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Abstract—As privacy and latency requirements force a move
towards edge Machine Learning inference, resource constrained
devices are struggling to cope with large and computationally
complex models. For Convolutional Neural Networks, those
limitations can be overcome by taking advantage of enormous
data reuse opportunities and amenability to reduced precision.
To do that however, a level of compute density unattainable
for conventional binary arithmetic is required. Stochastic
Computing can deliver such density, but it has not lived up to
its full potential because of multiple underlying precision issues.
We present ACOUSTIC: Accelerating Convolutions through
Or-Unipolar Skipped sTochastIc Computing, an accelerator
framework that enables fully stochastic, high-density CNN
inference. Leveraging split-unipolar representation, OR-based
accumulation and novel computation-skipping approach,
ACOUSTIC delivers server-class parallelism within a mobile
area and power budget - a 12mm2 accelerator can be as much
as 38.7x more energy efficient and 72.5x faster than conventional
fixed-point accelerators. It can also be up to 79.6x more energy
efficient than state-of-the-art stochastic accelerators. At the
lower-end ACOUSTIC achieves 8x-120X inference throughput
improvement with similar energy and area when compared to
recent mixed-signal/neuromorphic accelerators.

Index Terms—Neural nets, hardware architecture
I. INTRODUCTION

Energy, area and latency optimization of deep learning
accelerators is especially important for resource-constrained
edge devices, which are taking on the increasing share of
inference workloads due to privacy, energy and latency concerns.
Low precision [1–5] and data reuse [6, 7] are crucial for
reducing the number of memory accesses, on- and off-chip,
which are the major contributors to overall system energy
consumption [8]. Various hardware architectures to leverage
low-precision (e.g., bit serial [9, 10]) have also been proposed.

Due to unparalleled levels of compute density it provides,
stochastic computing (SC) can be an excellent candidate for
convolutional neural network (CNN) acceleration where low
bit precision (roughly equivalent to 8bit fixed point) is enough
[11–15]. However, accuracy degradation in addition operation,
forces early conversion or even abandoning stochastic accu-
mulation altogether, reducing SC domain to just multiplication
[11–13]. Further, most prior SC works develop network-specific
ASICs (e.g., [12]) rather than programmable accelerators.

In this paper we present ACOUSTIC - Accelerating
Convolutional neural networks through Or-Unipolar Skipped
sTochastIc Computing, a scalable, programmable and fully-
stochastic CNN accelerator framework. ACOUSTIC integrates
multiple algorithm and architecture optimizations that allow
us to harness full benefits of SC:

• Optimization of SC primitives for deep neural networks.
We develop a temporally processed split-unipolar stochastic
representation that enables 2X+ shorter streams. Second, we
enable practical stochastic OR-based accumulation which has
unique scale-free saturating addition properties. This reduces
MAC size by 4X-20X while retaining comparable accuracy.

• Computation skipping based stochastic average pooling
that can deliver latency and energy reduction proportional to
the size of pooling window (4X-9X) on the convolutional
layer itself.

• A programmable stochastic CNN accelerator architecture:
ACOUSTIC, built to harness SC compute density to maximize
activation and weight reuse, while minimizing or completely
removing partial sums to dramatically reduce conversion
overheads and number of memory accesses required.

• We develop training optimization to model the peculiarities
of ACOUSTIC and speed up stochastic stream-based CNN
training for ACOUSTIC by almost 10X.
The result is that ACOUSTIC can deliver real time inference

performance at ultra-low energies (4ms/0.4mJ per image using
AlexNet on Imagenet with batch size of 1) and small area
(12mm2) making it very suitable for learning at the edge.

II. ACOUSTIC OPTIMIZATIONS FOR CNNS

SC due to its number representation (proportion of 1’s in a
random bit stream) allows multiplication and addition operations
using single gates [16, 17] but suffers from several issues that
we address in ACOUSTIC.

A. Split Unipolar Representation
Stochastic computing offers two alternative number

representation formats: unipolar and bipolar 1. For the former,
each bit in the stream has possibility v of being one, and for
the latter the possibility is (v+1)/2, where v is the value being
represented. In neural networks, maintaining high accuracy
mandates using weights with both positive and negative values,
which makes bipolar representation the most common choice
when implementing SC-based accelerators [11, 12, 15]. However,
umipolar requires at least 2X shorter streams than bipolar for
same representational error. RMS error of unipolar and bipolar

SC representations can be calculated as
√
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respectively, where n is the length of the bit stream.

1Alternate representations have been proposed but have not been popular
due to larger error [18] or larger area [19].



We develop a split-unipolar representation which uses two
streams to represent each weight, one for the positive and one
for the negative component. For a positive weight value, its
corresponding negative stream is 0, and vice-versa. Because
activations (inputs) of a neural network layer are typically
non-negative due to ReLU activation function in the previous
layer, they can be represented using only a single positive
stream. The activation streams are multiplied and accumulated
separately with positive and negative weight components using
up counters (in ACOUSTIC architecture, as described later,
layer activations are converted to binary and stored in memory),
whose values are then subtracted from each other to obtain final
result. Since the counter output is in fixed-point binary domain,
ReLU activation is easily implemented as a bitwise AND of
the inverted sign with every other bit 2.

Split-unipolar computation can be realized in hardware
using temporal unrolling with just a single MAC array, where
computation is done in two phases. In the first phase, all negative
weights, and by extension their respective multipliers, are gated
using their sign. This means only results corresponding to
positive weights are being accumulated and the output counters
are counting up. In the second phase, the mask is inverted, only
negative weights contribute to the outputs, and counters count
down. A simple example of a 2-wide MAC with one positive and
one negative weight and stream length of 8 is shown on Figure
1. Spatial unrolling (similar idea has been recently independently
proposed by [20]) simply doubles the compute arrays (i.e.,
50% utilization) but we do not further explore as our target is
resource-constrained devices. Split unipolar SC results in overall
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Fig. 1. Circuit level support for split-unipolar representation.
smaller energy/latency due to > 2x shorter bitstreams 3 and
allows for more accurate OR-based accumulation described next.

B. OR-based Scaling-Free Accumulation
One of the main selling points of SC is that computation

can be performed using bit-wise operations between two
input bit streams. An AND gate performs multiplication:
AND(v1,v2)=v1×v2, where v1, v2 are the input possibilities
for two unipolar streams. Similarly, a 2:1 multiplexer (MUX)
can be used to compute MUX(v1,v2,s)=s×v1+(1−s)×v2,
i.e., scaled addition between two input streams, where s is the
select input. Thus, MUX can act as a stochastic adder by using
a 50% random stream at the select input. However, MUX-based
addition degrades accuracy of computation (primarily due
to the scaling factor), especially when wide accumulation is
performed. Since neural networks generally perform very large
matrix multiplications, prior work in SC-based neural network
acceleration was often forced to perform accumulation in binary
domain, by either using costly parallel counters [12] or converting
the results back to binary domain after every multiplication [21].

2Other activation functions require FSM implementations [12, 15] and we
do not explore them here.

3For rest of the paper, our stream length refers to temporal unrolled split
unipolar stream length. I.e., 256 long stream implies 128×2.

We use OR-based stochastic accumulation [22]. It is scaling-
free (important for very wide accumulations in deep CNNs),
has reasonable accuracy for unipolar streams (a monte-carlo
analysis of 3 × 3 × 256 = 2304 wide accumulation reveals OR
having 8x less absolute error than MUX-based accumulation)
and is also much more compact (4.2x than [12] and 23.8X than
[21] for a 128 wide accumulate) than alternative accumulation
methods. However, a two-input OR, the result is equal to
v1 + v2− v1v2 instead of v1 + v2. We show later how we
address this imperfect accumulation in training of the networks.

C. Computation Skipping for Stochastic Average Pooling

Although max-pooling is commonly used in CNN for dimen-
sionality reduction, it has to be implemented as a FSM in SC [12,
23]. As a result of it can be 2X more expensive in area/power
than average pooling [24]. Average pooling simply averages
the activations in the pooling window (usually 2x2 or 3x3) to
generate the output activations of a layer. In SC, this can be
simply accomplished by a MUX (i.e., scaled addition in SC).
Accuracy difference between the two styles of pooling is minimal
(<0.3% for a small CNN for CIFAR10 as well as AlexNet on
ImageNet dataset) Here we make an interesting observation that
to get the required output value, the select signal does not need to
be random as long as the inputs are random and independent from
each other. Since we know the bits the multiplexer ”chooses” a
priori, we can skip computation for all other inputs’ bits. Instead
of passing multiple streams through the pooling multiplexer we
concatenate shorter streams, either in stochastic or fixed-point
binary domain. This allows us to reduce the computation required
by the convolutional layer preceding a pooling operator by 4x to
9x, depending on the pooling window size. The area overhead of
supporting computation skipping is minimal - it increases the size
of an individual activation counter by 2.7% to 8.7%, depending on
the pooling window size, which is < 1% of the overall accelerator
area. The issue with the computation skipping scheme is that
the results are correlated, thus necessitating randomization of
outputs. However, ACOUSTIC architecture converts the streams
to binary after each layer (and regenerates random sequences for
the next layer), completely removing the correlation problem.

D. Network Training Enhancements for ACOUSTIC

As mentioned in Section II-B, our use of split unipolar
streams enables OR-based accurate accumulation. Though
it has a systematic error (it computes v1+ v2− v1v2), it is
well-defined and therefore can be taken into account by replacing
all additions with OR-addition during training of a neural
network. This in turn, requires multiplications in the neural
network to be performed explicitly while training, and also slows
down addition during both forward and backward pass (∼15X
longer training runtime). To speed up training, we approximate
the effect of OR addition using the following function:

OR(a1,a2,...,an)≈1−
n∏

i=1

(1− s

n
)≈1−e−s (1)

where s is the sum of inputs. This approximates OR-addition
(approximation error < 5% as extracted from actual training
runs) by adding an activation function after normal network layer
and therefore offers 10X+ speedup in training using SC streams.



III. ACOUSTIC ARCHITECTURE

In this section, we motivate and develop the ACOUSTIC
accelerator architecture.

A. Understanding SC Benefits
Despite single gate operations, SC does not offer any energy

advantage even with random number generator (RNG) sharing
across multiple stochastic number generators (SNGs), as is
common practice, due to conversion overheads and long stream
lengths required to achieve equivalent fixed-point precision. The
conversion overheads can be amortized by input (across multiple
convolution filters in a CNN layer) and output (by reducing
partial sums) reuse but our experiments using TSMC 28nm
library and LFSR-based SNGs indicate that energy benefits are
modest. Where SC excels is in compute density. With input
and output reuse, SC MACs can be 47X smaller than 8-bit
fixed-point MACs, enabling much higher levels of parallelism
(which can be effectively leveraged in CNNs). While high
compute density directly improves system cost through reduced
area footprint, it is much more valuable as a means of reducing
overall energy consumption, and inference latency by reducing
DRAM and on-chip memory accesses (which account for bulk
of energy in neural network compute [25, 26]). To leverage this
density however, communication-related overheads, like wiring
and network-on-chip (NoC) have to be minimized, which is
non-trivial for single-gate compute units.

This conclusion leads us to two important dataflow consid-
erations for SC-based accelerator design: (1) maximizing reuse
through parallelism and avoiding partial sums; and (2) reducing
wiring complexity to maximize density. Unlike conventional fixed-
point binary accelerators which rely on tightly coupling compute
units with small, local scratchpads for cheap intermediate value
buffering [6, 25, 26], ACOUSTIC leverages much larger available
compute density to eliminate partial sums and amortize SC to
binary conversion costs (otherwise partial sums will either need to
be stored as expensive unrolled streams or be converted to binary).
Similarly, to not impact the compute density and to not route long
bistreams, sophisticated network on chip approaches (as used
by [6, 26, 27]) are not used (recall that ACOUSTIC will have
50X more processing elements than conventional architectures).

B. Accelerator Architecture
ACOUSTIC (see Figure 2) uses external control interface

to write the program representing a given network model into
instruction memory and enable the Dispatcher control module to
execute that program (details in section III-C). The direct memory
access (DMA) controller is responsible for loading initial acti-
vations (inputs) and weights for each layer to on-chip memories
and storing final outputs back in DRAM. There are two types of
on-chip memories: weight buffers and activation scratchpads. To
reduce the reliance on external DRAM bandwidth, ACOUSTIC
overlaps computation with weight loading phases, i.e. fetching
weights for the next layer while computing the current one.

There are three activation scratchpads, corresponding to three
MAC columns, to provide optimal support for the commonly
used 3x3 convolutional kernels. Each of the MAC columns,
described in detail below, has a corresponding set of activation
and weight SNGs and buffers, which are loaded with fixed-point
binary values and generate stochastic sequences of a given
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Fig. 2. ACOUSTIC accelerator overview.
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Fig. 3. Hierarchical organization of the SC MAC array, with the outputs
generated at corresponding levels. Rows span across all three columns.

length. Corresponding partial sums generated by MAC columns
are then accumulated together and sent to the activation
counter modules which convert final results back to fixed-point
binary representation and perform ReLU activation. Results in
the activation counter blocks are written back to one of the
activation scratchpads as inputs for the next layer.

ACOUSTIC compute engine has a highly hierarchical organi-
zation, shown on Figure 3, to balance parallelism with flexibility.
Fixed, 96-wide multiply-accumulate units perform reduction
before configurable fabric decides which partial sums map onto
which outputs. Those 96:1 MAC units are the basic building
blocks of our compute engine. A group of M=16 MACs with
partially shared inputs and shared weights forms a MAC array.
A=8 arrays form a sub-row, which shares a single activation
scratchpad, and S=3 sub-rows together form a row, which corre-
sponds to a single kernel. There are R=32 rows, which means 32
kernels can be computed in parallel, using the same activations.

Though we omit detailed explanations of how computation
is mapped onto the ACOUSTIC engine for brevity reasons,
ACOUSTIC can support kernel sizes from 1x1 to 3x3 and larger
kernels using multiple computational passes with activation
reloading in between. Padding (as is common at the edge of inputs
in CNN) is supported with the help of a low-overhead shifting
fabric which is shared across all rows. Though ACOUSTIC can
perform strided convolutions by underutilizing the compute fabric,
the preferred method of dimensionality reduction is pooling.

For pooling across output height, ACOUSTIC exploits compu-



tation skipping by using proportionally shorter streams and not
resetting output counters between successive computation phases.
As a result, outputs that fall under the same pooling window are
averaged together using the scaled addition property of stochastic
stream concatenation. This means each individual compute pass
is shortened proportionally to the pooling size. Pooling across
output width is done by output counters. Output counter with
pooling support have small (2x-3x) parallel counters before them,
which allows them to accumulate adjacent outputs that fall under
the same pooling window. This again allows us to shorten the
streams proportionally to the pooling window width. As explained
in Section II-C the area overhead of this solution is minimal.

ACOUSTIC supports fully-connected (FC) layers in the most
straightforward manner possible. Since FC layers cannot re-
use weights without employing batching, ACOUSTIC cannot
capitalize on weight re-use within an array. This means that only
a single MAC in a given array can be used. However, if the
fully-connected kernel is extended across 6 successive rows, their
collective arrays can cover the whole 512 inputs with individual
weights. The corresponding outputs of those rows need to be then
accumulated together, which is supported by the ACOUSTIC
fabric. While this is highly unoptimized, and leads to a 87.5%
underutilization we argue that there is not much point in further
optimizing the FC performance as newer CNN architectures like
ResNet or Inception rely on a single, relatively small FC layer,
which has very negligible impact on overall performance [28–31].

Given the sheer number of multiply accumulate units present
in our architecture and its reliance on an inflexible connectivity
fabric, non-ideal resource utilization is unavoidable. We do not
consider this a major issue of our architecture, for two reasons.
First, even with 50% or lower utilization, the effective number
of multiply accumulate units is still on the order of hundreds of
thousands. Second, unused MACs and SNGs do not contribute
to dynamic energy consumption - because their input values
are zeroes, AND-based multipliers perform operand gating,
removing any switching propagation.

C. Control in ACOUSTIC

We opted for a distributed control scheme to keep individual
control modules simple, while enabling overlapping different
phases together to reduce overall latency. We have developed
a restricted instruction set shown in Table I. The main control
unit is the Dispatcher which reads the instructions, distributes
them to other control units, maintains execution loops and
enforces synchronization through barriers.

TABLE I
ACOUSTIC CONTROL MODULES AND THEIR RESPECTIVE INSTRUCTIONS.

Module Instruction Description

DMA ACTLD/ST Load/store activations from/to DRAM
WGTLD Load weights from DRAM

MAC MAC Compute

ACTRNG ACTRNG Load activations into SNGs

WGTRNG WGTRNG Load weights into SNGs
WGTSHIFT Shift weight SNG buffers

CNT CNTLD/ST Load/store activations from/to counter/
ReLU units

DISPATCH

FOR*/END* Kernel/batch/row/pooling loop
K/B/R/P
BARR Barrier
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Fig. 4. Latency of processing a convolutional layer with 16x16x512 inputs and
512 3x3x512 kernels and pre-loading 512 3x3x512 kernels for the subsequent
layers using different clock frequency and external memory interfaces, using
temporarily-unrolled 256-long split-unipolar streams.

The dispatcher will modify and send out instructions to other
control units, which are implemented as simple counter-based
FSMs. Each one of them maintains a small FIFO to buffer
multiple instructions and output an IDLE signal to the dispatcher
once all instructions are processed. Instructions will continue to
be dispatched until a barrier is encountered. Once that happens,
the barrier mask will be compared with combined IDLE signals
to determine if execution can continue. This allows ACOUSTIC
to run multiple operations concurrently e.g. loading weights
for the next layer while processing the current one.

Overall, ACOUSTIC supports an extensive number of
operations which allows it to implement majority of image
recognition models. Convolutions with different kernel, padding
and pooling sizes, fully connected layers, ReLU activations,
residual connections are all supported.

D. Evaluated ACOUSTIC Architectures

In this section, we parametrize the ACOUSTIC architecture
to two reasonable choices that we evaluate in the next
section. Besides the compute engine size, there are three main
factors affecting ACOUSTIC system’s performance: clock
frequency, off-chip memory bandwidth and on-chip memory
size. Increasing the clock frequency speeds up the computation,
but may require higher memory bandwidth not to be memory
bound. Figure 4 shows that for the bandwidth achievable using
different DDR3 standards, latency becomes memory limited at
around 300 MHz or below. For smaller layers, that ”boundary”
frequency will be much higher (e.g., above 1 Ghz for 128
3x3x128 kernels). Further, for ultra-low energy accelerators,
support for large model sizes may be unnecessary and therefore
all the support for DRAM can be omitted. Finally, activation
memory can be sized up to support larger batch sizes if desired.

We evaluate two versions of ACOUSTIC architecture -
low power (LP) and ultra-low power (ULP). Performance
estimation for both configurations was done using TSMC
28nm library. LP variant (details in Table III) is intended to
be integrated in mobile SoC, with limited area and power
budgets. It has enough on-chip weight memory (147.5KB) to
fully store weights for commonly encountered convolutional
layers. For large fully-connected layers, a new batch of weights
is fetched while the current one is being processed. It has
enough on-chip activation memory (600KB) to process most
commonly used CNNs without ever having to offload activations
off-chip [28–31]. In cases where that is not possible, outputs are
offloaded to external memory and fetched back when necessary
for the next layer, which is supported by ACOUSTIC ISA. The
ULP variant (Table IV) targets low-complexity inference (e.g.
MNIST digit recognition using LeNet-5), on extremely resource



constrained devices. It is meant to compete with analog and
neuromorphic approaches in terms of energy efficiency [32].
It has 2KB of activation memory and 3KB of weight memory.

IV. EVALUATION & RESULTS

A. Evaluation Methodology
SC is extremely slow to accurately simulate in software,

mainly because of randomization [14]. To aid in computationally
tractable design space exploration, we opted to decouple
functional and performance simulations. For any trained neural
network model, accuracy is evaluated using our custom SC
functional simulator, which models just the computation part
using bitstreams. It is given the network model, test dataset,
trained weights and SC configuration i.e. stream lengths, RNG
scheme etc. which it uses to compute test accuracy and compare
against training results. The same configuration and neural
network model (described in ACOUSTIC ISA), is then fed to the
custom performance simulator, whose goal is to accurately model
execution time and data movement without simulating the actual
computation. The performance simulator is also fed power, area
and latency numbers for individual system components, which it
uses to generate accurate processing energy and latency numbers.
We used TSMC 28nm library with Synopsys Design Compiler
synthesis tool to obtain area, latency and power numbers for the
MAC array, buffers, SNGs and counter/ReLU units. Memory,
both SRAM and DRAM, were modelled using CACTI 6.5 [33].

We use Eyeriss as a baseline for the LP variant, which
is a template for most spatial accelerators [6, 25, 26]. To
model latency and energy consumption we use the simulator
presented in [34]. We compare our numbers to original Eyeriss
configuration with 168 processing elements (PEs), as well
as a scaled-up version with 1024 PEs, both scaled to 28nm
technology and 8-bit precision. Where possible, we also compare
to SCOPE, a state-of-the-art SC neural network accelerator
[14]. SCOPE is a flexible DRAM-based in-memory compute
accelerator, with only multiplication performed in the stochastic
domain. SCOPE numbers are reproduced from [14, 35] and
scaled to 28nm. For the ULP variant we compare with MDL-
CNN [32], time-based convolution engine with a similar area
footprint and Conv-RAM [36], analog, in-memory convolutional
engine, both scaled to 28nm. All ACOUSTIC configurations
use split-unipolar representation with 2x128-bit streams.

B. ACOUSTIC Accuracy
Accuracy results are shown in Table II. AlexNet on ImageNet

is too large for our current SC simulator, so SC validation
accuracy is not available (SCOPE [14] only reports results
on MNIST.). We do stochastic stream based training with an
approximate OR as described in Section II-D to show achievable
accuracy of ACOUSTIC. As Table II shows that ACOUSTIC
accuracy is same as SCOPE and it can achieve accuracy similar to
8-bit fixed point hardware with stream lengths of 512 (i.e., 256x2
for split-unipolar). We believe part of the remaining gap is due to
use of approximate OR during training and better but computa-
tionally tractable approximations are part of our ongoing work.

C. Area & Power Breakdown
Area breakdowns for ACOUSTIC LP and ULP configurations

are shown on Figures 5 a) and b) respectively, while power

TABLE II
ACCURACY COMPARISONS.

Validation Accuracy [%] Stream 8-bit SCOPE ACOUSTICNetwork Dataset Length Fixed Pt

LeNet-5 MNIST 128 99.2 99.32 99.3

CNN SVHN 256 90.29 N/A 86.75
512 N/A 89.02

CIFAR-10 256 79.9 N/A 74.9
512 N/A 78.04

breakdowns are shown on Figures 5 c) and d). As can be seen,
MAC arrays are the major contributors to both area and power
on the ACOUSTIC LP variant. Weight buffers, while being
major contributors to area, have much lower relative power
consumption due to very infrequent switching. A more area
efficient implementation of weight buffers should therefore be
explored. The area and energy of the ULP variant is dominated
by activation and weight memories.

D. Performance Comparisons
Table III compares area, power, clock frequency for all accel-

erators, as well as inference throughput (frames/s) and energy
efficiency (frames/J) for different models. ACOUSTIC clearly
outperforms conventional fixed-point accelerators. LP variant can
be as much as 38.7x more energy efficient than Eyeriss with 1k
PEs, depending on the network model. It is also more energy effi-
cient than SCOPE - up to 79.6x higher frames per Joule. SCOPE
require hundreds of mm2 of area, which makes it unsuitable for
edge inference. SCOPE multiplies stochastic streams in parallel,
instead of using streaming like ACOUSTIC. This mandates using
multiple, large DRAM arrays to achieve low latency.

The latency of AlexNet and VGG is largely dominated by
fully-connected layers. Both VGG and AlexNet have multiple,
large FC layers, with tens of MB of weights, and ACOUSTIC
is not optimized towards those. On the Resnet-18 model, which
has only a single, small FC layer, ACOUSTIC delivers lower
latency than for AlexNet, despite Resnet-18 being ≈2x more
computationally intensive.

Table IV shows that the ACOUSTIC ULP variant, with a
comparable area footprint, can deliver up to 123x speedup over
MDL-CNN, and is 1.33x more energy efficient on convolutional
layers (CONV-RAM and MDL-CNN do not report performance
on FC layers). It has 8.2X higher throughput than Conv-RAM
with similar energy efficiency. Furthermore, ACOUSTIC uses
8-bit precision for both weights and activations, when both MDL-
CNN and Conv-RAM use binarized weights, resulting in 1%-3%
drop in accuracy for MNIST. For fair comparison, we’re using
128-long bitstreams for ACOUSTIC ULP and non-accelerated
MDL, such that neither architecture sacrifices any accuracy.

V. CONCLUSION

In this paper we presented ACOUSTIC accelerator for
convolutional neural networks. ACOUSTIC incorporates multiple
algorithm optimizations: split-unipolar representation, stochastic
average pooling with computation skipping and training-hardware
co-optimization. ACOUSTIC accelerator architecture is build
around the idea of density-enabled data reuse, which allows it to
significantly reduce the number of on- and off-chip memory ac-
cesses. ACOUSTIC architecture delivers server-class parallelism
within a mobile area and power budget - a 12mm2 accelerator can
be as much as 38.7x more energy efficient and 72.5x faster than
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Fig. 5. Area breakdown for ACOUSTIC LP (a) and ULP (b) and power breakdown for ACOUSTIC LP (c) and ULP (d).

TABLE III
PERFORMANCE COMPARISON BETWEEN ACOUSTIC LP AND OTHER

FIXED-POINT AND STOCHASTIC ACCELERATORS.

Eyeriss 8-bit ACOUSTIC
Base 1k PEs SCOPE LP

Area[mm2] 3.7 15.2 273.0 12.0
Power[W] 0.12 0.45 N/A 0.35

Clock[MHz] 200 200 125 200

AlexNet Fr/J 306.9 381.2 136.2 2590.6
Fr/s 41.1 210.7 5771.7 238.5

VGG-16 Fr/J 14.4 18.7 9.1 723.8
Fr/s 1.8 8.4 755.9 93.2

Resnet-18 Fr/J 295.6 380.3 N/A 2471.6
Fr/s 34.0 182.5 N/A 542.6

CIFAR-10 CNN Fr/J N/A N/A N/A 131k
Fr/s N/A N/A N/A 46,168

TABLE IV
PERFORMANCE COMPARISON BETWEEN ACOUSTIC ULP, MDL CNN [32]
AND CONV-RAM [36] ON CONV LAYERS OF LENET5 AND CIFAR10 CNN.

Conv-RAM MDL CNN ACOUSTIC ULP

Domain Analog Time SC
Precision [A/W] 6b/1b 8b/1b 8b/8b SC

Area [mm2] 0.02 0.124 0.18
Power [mW] 0.016 0.03 3
Clock [MHz] 364 24 200

LeNet-5 Fr/J 40M 33.6M 41.7M
Fr/s 15,200 1009 125,000

CIFAR-10 CNN Fr/J N/A N/A 697K
Fr/s N/A N/A 2100

conventional fixed-point accelerators. It can also be up to 79.6x
more energy efficient than state-of-the-art stochastic accelerators
and can be implemented in an order of magnitude less area
than recent stochastic computing based accelerators, delivering
real-time performance in a mobile/IoT energy/area envelope. Our
ongoing primarily addresses developing fast training algorithms
for ACOUSTIC to improve accuracy for large networks.

ACKNOWLEDGMENT

This work was supported by the DARPA FRANC program.

REFERENCES
[1] D. D. Lin et al. “Fixed Point Quantization of Deep Convolutional

Networks”. In: CoRR (2015). arXiv: arXiv:1511.06393v3.
[2] M. Courbariaux et al. “Binarized Neural Networks: Training Deep Neural

Networks with Weights and Activations Constrained to +1 or -1”. In:
CoRR (2016). arXiv: 1602.02830.

[3] V. Vanhoucke et al. “Improving the speed of neural networks on CPUs”.
In: Proc. Deep Learning and . . . (2011).

[4] P. Judd et al. “Stripes: Bit-Serial Deep Neural Network Computing”. In:
IEEE Computer Architecture Letters (2017). arXiv: arXiv:1011.1669v3.

[5] S. Anwar et al. “Fixed point optimization of deep convolutional neural
networks for object recognition”. In: 2015 ICASSP (2015).

[6] Y. H. Chen et al. “Eyeriss: A Spatial Architecture for Energy-Efficient
Dataflow for Convolutional Neural Networks”. In: ISCA 2016 (2016).

[7] H. Kwon and T. Krishna. “A Communication-Centric Approach for
Designing Flexible DNN Accelerators”. In: IEEE Micro (2018).

[8] M. Horowitz. “Computing’s energy problem (and what we can do about
it)”. In: ISSCC (2014).

[9] Y. Wang et al. “FPAP : A Folded Architecture for Efficient Computing
of Convolutional Neural Networks”. In: ISVLSI (2018).

[10] C. Eckert et al. “Neural Cache : Bit-Serial In-Cache Acceleration of
Deep Neural Networks”. In: ISCA. 2018.

[11] H. Sim et al. “Scalable Stochastic-Computing Accelerator for Convolu-
tional Neural Networks”. In: ASP-DAC 2017. 2017.

[12] A. Ren et al. “SC-DCNN : Highly-Scalable Deep Convolutional Neural
Network using Stochastic Computing”. In: ASPLOS. 2017.

[13] V. T. Lee et al. “Energy-Efficient Hybrid Stochastic-Binary Neural
Networks for Near-Sensor Computing”. In: DATE. 2017.

[14] S. Li et al. “SCOPE: A Stochastic Computing Engine for DRAM-based
In-situ Accelerator”. In: IEEE Micro. 2018.

[15] Z. Li et al. “HEIF: Highly Efficient Stochastic Computing based Inference
Framework for Deep Neural Networks”. In: TCAD (2018).

[16] B. R. Gaines. “Stochastic Computing”. In: SJCC 1967. 1967.
[17] A. Alaghi et al. “Optimizing stochastic circuits for accuracy-energy

tradeoffs”. In: 2015 ICCAD. 2015.
[18] Y. Liu et al. “A stochastic computational multi-layer perceptron with

backward propagation”. In: IEEE TC (2018).
[19] A. Ardakani et al. “VLSI implementation of deep neural networks using

integral stochastic computing”. In: 2016 ISTC. 2016.
[20] S. R. Faraji et al. “Energy-Efficient Convolutional Neural Networks with

Deterministic Bit-Stream Processing”. In: DATE. 2019.
[21] H. Sim and J. Lee. “A New Stochastic Computing Multiplier with

Application to Deep Convolutional Neural Networks”. In: (2017).
[22] J. A. Dickson et al. “Stochastic arithmetic implementations of neural

networks with in situ learning”. In: IEEE ICNN 1993. 1993.
[23] J. Yu et al. “Accurate and Efficient Stochastic Computing Hardware for

Convolutional Neural Networks”. In: 2017 ICCD (2017).
[24] Z. Li et al. “Structural design optimization for deep convolutional neural

networks using stochastic computing”. In: DATE (2017).
[25] Y. H. Chen et al. “Eyeriss: An energy-efficient reconfigurable accelerator

for deep convolutional neural networks”. In: ISSCC (2016). arXiv: 1512.
04295.

[26] H. Kwon et al. “A Data-Centric Approach for Modeling and Estimating
Efficiency of Dataflows for Accelerator Design”. In: CoRR (2018). arXiv:
arXiv:1805.02566v3.

[27] Y.-h. Chen et al. “Eyeriss v2 : A Flexible and High-Performance
Accelerator for Emerging Deep Neural Networks”. In: CoRR (2018).
arXiv: arXiv:1807.07928v1.

[28] A. Krizhevsky et al. “ImageNet Classification with Deep Convolutional
Neural Networks”. In: NIPS 2012 (2012). arXiv: 1102.0183.

[29] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks
for Large-Scale Image Recognition”. In: arXiv preprint arXiv:1409.1556
(2014). arXiv: 1409.1556.

[30] C. Szegedy et al. “Going Deeper with Convolutions”. In: CVPR. 2015.
[31] K. He et al. “Deep Residual Learning for Image Recognition”. In: CVPR.

2015. arXiv: 1512.03385.
[32] A. Sayal et al. “All-Digital Time-Domain CNN Engine Using Bidirec-

tional Memory Delay Lines for Energy-Efficient Edge Computing”. In:
ISSCC’2019. IEEE. 2019.

[33] H. Labs. CACTI-6.5 (Cache Access Cycle Time Indicator).
[34] M. Gao and M. Horowitz. “TETRIS: Scalable and Efficient Neural

Network Acceleration with 3D Memory”. In: ASPLOS. 2017.
[35] S. Li et al. “DRISA : A DRAM-based Reconfigurable In-Situ Accelerator”.

In: IEEE MICRO (2017).
[36] A. Biswas and A. P. Chandrakasan. “Conv-RAM: An energy-efficient

SRAM with embedded convolution computation for low-power CNN-
based machine learning applications”. In: ISSCC’2018. 2018.


