISON BETWEEN GEO ULP AND FIXED-POINT AND NEUROMORPHIC

IMPLEMENTATIONS. NUMBERS ARE SCALED TO 28NM.

Eyeriss GEO ULP Conv- MDL ACOUSTIC GEO ULP
4-bit -32,64 RAM CNN ULP-128 -16,32
[25] [32] [33] [5]

Voltage 0.9 0.81 0.9 0.537 0.9 0.81
Area [mm2] 0.59 0.58 0.02 0.06 0.57 0.58
Power [mW] 20 48 0.016 0.02 72 48
Clock [MHz] 400 400 364 25 400 400
Precision 4-bit —– 6b/1b 8b/1b —– —–
CIFAR-10 Fr/s 5.2k 14k ——- ——- 3.2k 29k
CIFAR-10 Fr/J 115k 305k ——– ——– 57k 576k
LeNet5 CNN Fr/s 47k 520k 15k 1k 3.2k 780k
LeNet5 CNN Fr/J 790k 42M 117M 50M 57k 56M
Peak GOPS4 80 640 10.7 0.365 160 1280
Peak TOPS/W 4 13.3 44.2 18.2 2.22 26.6

On the scale-out end of the spectrum, GEO LP outperforms iso-area,
8-bit Eyeriss by 5.6X in terms of throughput and 2.6X in terms of
energy efficiency. Modest energy reduction is caused by the high cost of
external memory accesses - when those are omitted, GEO is as much as
6.1X more energy-efficient than Eyeriss. It is also 2.4X faster and 1.6X
more energy efficient than ACOUSTIC, while having higher inference
accuracy. Despite occupying only 3.3% of SCOPE area, GEO has
nearly 24% of its peak throughput and has 2.4X better energy efficiency.

V. Conclusion
In this paper, we present GEO, a generation, and computation-

optimized stochastic computing architecture for neural network



TABLE III
COMPARISON BETWEEN GEO LP AND FIXED-POINT AND SC IMPLEMENTATIONS.

NUMBERS ARE SCALED TO 28NM.

Eyeriss GEO LP SM-SC SCOPE ACOUSTIC GEO LP
8-bit -64,128 LP-256 -32,64
[25] [1] [2] [5]

Voltage 0.9 0.81 0.9 —— 0.9 0.81
Area [mm2] 9.3 9.2 ——– 273 9 9.2
Power [mW] 848 797 ——– ——– 1160 797
Clock [MHz] 400 400 1536 200 400 400
CIFAR-10 VGG Fr/s 555 3.1k ——– ——– 1.3k 5.2k
CIFAR-10 VGG Fr/J 618 1.6k ——– ——– 1k 2.2k
Peak GOPS 204 1.8k 1.7k 7.1k 460 3.6k
Peak TOPS/W 0.48 2.25 0.92 ——– 0.4 4.5

acceleration. We develop an ensemble of accuracy improvement (co-
optimized stream generation and training, partial binary accumulation)
and energy/runtime improvement (progressive stream generation, near
memory computation, shadow buffering and pipelining) techniques.
These optimizations improve accuracy by 2.2-4.0% points compared
to state of the art SC-based accelerators while also being 4.4X faster
and 5.6X more energy efficient. GEO can compete with fixed-point
implementations with similar accuracy and area while delivering up
to 5.6X throughput, 2.6X energy-efficiency gains. GEO, despite being
an all-digital, programmable accelerator can achieve energy efficiency
comparable to in-memory/mixed-signal accelerators. Our ongoing
work focuses on taping out a silicon prototype of GEO-ULP and
developing fast training approaches for stochastic computing.
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