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ABSTRACT
Emerging non-volatile magnetic memories such as the spin-torque-
transfer random access memories (STT-RAMs) provide superior
density and energy benefits compared to conventional DRAM
or Flash based memories. However, these technologies often suf-
fer from reliability issues and thus strong conventional reliability
schemes are required. These schemes have large overhead for stor-
age which, in turn, can potentially eclipse the density and energy
benefits these technologies promise. Moreover, the read and write
operations in STT-RAMs show asymmetric behaviour i.e., bit-flip
probability of 1→0 is significantly higher than 0→1. However, con-
ventional Error Correcting Codes (ECCs) treat both 0 and 1 flips
similarly and thus result in unbalanced reliability of these two types
of errors. In this work, we propose a new ECC protection scheme
for STT-RAM based main memories, compression with multi-ECC
(CME). First we try to compress every cache line to reduce its size.
Based on the amount of compression possible, we use the saved
additional bits to increase the protection from the baseline Sin-
gle Error Correcting, Double Error Detecting (SECDED) code to
stronger ECC schemes, if possible. Compression itself reduces the
hamming weight of the cache lines, thus reducing the probability
of 1→0 bit-flips. Opportunistically using stronger ECC schemes
further helps tolerate multiple bit-flips in a cache line. Our results
show that for STT-RAM based main memories, CME can reduce
the block failure probability by up to 240x (average 7x) over using
a (72,64) SECDED scheme for each cache line word. The latency
and area overheads of CME is minimal with average performance
degradation of less than 1.4%.

CCS CONCEPTS
• Computer systems organization → Reliability; Processors
and memory architectures; • Hardware → Spintronics and
magnetic technologies.
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1 INTRODUCTION
The criticality of memories in the design and performance of to-
day’s computer systems is becoming increasingly prominent. Main
memories serve a pivotal role, sitting in between the processor
cores and the slow storage devices. With aggressive technology
scaling, a large number of processor cores are being integrated in
today’s systems. As a result, there is an ever increasing demand for
main memory capacity in order to be able to exploit the process-
ing power of these multicore and manycore systems and maintain
the performance growth. However, DRAM scaling is unfortunately
slowing down. Though DRAM is still the main memory workhorse,
several application contexts need different properties from the main
memory (higher density, non-volatility, higher performance, etc).
Hence, it is becoming increasingly important to consider alterna-
tive technologies that can potentially avoid the problems faced by
DRAM and enable new opportunities.

Several emerging non-volatile memory (NVM) technologies are
now being considered as potential replacements for or enhance-
ments to DRAM. Most of these new non-volatile technologies
(Phase Change Memory[PCM], STT-RAM, Resistive RAM[ReRAM],
etc.) promise better scaling, higher density, and reduced cost-per-
bit [27]. However, they come with their own set of challenges.
The biggest problem that these emerging technologies face is the
high stochastic bit error rate. In fact, the reliability challenges of
NVMs can offset the density and energy advantages that they of-
fer. Increase in demand for memory capacity requires aggressive
scaling of area-per-bit of storage. At higher density, these non-
volatile emerging memory technologies tend to be more susceptible
to stochastic bit errors [37]. Due to the random nature of the bit
errors, these memory technologies require stronger in-field error-
correcting code (ECC) [12].

The stochastic nature of failures in NVMs is similar to the radi-
ation induced soft errors in DRAM and SRAM and occur without
any warning. In order to ensure the integrity of the data, an er-
ror detection mechanism, followed by correction of the error(s)
needs to be incorporated in a system. In conventional systems,
ECC schemes are deployed to recover from memory errors. These
schemes require adding redundancy bits alongside the original data
(or message). For DRAM based memory, the most commonly used
ECC schemes to recover from bit error or faulty chip error are the

https://doi.org/10.1145/3357526.3357533
https://doi.org/10.1145/3357526.3357533


MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA Alam and Pal, et al.

SECDED (Single-Error Correcting, Double-Error Detecting) [14]
and Chipkill-Correct [18] schemes.

This stochastic bit error rate in NVMs, however, is much higher
than the single-bit soft error rate in DRAM. For example, in PCM,
a two-bit cell may have 106-times higher error rate than DRAM
and would, therefore, require a much stronger ECC scheme [12, 35].
Also, for most of these emerging NVM technologies, some states
show higher error rates than the rest. As a result, the conventional
ECC schemes used in DRAM-basedmemory need to be extended for
providing multi-bit asymmetric protection to maintain acceptable
limits of yield and performance of systems with these emerging
memory subsystems. However, the cost and complexity of stronger
error detection and correction circuitry increases exponentially, re-
quiring much larger number of redundancy bits. This adds overhead
not just in terms of storage but also power and performance.

Out of the various magnetic NVMs that have been proposed,
Spin-Transfer Torque Random Access Memory (STT-RAM) is
one of the most promising non-volatile technologies and has
been studied extensively as a scalable non-volatile alternative to
DRAM [9, 11, 15]. While STT-RAM might not have huge density
benefits over DRAM like other technologies like PCRAM [4], its
read performance is comparable to that of DRAM. The write energy
and latency are roughly 5-10X and 1.25-2X respectively worse than
that of DRAM [24, 25, 39] but much better than most other non-
volatile technologies. Also, it has zero leakage power and much
better program/erase endurance than the other competing NVM al-
ternatives. In [24], the authors show that with certain optimizations,
a STT-RAM main memory can achieve performance comparable
to DRAM, while reducing the main memory energy by 60%, thus,
making a strong case for STT-RAMs as a potential main memory
alternative. STT-RAMs are also being considered as SRAM substi-
tute for on-chip caches and has already been introduced in several
commercial products [29, 36]. Though STT-RAMs are not suscepti-
ble to radiation induced soft errors, they suffer from a very high
Bit Error Rate (BER) [40, 50]. As the NVM technology scales below
45nm, read disturbance error, retention error due to thermal insta-
bility, and write error rates are growing, leading to unacceptably
high bit error rates (BER). Several circuit level and bit-cell design
solutions have been proposed to lower the error rates [42]. Also,
a few recent efforts have been made to provide stronger error re-
siliency [12, 23, 47]. Most of these solutions, however, result in very
high energy and area overhead.

In this paper, we propose CME (Compression with Multi-ECC), a
novel scheme to provide strong error correction in Magnetic RAM
(MRAMs) based main memory subsystems. Though the proposed
techniques would be useful for other types of DDR-based memories,
we only consider the characteristics (and error-rates) of STT-RAM
in our evaluations. This paper makes the following contributions:

• We use compression to reduce the size of each cache line
so that the saved bits can be used to opportunistically add
stronger protection without incurring the storage overhead
of the redundancy bits of the stronger ECC codes. The code
is chosen such that the final length of every cache line after
compression and ECC remains constant in order to make
the proposed CME scheme DDR compatible.

• Given the asymmetric nature of errors in STT-RAMs (ex-
plained in detail in Section 2), compression not only helps
to reduce the length of the cache line, it also reduces the
number of ‘1’s (hamming weight) in each cache line.

• Since the final compressed cache line length can be anywhere
between 13-bits (best case) and 512-bits (no compression),
there is a wide variety of code choices available. We propose
a dynamic programming solution to choose optimal mix of
ECC codes to use, given the weight distribution of cache
line words and the final cache line length distribution after
compression. We show that optimized CME can achieve upto
240x (avg. 7x) reduction in block failure probability.

• We present two minimal memory architecture changes re-
quired to accommodate the tag chip that holds the tag re-
quired for our CME scheme per cache line and show that the
performance overhead of CME is less than 1.4 % on average.

2 BACKGROUND
This section provides a brief background on two important concepts:
the reliability concerns of STT-RAM based memories, and cache
line compression techniques. STT-RAM memories suffer from high
read/write/thermal error rates. A lot of these errors are asymmetric
in nature, i.e., the probability of an error happening in a particular
state is higher than the rest of the states. Cache line compression,
on the other hand, has been used extensively in the past mainly to
satisfy the rising demand for memory capacity and bandwidth. But
in this work compression is used opportunistically for providing
stronger error detection and correction to the cache lines.

2.1 STT-RAM Basics
In an STT-RAM cell, data is stored in a magnetic tunneling junction
(MTJ). As current is passed through a mono-domain ferromagnet,
the angular momentum of the electrons flips the direction of mag-
netization in the ferromagnet. The basic structure of a STT-RAM
cell is given in Figure 1. MTJ consists of a tunneling oxide (MgO)
separating two ferromagnetic layers. One layer (reference layer) has
fixed magnetization and the other is a free layer whose direction of
magnetization flips depending on the direction of current of suffi-
cient density. The relative alignment of the two layers results either
in a high resistance path (when opposite and usually represents ‘1’)
or a low resistance path (when parallel and usually represents ‘0’).

Errors in STT-RAM can be broadly classified under three cate-
gories: read disturb errors, write errors and retention errors due to
thermal instability.

2.1.1 Read Errors. The read operation in STT-RAMs is unidirec-
tional. In STT-RAM, feature size scaling has led to a reduction in
write current; however, read current has not reduced as much since
the correct data may not be sensed when using low-current value.
As technology scales below 45nm, read current doesn’t reduce sig-
nificantly beyond 20µA while the write current reduces to around
30µA [40]. Thus, read current is getting closer to the write current
such that the read operation now has the potential to alter the
stored value. Such an error is called read disturbance error. The
data that is read is correct but the stored value becomes erroneous
and subsequent reads from this location may contain multiple bit-
flips. Since the read current is unidirectional, the unintentional bit
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Figure 1: Schematic of STT-RAM showing the anti-parallel
and parallel states

flip during read is asymmetric and happens only in one direction
(1→ 0 when reading a ‘1’). Thus, reducing the number of 1’s (or
hamming weight) in a cache line will considerably help to reduce
the read disturbance errors (RDEs).

2.1.2 Write Errors. In STT-RAM, a write failure happens if the
switching current is removed before the MTJ switching completes.
The time required for flipping the cell content varies due to the
stochastic switching characteristics of the MTJ. However, this fail-
ure is also asymmetric [50]. When writing to STT-RAM cells, the
MTJ switching from low-resistance state to high-resistance state
(0→ 1) is considered as “unfavorable” switching direction com-
pared to the MTJ switching in the opposite direction: 0→ 1 flipping
requires larger switching current than 1→ 0 flipping due to lower
spin-transfer efficiency. Also, the variation of MTJ switching time
at 0→ 1 flipping is more prominent. Hence, the chances of write
error happening are much higher during a 0→ 1 transition than a
1→ 0 transition. As mentioned in [47], the bit error rate of 0→ 1
flipping is PER,0→ 1 ∼= 5 × 10−3 while that of 1→ 0 flipping is
PER,1→ 0 ∼= 10−7. They have also analyzed and concluded that
the reliability of a word in a cache line decreases exponentially
with increase in the hamming weight of cache lines. Thus, just like
RDEs, Write Error Rate (WER) can also be reduced by reducing the
hamming weight of a cache line.

2.1.3 Retention Errors. In STT-RAM, the third major source of
errors is retention error where the data stored in the STT-RAM
cell flips after a certain period of time. This false switching of data
during the standby state is due to the inherent thermal instability
of STT-RAMs. Increasing the thermal stability not only reduces
retention errors but can also help to reduce read disturb errors [49].
But the critical current or the write current is proportional to the
thermal stability of the cell. Higher thermal stability requires a
higher write current and/or a longer write pulse. Thus there is
a fundamental trade-off between write-ability (write time and/or
power) and retention time [17]. Also, thermal stability of STT-RAM
cells can be increased by using larger cell sizes, thus, increasing
robustness at the cost of area [3].

Figure 2: Read andwritemechanisms for STT-RAM is shown
here

2.2 Previous Work On STT-RAM Reliability
Errors due to read disturbance can be reduced using restore opera-
tion, which writes back the data every time there is a read opera-
tion [40]. Another work [32] suggests using a pulsed read technique
to reduce read disturb errors in STT-RAM cells. However, all these
techniques have significant overheads in terms of latency, energy
and complexity. One recent work [28] suggests the use of data com-
pression to enable duplication of bits in the memory. If cache lines
are duplicated, then a restore operation would be needed only after
all the copies have been read. This can potentially decrease the
number of restore operations required after every read to deal with
read error disturbances. However, if the STT-RAM based memory
system uses DDR protocol, the entire cache line (both original and
duplicated copies) would get read into the row buffer from the
memory array for every read operation. Thus, duplication would
technically not reduce the number of restore operations. There
are also some bitcell architectures proposed [19, 51] to alleviate
the problem of read disturb. However, they also incur significant
overheads and only help in dealing with a single type of error. The
authors in [6] propose a circuit level technique to detect read dis-
turb errors but detection alone with no correction or reduction in
error rates doesn’t help to reduce performance degradation that
happens due to system crashes when uncorrectable errors occur.

To deal with write errors, [47] suggests reducing the Hamming
weight of each cache line. If the number of 1’s is reduced in each
line, it would considerably reduce the probability of having write
errors since a 0→ 1 flip requires longer time and larger current and
is thus, more prone to write errors. To reduce the Hamming weight
of the cache line, [47] suggests using static/dynamic XOR between
words of each cache line exploiting the value locality of stored data.
Also, few recent works [12, 44] suggest improvements at the circuit
level to improve BER of magnetic memories. Intel, in its recent STT-
RAM work [46], proposes using a costly write-verify-write scheme
to reduce write errors and a two stage current sensing technique
during read to mitigate read disturb error. However, they still have
significantly high write bit error rate (can be as high as 10−6).

In [3], the authors proposed using stronger ECC in order to reli-
ably decrease the size of STT-RAM cells and have shown that higher
density can be achieved if stronger ECC protection is used. Another
work [42] proposed adaptive write-schemes using in-memory vari-
ation sensors to reduce write latency reliably for better application
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performance. To deal with read margin errors under thermal varia-
tion, [48] designed a body-biasing feedback circuit to improve read
sensing margin for STT-RAMs. Most of the proposed techniques
either target mitigation from one type of error (write or read error)
or have very large overheads in terms of circuit complexity, area or
power.

2.3 Previous Work On Cache Compression
Cache line compression techniques are being widely proposed to
satisfy the rising demand for memory storage capacity and memory
bandwidth [1, 33, 41]. These techniques exploit spatial and value
locality of the data in typical applications. In most cases, there
are only a few primitive data types supported by hardware (e.g.,
integers, floating-point, and addresses), which typically come in
multiple widths (e.g., byte, halfword, word, or quadword) and are
often laid out in regular fashion (e.g., arrays and structs). The data
used in most applications, on the other hand, are low magnitude
and are often represented inefficiently, for e.g., 4-byte integer type
used to represent values that usually need only 1-byte.

One commonly used compression scheme is Base-Delta-
Immediate (B∆I), as proposed in [31]. This scheme exploits the low
dynamic range of values present in many cache lines to compress
them to smaller sizes. They split up the cache line into multiple
equal sized chunks. They take the first chunk as the base and rep-
resent all the subsequent chunks as delta with respect to the base.
The delta value is smaller than the original value due to the exist-
ing value locality in the cache line and hence, can be represented
using lesser number of bits. While the authors manage to reduce
the compression and decompression latency as compared to the
popularly used cache compression techniques such as Frequent
Pattern Compression [1], the increase in compression ratio is not
significant.

Another recent work on cache compression [20] claims to have
better compression ratio than B∆I. This work exploits locality in
two layers: within values or words of the cache line data and within
bits in the same bit-plane. A bit-plane is a set of bits corresponding
to the same bit position within each cache line word in a data array.
As a result they manage to achieve higher compression ration than
most of the previously proposed cache compression techniques.
However, this scheme has been proposed for 128-byte cache lines
and needs to be modified for systems with 64-byte cache lines. Both
B∆I and BPC schemes have been compared later in Section 6.1 and
the pros and cons of each compression scheme in the context of
stronger error detection and correction have been discussed.

Most of the past works utilize cache compression to effectively
increase the size of the cache. However, our goal is to utilize com-
pression to reduce the hamming weight of the cache lines and also
to utilize the additional space to opportunistically add in stronger
error correction codes (ECC). Compression with ECC has been pro-
posed previously in the context of DRAM based memory system in
FrugalECC [21], COP [30] and Free ECC [10]. In [21] and [10], they
used the same protection for every cache line that could be com-
pressed beyond a certain threshold. If uncompressed, the overflow
data required additional storage and accesses. In [30], they added
error correction only when compression was possible, leaving some
cache lines unprotected because of lack of compressibility. Also

Figure 3: Processor Memory system architecture with CME

they use the same protection for every compressed cache line irre-
spective of how much a particular cache line could be compressed.
Another problem with these schemes is that their compression ratio
goals are very modest since they focus on metadata. In our case
we use different ECC schemes for different cache lines depending
on the final compressed size of that particular line. Thus, after en-
coding with ECC, every cache line is of uniform size and therefore,
has no overflow requiring extra storage and accesses. Also we can
opportunistically provide much stronger protection to sufficiently
compressed cache lines.

3 OUR SCHEME - COMPRESSIONWITH
MULTI-ECC (CME)

In this section, we will discuss the details of Compression with
Multi-ECC (CME) scheme. Cache line compression is used for two
reasons. Firstly, it helps in reducing the hamming weight of each
cache line. Secondly, it enables either data duplication (when the
compressed cache line is less than half its uncompressed size) or
allows to use the available bits to provide stronger error protection.
The selection of the stronger ECC scheme depends on the size of
the cache line post compression such that the final size of each
cache line with the redundant bits remains uniform.

3.1 Overall Architecture
As shown in Figure 3, every time a cache line is to be stored in
the memory, it is a two-step approach. It first goes through the
compression engine and then through the Multi-ECC encoder. In
case of a load operation, it first goes through the ECC Decoder and
then the de-compression engine. Even though the size of an ECC
word is 72-bits, the 73rd bit shown in Figure 3 is to signify a tag bit
that is sent across the DDR bus in every cycle.

We used a slightly modified version of Bit-Plane Compression
(BPC) scheme proposed in [20] which is explained in detail in the
following subsection.

3.2 Cache Line Compression using modified
BPC and an optional Hamming Weight
Aware Inversion Coding

Bit Plane Compression (BPC) as described in [20] is a two-step
process on a 128B cache line, the first step is where the data is
transformed to increase compressibility and the second is to encode
the transformed data. We slightly modified the compression scheme
for a 64B cache line. We used it for a 64-bit architecture where each
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cache line word is 64 bits. However, the compression is done on 32-
bit words. So we split each 64-bit word into two 32-bit sub-words,
the higher order bits (bits 63-32) constitute one sub-word and the
lower order bits (bits 31-0) form the other sub-word. The first step is
cache line manipulation and transformation (Delta-BitPlane-XOR
[DBX]) to improve compressibility of data and thus reduce the
compression hardware complexity.

The next step after data transformation is the compression of the
transformed data. BPC combines run-length encoding with a type
of frequent pattern encoding to compress the transformed data. As
mentioned before, the work in [20] usedword-size of 64 bits in a 128-
byte cache line, while for our evaluations we use 32-bit words and
64-byte cache line. Hence, our symbol encoding is slightly different
from theirs and is shown in table 1. This encoding scheme not only
helps to reduce the cache line length but also helps to reduce the
hamming weight considerably (as seen in Figure 11). For instance,
in this encoding scheme, a running length of 1’s gets encoded
to {5’b00000}. The base (first two original) symbols is compressed
separately by original symbol encoder as {3’b000}, {3’b001, 4-bit
data}, {3’b010, 8-bit data}, or {3’b011, 16-bit data} if its value is 0 or
fits into 4/8/16-bit signed integer, respectively. Otherwise, the base
symbols are encoded as {1’b1, 32-bit data}.

Since both read and write errors in magnetic memories is asym-
metric, reduction of hamming weight is important for resiliency.
After each BPC word is encoded, an optional inversion coding [38]
can be added to further reduce the hamming weight of the cache
line. We check the weight of each BPC encoded word. If it is greater
than half the size of the word, we invert the word. In order to facil-
itate inversion encoding, we add one additional bit in front of each
BPC word (‘1’ if the word is inverted and ‘0’ otherwise). However,
note that the additional bit per BPC word required for inversion
increases the length of the final compressed line. In Section 5.2 we
show that, in many cases, this increase in cache line size due to
inversion tag bits leads to weaker ECC scheme and finally, in spite
of reducing the hamming weight, inversion ultimately adversely
affects the overall block failure probability. One way to reap the
benefits of hamming weight reduction using inversion coding with-
out significantly increasing the size of the cache line would be to
apply inversion on groups of multiple BPC words instead of a per
word basis.

After doing BPC and inversion codingwe check the final encoded
size of the entire cache line. If the length exceeds 512-bits, the
raw cache line is taken and encoded with a (72,64) SECDED code
before writing to the main memory. If the compression successfully
reduces the size of the cache line, we opportunistically encode the
cache line with a stronger ECC code before writing to the memory.

Table 1: Frequent Patterns for BPC and DBP/DBX symbol
encoding

DBP/DBX Pattern Length Code (binary)
0 (run-length 2∼33) 7-bit {2’b01, (RunLength-2)[4:0]}
0 (run-length 1) 3-bit {3’b001}

All 1’s 5-bit {5’b00000}
DBX!=0 and DBP=0 5-bit {5’b00001}
Consecutive two 1’s 9-bit {5’b00010, StartingOnePosition[3:0]}

Single 1’s 9-bit {5’b00011, OnePosition[3:0]}
Uncompressed 16-bit {1’b1, UncompressedData[14:0]}

3.3 Multi-ECC on Compressed Cache Line
Compression helps to reduce the size of the cache line in most
cases. Once the reduction is done, the final size of the cache line
determines the ECC scheme to be used. Shorter the length of the
compressed cache line, more the available redundant bits for ECC
and therefore stronger will be the protection. We wanted to ensure
that the STT-RAM based memory subsystem closely matches the
standard ECC-DDR protocol. Hence, every fetch will be 72-bit wide.

3.3.1 Choice of Codes. The possibility of ECC schemes for a given
redundancy is large. Since the final compressed cache line length
can be anywhere between 13-bits (best case) and 512-bits (no com-
pression), there is a wide variety of code choices available. Usually,
each ECC word in DDR memory is comprised of 72 bits (original
message + ECC bits) which is equal to the length of one fetch. How-
ever in CME, we also consider ECC code word sizes of 36 (i.e., two
ECC words per fetch) and 144 (i.e., one ECC word per two fetches).
We therefore restricted our code space to the options provided in
Table 2.

Table 2: Choice of Error Correcting Codes for CME

ECC scheme Length of ECC word (original message +
ECC bits)

SECDED (Single Error Correcting, 36 ( 29 + 7 )
Double Error Detecting) [14] 72 ( 64 + 8 )

144 ( 135 + 9 )
DECTED (Double Error Correcting, 36 ( 23 + 13 )

Triple Error Detecting) [8] 72 ( 57 + 15 )
144 ( 127 + 17 )

3EC4ED (3 Error Correcting, 36 ( 17 + 19 )
4 Error Detecting) [7] 72 ( 50 + 22 )

The reason for using code word sizes of 36-bits and 144-bits
alongside 72-bits is to increase the opportunity for stronger pro-
tection. As an example, let’s assume a compressed message is 58
bits long, therefore splitting the message to two 29-bit messages
can enable SECDED protection (29+7) on each 29-bit message and
two code words can constitute a 72-bit fetch. If we had restricted
our code space to 72-bit words, the 58 bits of the two messages will
only get SECDED protection since DECTED protection will require
the message to be of length 57 bits. It can be noted from Table 2
that, no code stronger than 3EC4ED (3 error correcting, 4 error
detecting) has been used even for cases where stronger protection
is possible (for eg. 4EC5ED can be used in cases where the com-
pressed cache line size is less than 368 bits). This is because stronger
ECC not only adds greater hardware complexity and overheads,
the redundant bits added to each word in the cache line often in-
creases the Hamming weight of the overall word considerably, thus
increasing chances of read disturb/write errors. As seen in Figure 5,
with stronger ECC, the block failure probability decreases rapidly
till 3EC4ED, beyond which the benefit of stronger ECC saturates.
144-bit 3EC4ED was not evaluated because of the large size of the
encoder/decoder alongside the large number of redundancy bits.

We also wanted to limit our tag overhead per cache line to 8. If
the tag is protected by SECDED, then 4 bits of redundancy would
be required. Thus the actual tag can be at most 4 bits. The first bit
would be used to denote if the cache line is compressed or not. With
3 bits of tag left to denote the ECC scheme used on a compressed
cache line, there can be eight distinct codes that can be used. We



MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA Alam and Pal, et al.

Figure 4: An overview of the modified Bit-Plane Transformation scheme

Figure 5: Block failure probability is shown for blocks with
different Hamming weight (HW) and ECC schemes. The
probability of 1→0 bit-flip is considered to be 10−5

decided to use 2x and 4x duplication for any 512-bit cache line that
gets compressed beyond 256-bits or 128-bits respectively. Therefore,
cache lines with compressed length higher than 256 are left with
six choices of codes.

Unlike [28] which uses duplication to avoid reading the entire
line (which in standard DDR memories actually does not help with
read disturb as explained earlier), we use it to minimize uncor-
rectable errors. As observed from our SPEC2006 benchmark traces,
the average number of read operations between two write oper-
ations is less than two. Thus, when the data is duplicated once,
a cache line word would fail only when both copies of the word
have un-correctable errors (note that all used ECC codes detect
more errors than they can correct). Therefore, in our scheme, we
read the entire cache line (with all the copies) and only use the
subsequent copies if there is an error in the first copy. Reduction
in errors means scrubbing (refresh with ECC) operations will be
needed less frequently, which saves both time and energy. If the
compressed size is less than 1/4th of the original size, we propose a
4x duplication for even stronger protection against errors.

Since all the cache lines within a certain range of compressed
length get the same type of protection, majority of those cache lines
would have to be padded with zeros at the end, before adding ECC,
to increase the final message length to a certain value required by
that particular code type. For example (shown in Figure 6), if all the

Figure 6: An example of CME schemewhere the compressed
cache line size is 440 bits

cache lines whose final compressed length lies between 416 and 456
get (72,57) DECTED protection, all cache lines within that range
whose length is not exactly equal to 456 would need to be padded
with zeros to increase the final length to 456 before splitting up the
cache line into eight 57-bit words and adding DECTED protection
on each one of them.

Based on this we realized that for any range, most of the cache
lines would have the last few words being all 0s. This can be seen in
Figure 7 where we show the hamming weight of each 32-bit word
of compressed cache lines. Based on the compressed cache line size,
we bin the cache lines with post-compression size in between 256
to 512 bits in to four buckets. Each plot in the figure corresponds to
one bucket and shows the distribution of average hamming weight
of the 32-bit words across six benchmarks from the SPEC2006
suite. Each of these 6 benchmarks had widely different average
compression ratio (original-size/compressed-size) and hamming
weight. Hence it can be argued that these six benchmarks are good
representations of the entire suite.

It can be seen that in most cases, the last few words have much
less average hamming weight as compared to the rest. This is be-
cause majority of those words have all 0s. Thus, we decided to add
split codes to our code space. In split codes, the same cache line
would have two different types of protection. The first few words
would have stronger protection than the last few. In order to limit
the code space, we decided to evaluate combinations of at most two
codes from Table 2 and limit the use of weaker protection up till
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Figure 7: Average hamming weight of each 32-bit word of
all cache lines within each bucket. Uniform bucket size of
64 bits were used for all cache lines whose final size lies be-
tween 512 bits and 256 bits.

Figure 8: Distribution of cache line length after compression
of six benchmarks from the SPEC2006 suite

the fourth word from the end. To further limit the code space, after
listing down all the choices, we chose the strongest code within a
redundancy range of 4 bits. This means that if by adding 4 extra bits
we would get a strictly stronger code, we would remove the weaker
one from our final evaluation. Overall, after all these manipulations,
we were left with 28 codes (from the possible 64 code pairs) from
which we would have to select the best six codes. Next, we discuss
how we select these best six codes which constitutes CME.

3.3.2 Dynamic Programming to choose the final set of codes. To
select the best six codes, we took into account the final distribution
of cache line length after compression and the average hamming
weight of each word for all cache lines within a certain range of
compressed length across the SPEC-2006 benchmark suite. The
same six benchmarks mentioned previously were also used for this.
The cache line length distribution of the six benchmarks can be
seen in Figure 8.

Based on these distributions, we used dynamic programming to
choose the six optimal codes.

For each code, the maximum compressed length of a cache line
for being protected by that code is fixed. For example, for each of the
8 words in a cache line to have DECTED protection, the compressed

cache line can be at most 456 bits. This maximum length is fixed
for each type of code.

For every code choice, we first find the weight distribution
of all cache lines whose compressed length is within the range
(max_length, 256), where max_length is the maximum allowable
length for that particular code. We use this weight distribution to
calculate the block failure probability if this code was selected for
these cache lines. The failure probability is then weighted by the
fraction of cache lines that fall within this range to evaluate the
effectiveness of adding the code.

For the dynamic programming, we start with the code (say
codeA) which has the smallest max_length and calculate the
block failure probability over the cache lines of compressed size
(max_lengthA, 256). Next, we add the second code (say codeB) with
the next smallest (max_length). We then evaluate two cases, (1)
When codeA and codeB are both used together to protect cache lines
between (max_lengthA, 256) and (max_lengthB, max_lengthA) re-
spectively; calculating this joint probability can leverage the block
probability for (max_lengthA, 256) that was calculated in the last
step and (2) When only codeB is used.

In subsequent iterations, we add new code types and calculate
the combined block failure probability by leveraging the already
calculated block failure probabilities for smaller max_length codes.
From the seventh iteration onwards, we only calculate the prob-
abilities of code combinations which has six codes in total. Since
most of the code combinations except the newly added code has
been evaluated in previous iterations, the dynamic programming
approach helps us minimize the time to calculate the block failure
for a set of six codes. After all the six code combinations are iter-
ated through, we choose the one with the smallest aggregate block
failure probability. The set of codes that are finally chosen are given
in the Table 3.

Table 3: ECC scheme to be used depending on the com-
pressed cache line size

Length of
compressed cache

line (in bits)
ECC scheme to be used

>512 No compression (Use Raw Cache line + (72,64)SECDED)
≤512 and >508 (72,64)SECDED on each 64-bit cache line word
≤508 and >495 (144,127)DECTED on each 127-bit cache line word

≤495 and >482 (72,57)DECTED on the first 2 57-bit cache line words and
(144,127)DECTED on the last 3 127-bit cache line words

≤482 and >469 (72,57)DECTED on the first 4 57-bit cache line words and
(144,127)DECTED on the last 2 127-bit cache line words

≤469 and >427 (72,57)DECTED on the first 6 57-bit cache line words and
(144,127)DECTED on the last 127-bit cache line word

≤427 and >256 (72,50)3EC4ED on the first 6 50-bit cache line words and
(144,127)DECTED on the last 127-bit cache line word

≤256 and >128 Duplicate the cache line (2 copies) and (72,64) SECDED on each word
≤128 Duplicate the cache line (4 copies) and (72,64) SECDED on each word

Note that this dynamic programming based code space search
is done just once to find the best six codes which constitutes CME.
A fixed CME scheme would be built in to the hardware and all the
applications would use the same scheme.

3.4 Additional Tag Bits and Memory
Organization

Every cache line now needs additional tag bits to denote if the cache
line is compressed and what protection scheme is used.
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Table 4: 8-bit Tag per Cache Line for CME

Tag Bits When Compression is possible
When Raw
Cache line
is used

Bit-0 - ‘1’ ‘0’

Bits1-3

BPC + (72,64)SECDED ‘000’

‘000’

BPC + (144,127) DECTED ‘001’
BPC + (72,57) DECTED on first two words and

(144,127) DECTED on the rest ‘010’

BPC + (72,57) DECTED on first four words and
(144,127) DECTED on the rest ‘011’

BPC + (72,57) DECTED on first six words and
(144,127) DECTED on the rest ‘100’

BPC + (72,50) 3EC4ED on first six words and
(144,127) DECTED on the rest ‘101’

BPC + duplication (2copies) + (72,64)SECDED ‘110’
BPC + duplication (4copies) + (72,64)SECDED ‘111’

Bits4-7 (8,4)SECDED redundancy for the first 4 Tag bits - ‘0000’

As shown in Table 4, we use 8 additional bits of tag to each cache
line to denote the transformation operation that was done for that
particular cache line.

• Bit0: Denotes if the stored cache line has been compressed
or not. If compressed then the first bit of the tag is ‘1’; else
‘0’.

• Bits1-3: When the cache line is compressed, these three ad-
ditional bits denote the ECC/duplication scheme used for
that cache line as given in Table 4, else the field is populated
with ‘000’. Note that the tag bits for the duplication cases
(last two) are the highest weighted since they are the least
frequently occurring.

• Bits4-7: These 4-bits are ECC bits used to provide a (8,4)
SECDED protection on the first 4-bits of tag to correct a
single-bit error and detect any double-bit error.

3.4.1 DDR4 Primer. In today’s system with DRAM based main
memory system, a processor accesses the main memory through
the memory controller. Memory controller buffers memory access
requests from the processor, schedules the requests, converts them
into DRAM commands complying with the specific DDR protocol
and sends them over a DDR bus to the dual in-line memory module
(DIMM). One or more DIMMs is supported on a memory bus. Each
DIMM has a DIMM controller along with 9/18/36 x4/x8 DRAM
memory chips. The DIMM controller acts as the interface to the
DDR bus and manages the DIMM. In our example we use a DIMM
with 9 x8 memory chips as the baseline to explain the modifications
required to fit an additional STT-RAM tag chip along with 9 x8
STT-RAM chips on a STT-RAM DIMM connected to a DDR4 bus.

In a conventional DRAM based main memory system with x8
DRAM DIMM, for reading from or writing a cache line to the
memory, each memory chip from the same rank in the DIMM sends
64-bits over 8 cycles to form a 512-bit (576-bits with ECC) cache
line. First, the memory controller sends an ACTIVATE request to
the DIMM along with the rank, bank and row addresses. Based on
the addresses the DIMM controller activates the row in the bank
of all the chips in that rank. The row is read from the array into
the respective row buffers. Each row buffer now holds one row,
i.e., an entire DRAM page. If it is DDR4 type memory one DRAM
page size of an x8 memory chip is equal to 1KB. From this 1KB
page per DRAM chip, only 64-bits need to be accessed sequentially
in 8 bursts where each burst consists of 8-bits. The beginning of

Figure 9: CME-Scheme 1 is shown where tag bits are stored
in an x1 DRAM chip. One tag bit is read every cycle in burst.
Different colors represent different 72-bit ECC words in a
512-bit cache line.

this 64-bit chunk in the 1KB page is determined by the column
address sent to the DIMM by the memory controller next along
with the READ/WRITE command. For a READ operation the last
three bits of the column address determines the burst order, i.e., the
order in which the cache line words will be read. This is to enable
“priority word first” [26] for improving performance where the
payload word gets read and decoded first and sent to the processor
while the rest of the words are brought to the cache. The rest of the
bits in the column address determine the beginning of the chunk
being accessed.

Assuming the STT-RAM based main memory system uses DDR4
protocol, we explore two ways of storing the additional bits of tag
per cache line.

3.4.2 Scheme 1. The first option is to store the tag bits separately
in the memory. We require an extra tag chip to store the 8 bits of
tag per cache line and an additional data signal in the DIMM. This
extra tag chip will be a x1 memory chip with one data signal pin.
The size of the memory page will be one-eighth that of the other
memory chips in the DIMM (128B) and in each burst only one bit
will be read instead of the conventional 8-bit burst. Thus, when the
DIMM controller sends the READ/WRITE request to the tag chip, it
will shift the column address bits by 3 (divide by 8). The data signal
pin of this x1 tag chip will be connected to the extra data signal in
the DIMM. The minor changes required to accommodate this extra
tag chip are depicted in Figure 9.

Though implementing this only requires subtle changes to the
DIMM and memory architecture, this scheme incurs latency over-
head. In today’s systems where the main memory has (72,64)
SECDED protection, each 72-bit word read from the memory in a
burst has to go through the ECC decoder to get the original 64-bit
message and to check for any single-bit/double-bit errors. Since
a 576-bit cache line (512-bits of message + 64 bits of ECC) is sent
over 8 bursts, each of length 72-bits, and each burst is a separate
ECC word, the ECC decoding can begin as soon as the first burst or
ECC word arrives. However, in our case we have to wait for the tag
bits before we can start with the ECC decoding and in every burst
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Figure 10: CME-Scheme 2 is shown where tag bits corre-
sponding to ECC scheme used are stored in an x8 DRAM.
The tag bit and it’s parity representing if the cache line is
compressed are stored in an x2 DRAM chip and are brought
in the same burst. Different colors represent different 72-bit
ECC words in a 512-bit cache line.

only one bit of tag is sent. This latency overhead will vary from
cache line to cache line. For an uncompressed cache line, as soon
as the first bit of tag arrives, the ECC decoding can start since all
un-compressed cache lines are protected by (72,64)SECDED code.
However, if the cache line is compressed, i.e., if the first tag bit is
‘1’, the ECC decoding has to wait for at least 4 cycles. Since the tag
is protected by a linear (8,4) SECDED code, the first 4 bits of tag
are the original tag message and the last 4 bits are the redundancy
bits. So, as long as there is no error in the tag bits, the first 4 bits
of tag should be sufficient to tell us the ECC scheme used for that
particular cache line. Thus, the ECC decoding can start after 4 cy-
cles. If after 8 cycles it turns out that there was an error in the first
4 bits of tag then the ECC decoding has to be done again, causing a
8-cycle latency overhead, however probability of that happening is
very small and will not impact the performance of a system.

3.4.3 Scheme 2. To avoid this latency overhead, we propose an
alternative option of embedding the 8 bits of tag into the compressed
cache line itself. This means that after encoding the compressed
cache line with ECC, the final length has to be 568 bits so that
adding 8 bits of tag to the cache line increases it to 576 bits (as
shown in Figure 10). If the cache line cannot be compressed at all
no tag bits will be needed as the standard (72,64) SECDED code
will be used for all uncompressed cache lines. However, overall one
bit of tag is still required separately to denote if the cache line has
been compressed. The one extra bit of tag can either be stored in
the memory controller for a small sized main memory system or a
separate x2 memory chip in the DIMM can be used. If stored in the
memory then an additional bit of parity is required to protect that
one tag bit (1 bit is enough since errros are asymmetric). This tag bit
can be fetched using a x2 memory chip in one burst and will have a
page size of 4B. For the x2 memory chip, the least-significant 5-bits
of column address select need to be ignored because of the reduced
page size and no requirement of bursts. Reduction of the burst size
will be minimal modifications of the circuitry that is present in

today’s DDR4 DIMM which supports variable burst sizes of 4 and
8. The DIMM will require 2 additional data signal pins and the
memory controller needs to know that valid data will be sent over
those 2 data signal pins only in the first burst. All these changes
should be minimal and easy to implement given the current existing
architectures. This scheme will have latency overhead of only 1
cycle. However, having this option will require our ECC schemes
to change since now the final size of the ECC encoded message will
be different. We re-ran our code selector to select the six optimal
schemes and the selected codes are provided in Table 5. We call this
CME Scheme-2 when we evaluate it in Section 5.2.

Table 5: ECC scheme to be used depending on the com-
pressed cache line size when the tag is embedded in the
cache line

Length of
compressed cache

line (in bits)
ECC scheme to be used

>504 No compression (Use Raw Cache line + (72,64)SECDED)
≤504 and >500 (71,63)SECDED on each 63-bit cache line word
≤500 and >487 (142,125)DECTED on each 125-bit cache line word

≤487 and >474 (71,56)DECTED on the first 2 56-bit cache line words and
(142,125)DECTED on the last 3 125-bit cache line words

≤474 and >461 (71,56)DECTED on the first 4 56-bit cache line words and
(142,125)DECTED on the last 2 125-bit cache line words

≤461 and >419 (71,56)DECTED on the first 6 56-bit cache line words and
(142,125)DECTED on the last 125-bit cache line word

≤419 and >252 (71,49)3EC4ED on the first 6 49-bit cache line words and
(142,125)DECTED on the last 125-bit cache line word

≤252 and >126 duplicate the cache line (2 copies) and (71,63) SECDED on each word
≤126 duplicate the cache line (4 copies) and (71,63) SECDED on each word

If the STT-RAM based memory is embedded and on-chip (as
seen in some commercial STT-RAM based memory systems [13]),
the tag placement will be much simpler and will not incur any
additional latency overhead since all 8 bits can be fetched in one
cycle.

4 EVALUATION METHODOLOGY
While compression and error correcting codes are used individu-
ally in caches and main memory, we focus on combining the two
and opportunistically providing stronger protection for STT-RAM
(or any other magnetic or high error rate memory) based main
memory systems in this paper. We first compare the hamming
weight reduction achieved after doing Bit-Plane Compression with
and without hamming-weight-aware inversion against another
scheme [47] proposed earlier to reduce hamming weight and an
alternative compression scheme (B∆I [31]). We then evaluate the
effectiveness of using stronger codes for STT-RAM based memories
with error rates provided in Table 6. We use two design points, one
from Intel [46] and the other from Samsung [22], for our analysis.
For the Intel design point, the read/write/retention error rates are
as provided. For the Samsung design point, the write error rate is
provided along with the thermal stability factor (∆). Based on the
technology node, the read disturb rate is calculated from [15]. The
retention error rate is calculated based on the ∆ using Equation 1.

Pr et = 1 − e
−
tr
τ0
e−∆ (1)

where τ0 is reversal attempt period and is on the order of a
nanosecond [3], and tr is the interval for which the evaluation is
conducted.
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For STT-RAM based memories, refresh is not the same as
DRAM [3, 15]. In DRAM, refresh is used to prevent determinis-
tic errors cause by charge leakage over time. But in STT-MRAM,
errors are stochastic in nature. Therefore, if DRAM like refresh is
performed in STT-RAM, where the cell contents are simply read
and written back without any error correction, already flipped bits
in the memory would be read and written back, as is, without any
correction. This would not be effective in lowering the error rate.
In STT-RAM, refresh needs to be accompanied by error correction
and is similar to the scrubbing operations performed in today’s
systems. For all our analysis, unless otherwise mentioned, we con-
sider a scrubbing interval of one second. We finally evaluate the
hardware overhead of compression with multi-ecc and its impact
on performance.

Table 6: Evaluation setup

Cache Line Size 512-bits (64-Byte)

Design Point - I [46]
Write Bit Error Rate 1×10−6
Read Bit Error Rate 1×10−12
Retention Error Rate Negligible (200C 10 years)

Design Point - II [22]
Write Bit Error Rate 1×10−6
Read Bit Error Rate 1×10−10

Retention Error Rate
Calculated based on thermal
stability factor ∆ = 40 using

equation 1

To evaluate our protection scheme for STT-RAMs, we extracted
memory traces of 18 benchmarks from the SPEC CPU2006 bench-
mark suite using Gem5 [5]. These applications are a mix of in-
teger and floating point benchmarks. Next, each application was
subjected to CME. The average block failure probability (average
failure probability of each word in the cache line) was computed
for each design point based on the final set of cache lines obtained
after applying compression to the obtained memory traces.

The probability of a cache block/word of hamming weight W
not failing under a certain write/read/retention bit error rate PER
protected by a t-error correction ECC is given by the following
equation:

Pblock =
t∑
i=0

(
W

i

)
(1 − PER )

W −i (PER )
i (2)

For overall block error rate, we calculated the probability of fail-
ure using the knowledge obtained from the memory traces about
the number of reads between two consecutive write/scrubbing in-
structions to a a particular memory address. For example, when
a cache line protected using (72,57) DECTED code is read twice
consecutively before a write operation to the same address, the
probability of no fault is calculated by considering all the following
cases: (a) When two or less faults occur during the same operation
(either during write, any of the two reads or because of retention
error). (b) One fault occurs during one operation and another fault
occurs during another operation. When a cache line gets duplicated
twice, we consider a block to be failing only when both copies have
un-correctable errors. Based on our memory trace statistics, we
saw that most of the cache lines are read once. However, there are
still 2-5% of cache lines that are read more than twice (some even
more than 10 times).

To evaluate the area and latency overheads of stronger
ECC codes, we synthesized both (72,64) SECDED and (144,127)
DECTED decoding engines using an industrial 45nm library. The
(144,127)DECTED decoder is expected to have the largest overheads
compared to the baseline (72,64) SECDED. To evaluate the perfor-
mance impact of CME due to the overheads of compression and
multi-ECC (discussed in detail in Section 5.4), we ran performance
simulation using Gem5 [5]. Two micro-architectural configurations
were evaluated as provided in Table 7. The first set of evaluations
were done for a system with 8 in-order (InO) cores sharing only
2MB of unified L2 cache and no prefetch. So that there is minimal
memory access latency hiding techniques. Also the shared L2 cache
is not statically partitioned and the different processes compete for
cache space. These are expected to exaggerate the effect of CME
overheads on performance. For these experiments, each thread runs
the same application in separate processes. The second set of evalu-
ation was done for a single out-of-order (OoO) core having a unified
2MB L2 cache and with prefetching enabled. The performance eval-
uations on Gem5 were done for the benchmarks in the SPEC2006
suite, fast forwarding for 1 billion instructions and executing for
2 billion instructions. The latency overheads considered for the
simulations are discussed in detail in Section 5.4.

Table 7: Core Micro-architectural Parameters

Config-1 Config-2
Cores 8, InO (@ 2GHz) 1, OoO (@ 2GHz)
ISA ALPHA x86

L1 Cache per core 32KB I$ 32KB I$
32KB D$ 32KB D$
4-way 4-way

L2 Cache 2MB (shared, unified) 2MB (unified)
8-way 8-way

Cache Line Size 64B 64B

Memory Configuration 32GB of single-channel x4
DDR4-2400

32GB of single-channel x4
DDR4-2400

Nominal Voltage 1V 1V

5 RESULTS
In this section we demonstrate that CME provides considerable
benefit in terms of block error reduction as compared to a nor-
mal (72,64) SECDED code. The evaluations also show the minimal
impact of the hardware overheads of CME on performance.

5.1 Reduction in Hamming Weight
We evaluate the hamming weight reduction when using Bit Plane
Compression with and without hamming-weight-aware inversion
scheme and compare it against a previously proposed Dynamic-
XOR scheme [47] where the goal was to solely minimize the weight
of each cache line. We also included another popularly used cache
line compression scheme (B∆I) [31] for this hamming weight anal-
ysis. From Figure 11 it can be seen that for all applications both
the compression schemes and the Dynamic-XOR scheme reduce
hamming weight of cache line as compared to the original weight.
BPC without inversion reduces hamming weight by upto 67.3%
(avg. 21.3%) compared to the original weight. Adding inversion re-
duces the hamming weight further (on an avg. 30% compared to the
original weight). For most applications, cache line after BPC with
or without inversion ends up with a lower hamming weight than
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Figure 11: Comparison of average Hamming weight of orig-
inal cache line, BPC, B∆I and DBX schemes

Dynamic XOR. On an average BPC with inversion has 16.8% lower
weight than the Dynamic-XOR scheme. Thus, BPC not only has the
advantage of reducing cache line size over Dynamic-XOR which, in
turn, allows for stronger ECC, it also reduces hamming weight of
the entire cache line, thus reducing chances of unwanted bit flips
during write and read operations in STT-RAMs. On top of BPC,
hamming weight aware inversion coding further reduces hamming
weight by an additional ∼8%. B∆I, on an average, performs better
than BPC with inversion in the matter of reducing hamming weight
of cache lines of most applications. BPC, however, outperforms B∆I
in reducing block failure probability and has been discussed in
detail in Section 6.1. In a recent work [45], the authors propose to
use stronger ECC for cache lines whose hamming weight is above
a certain threshold and use weaker ECC otherwise. For this work,
the stronger ECC scheme is (72,64) SECDED on each 64-bit cache
line word while the weaker ECC is (523,512)SECDED on the entire
cache line. In our baseline case, every cache line, irrespective of
its hamming weight, gets the stronger protection used in [45] and
with CME, the cache lines gets even stronger protection.

5.2 Reduction in block failure probability
To evaluate the reduction in block errors, block failure probability
is computed per application for all words in all cache lines retrieved
from the memory traces for the following three cases:

• Baseline: No Compression and each 64-bit cache line word
gets (72,64)SECDED protection.

• Scheme-1: Compression (with and without hamming-weight-
aware inversion) with Multi-ECC protection scheme where
the tag bits are separate.

• Scheme-2: Compression (with and without hamming-weight-
aware inversion) with Multi-ECC protection scheme where
the tag bits are embedded into the cache line.

. As mentioned before, both schemes were compared for two design
points with different read disturb/write/retention error rates. The
results are shown in Figures 12 and 13. Please note that the y-axes
are in logarithmic scale (reverse order). This means that the taller
the bar, the smaller is the block failure probability (better it is). Also

in both CME schemes, every in-compressible cache line gets the
baseline (72,64) SECDED protection per word.

The Compression (with and without inversion) with Multi-ECC
(CME) protection scheme is compared against the baseline case
where each 64-bit cache line word gets (72,64) SECDED protection.
Compared to the baseline, Scheme-1 has 8 extra bits per cache
line and Scheme-2 has 2 extra bits. The compression scheme used
is the modified version of BPC explained in Section 3.2. We first
analyzed the improvement in block failure probability that comes
only because of hamming weight reduction by BPC. To do that we
computed the reduction in block failure probability when there
is BPC alone. The compressed cache lines were padded with zero
to increase the final size to 512 and then every 64-bit chunk was
provided with (72,64) SECDED protection. For the first design point,
BPC with (72,64) SECDED alone (without inversion and multi-bit
error correction) reduced block failure probability by at most 4x
(average 1.38x). Similarly, for the second design point, the maximum
improvement was 4.61x (average 1.35x). These improvements are
negligible.

The improvements in block failure probability come mostly from
the opportunistic stronger protection that is added to the cache
lines. For the first design point, BPC with Multi-ECC (without inver-
sion) reduces block failure probability by as much as 176x (average
6.18x) and 150x (average 5.11x) for Scheme-1 and Scheme-2 respec-
tively when compared to the baseline. For the second design point,
BPC with Multi-ECC (without inversion) reduces block failure prob-
ability by as much as 240x (average 6.81x) and 148x (average 5x)
for Scheme-1 and Scheme-2 respectively. In fact, successful com-
pression and, therefore, stronger protection is possible for 70.5%
cache lines across the benchmarks used. As a result, CME performs
dramatically better than the baseline case as well as the case with
only compression and SECDED protection. For the baseline case,
the benchmark with the worst block failure probability is hmmer.
If the entire suite is considered, the reliability of the system would
be limited by this benchmark for both design points. With Com-
pression and Multi-ECC, this benchmark, however, has the highest
compression ratio and the maximum reduction in the average ham-
ming weight of cache lines. Therefore, it ends up with the maximum
reduction in block failure probability. The two benchmarks with
the lowest reductions are namd and libquantum. This is because
these two benchmarks are the least compressible and hence, most
of the cache lines end up with the same (72,64) SECDED protection
as the baseline. Across the entire SPEC suite, the maximum block
failure probability with the baseline protection scheme is reduced
by 5x and 6x when CME Scheme-1 is used for the two design points
respectively.

An unexpected result is observed when hamming-weight-aware
inversion is used along with BPC. Since inversion helps to reduce
the hamming weight of the cache lines, it is expected to reduce
the block failure probability beyond what compression without
inversion and multi-ecc can achieve. However, for both design
points and both schemes it can be seen from the figures that across
majority of the benchmarks, the block failure probability is higher
with inversion than what it is without inversion. With inversion,
CME reduces block failure probability by at most 35x (average 3.2x)
compared to the baseline for the first design point (using Multi-ECC
Scheme-1). This is significantly lower than the corresponding 6.18x
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Figure 12: Reduction in block failure probability induced due to write/read/retention errors for the first design point [46] is
shown. The y-axis is in logarithmic scale (reverse order). The geometric mean and arithmetic mean of the improvement of
CME Schemes over baseline is shown in plot.

Figure 13: Reduction in block failure probability induced due to write/read/retention errors for the second design point [22]
is shown. The y-axis is in logarithmic scale (reverse order). The geometric mean and arithmetic mean of the improvement of
CME Schemes over baseline is shown in plot.

average improvement that was achieved without inversion. Though
inversion reduces average hamming weight across all benchmarks
(see Figure 11), it adds extra bits to the cache lines because each BPC
word requires one extra bit to know if the word has been inverted.
This can add as many as 35 extra bits to a cache line. As a result, a
lot of cache lines end up getting weaker protection. To better utilize
the reduction in hamming weight without increasing the cache line
size significantly, hamming-weight-aware inversion can be done
on groups of multiple BPC words instead of doing inversion on
each BPC word. We analyze one such case for design point 2 using
Multi-ECC Scheme-1. It is seen that when groups of 3 BPC words
are used, BPC with inversion and Multi-ECC (average reduction
in block failure probability is 6.14x) outperforms the case without
inversion for multiple benchmarks.

To compare against single strong code scheme such as Fru-
galECC [21], we further evaluate the case of having one stronger
code (72,57) DECTED for all cache lines that could be compressed,
irrespective of their final size, along with (72,64) SECDED for the
uncompressed ones and compared this against CME Schemes. It is
seen in Figure 14 that FrugalECC like scheme can achieve at most
34x reduction in block failure probability compared to the baseline

Figure 14: Improvement of CME Schemes 1 and 2 over a
scheme that provides uniform (72,57) DECTED for all com-
pressible cache lines and (72,64) SECDED if in-compressible.

while CME Schemes can achieve at much as 240x reduction. For all
benchmarks, CME Schemes-1 and 2 perform better than the single
strong code scheme.
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5.3 Hardware Overhead of Multi-ECC Scheme
The CME scheme requires support for multiple ECC engines
(SECDED, DECTED and 3EC4ED). Having multiple ECC encoders
and decoders on a memory controller on chip can be costly in terms
of both area as well as power. However, if asymmetric quantum
BCH coding [2] is used, G and H matrices for a smaller ECC (for
e.g., DECTED) can be composed out of sub-matrices of G and H
matrices of a stronger ECC scheme (for eg. 3EC4ED), therefore the
same hardware can be reused. Since in our case, the total codeword
length is same for all the cases (n=72 bits), eliminating rows from the
bottom of the H-matrix of a stronger code (for e.g., 3EC4ED) would
generate the H-matrix of a weaker code (for e.g., DECTED) with the
same codeword length. However, for encoding using G-matrix, the
rows (=k) of the G-matrix decrease as we move towards a stronger
ECC code for a given constant codeword length (=n). Also, (72,57)
DECTED H-matrix can re-use a (144,127) DECTED H-matrix. Thus,
the largest decoder would be required for the (144,127) DECTED and
the other BCH based codes ((72,50) 3EC4ED and (72,57) DECTED)
can re-use most of the decoder. (72,64) SECDED code would require
a separate decoder. However, even the baseline (72,64) SECDED
protection scheme would require the same parity check engine.
Synthesizing the parity check engines of (144, 127) DECTED using
an industrial 45nm library results in about only about 8700 µm2 of
additional area overhead compared to a only SECDED implementa-
tion as in the baseline. Moreover, since only one word is decoded at
a time, reuse isn’t expected to have any performance degradation.

As reported in [20], the area overhead of BPC compression en-
gine is about 48000 µm2 when synthesized using 40nm TSMC
standard cells. The total area overhead of BPC and ECC encod-
ing/decoding engines is not significant when compared to the cur-
rently available large sizes of processors. The per-bit energy over-
head of BPC is less than 1% of per-bit STT-RAM read energy [43].
The latency overhead of CME and the possible impact of system
performance is evaluated next.

5.4 System Performance Evaluation
As mentioned in [20], Bit-Plane compression takes 7 cycles for
compression/decompression. Since in our case each DBX word is
less than half their size, we should be able to fit in twice the num-
ber of DBX encoders in the same area. As a result, we would be
able to complete the encoding step (last step in BPC) in 2 cycles
instead of 4. Thus, we would require 5 cycles for BPC compres-
sion/decompression. The latency overhead of fetching the tag bits
from the memory would be different for the two CME Schemes.

In Scheme-1, each bit of tag is fetched in each cycle. As discussed
earlier ECC decoding can begin after 1 cycle if the cache line is not
compressed and after 4 cycles when compressed (only after all 4
bits of tag are read)1. In our performance simulations we have con-
servatively assumed that every cache line is compressed and thus,
would incur a latency overhead of 4 cycles every time a cache line
is read from the memory when using CME Scheme 1 as compared
to the baseline. From our synthesis results we see that even the
largest ECC decoding gets done in one cycle. Thus, for stronger

1Since the tag bits are encoded using systematic SECDED code, the original mes-
sage, i.e., the 4 bits of tag remain unchanged and the remaining 4 bits of redundancy
protecting the tag bits are appended at the end.

protection there is no additional latency overhead. However, in
many of today’s memory systems, the payload word gets read from
the memory in the first burst even when it is not the first cache line
word and the rest of the cache line words get read in the successive
bursts. This is called priority word first [26] and is done to improve
performance. In our case, we have to wait for the entire cache line
to arrive before we can start with the decompression. Thus, priority
word first cannot be implemented here. To account for this we have
taken an average of 4 cycle overhead. Thus, overall CME Scheme 1
has 13 cycle latency overhead as compared to baseline.

For Scheme 2 the BPC overhead remains the same as Scheme-1.
In this scheme, both bits of tag are read in one burst. Therefore, the
additional latency overhead for fetching tag is 1 cycle. Here also
the priority word first cannot be implemented and thus, additional
4 cycles are taken. Overall accessing a cache line in the memory
in Scheme-2 will take 10 more cycles compared to the baseline.
The performance results are shown in Figure 15. For the system
with 8 InO cores, the performance degradation for Scheme-1 is, at
most, ∼ 6.9% (avg. 1.8%) and for Scheme-2 is, at most ∼ 3% (avg.
1.05%). This 8 core system had only 2MB shared Last Level Cache
(LLC) and had minimal memory access latency hiding techniques
like prefetching enabled. As a result, this exaggerates the latency
overhead of CME. For the system with a single OoO core and 2MB
LLC, the performance degradation when using Scheme-1 is, at most,
∼ 4.5% (avg. 1.6%) and, for Scheme-2 is, at most, ∼ 3.3% (avg. 1.1%).
As expected, for OoO core with a larger cache and no competition
among cores for cache space and better memory access latency
hiding techniques like prefetching, the performance impact when
using CME over the baseline is lesser than the previous system.

6 DISCUSSION
6.1 Using an Alternative Compression Scheme
The results presented in Section 5.2 were generated using the mod-
ified BPC compression scheme discussed in detail in Section 3.2.
However, we also analyzed another commonly used cache line
compression scheme - B∆I. The results are shown in Figure 16.

The observation was that B∆I with (72,64)SECDED protection
on each block performs better than BPC with (72,64) SECDED for
majority of benchmarks. This is because, for most of the bench-
marks, cache lines have lower hamming weight when compressed
with B∆I as compared to BPC. Since the write and read disturb
errors in STT-RAM are asymmetric in nature and all cache lines
get the same baseline protection irrespective of how much they are
compressed, the reduction in block failure probability comes solely
from the lowering of hamming weight. Hence, B∆I performs better
than BPC. However, when the extra space is opportunistically used
for stronger ECC protection, BPC outperforms B∆I for all 18 bench-
marks. With BPC and Multi-ECC (Scheme-1), reduction in block
failure probability is upto 175x (geomean of 6.18x). But with B∆I
and Multi-ECC (Scheme-1), reduction in block failure probability
is upto 19.55X (geomean of 2.49x). This is because BPC has better
compression ratio than B∆I. This allows most cache lines to get
stronger ECC protection. Thus, the compression scheme with the
highest average compression ratio needs to be chosen for CME
even if the scheme results in higher average hamming weight of
cache lines.
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Figure 15: Comparing Normalized Execution Time of two systems (one with 8 InO cores and another with a single OoO core),
both having three protection schemes: baseline (72,64)SECDED, CME Scheme-1 and CME Scheme-2. InO and OoO results are
normalized to their respective baselines.

Figure 16: Improvement in Block Failure Probability
of B∆I and BPC over Baseline [no compression and
(72,64)SECDED].

6.2 Variable Scrubbing Interval
Scrubbing is done in today’s systems [16] to reduce the probability
of multi-bit errors. As mentioned previously, a refresh operation
for STT-RAM would need to be accompanied by an ECC check,
which resembles scrubbing where a cache line need to be read in
to the memory controller which contains the ECC engine and then
written back. Therefore, beyond unavailability of the bank/array, a
scrub operation would also consume memory bandwidth. Thus, it is
also important to minimize the bandwidth consumption overhead
of scrubbing. Based on our analysis we see that for most applica-
tions, CME allows to relax the scrubbing interval by as much as 50x
as compared to the baseline (72,64)SECDED protection scheme. An-
other observation is that the scrubbing interval required to achieve
a target block failure probability varies among applications. It de-
pends on the compressibility of the cache lines. If the compression
ratio of the cache lines is high, the scrubbing interval can be re-
laxed. For CME, the memory controller needs to check the final
compressed cache line size to determine the ECC scheme to be used.

This information can be used to provide support for variable scrub-
bing interval. The system initially starts with the lowest scrubbing
interval (maximum scrubbing frequency). A counter keeps track
of how many times a cache line gets the strongest ECC protection.
If it is beyond a certain threshold, the scrubbing interval can is
increased. The counter is reset after a certain period of time or
every time the scrubbing interval increases.

6.3 Using STT-RAM as non-ECC DRAM
Alternative - Reliability Point of View

In this work we considered the STT-RAM based memory subsystem
as main memory with DDR protocol. As a result we compared the
MTTF of STT-RAM devices with baseline protection as well as CME
protection against that of non-ECC DRAM. Most of the mobile and
low power devices using DRAM do not have ECC protection. STT-
RAM, because of its power, density and non-volatility benefits over
DRAM [24], is considered as a possible DRAM alternative in these
devices. However, using STT-RAM memory as a DRAM alternative
in such devices would require the STT-RAM device FIT rates to
be comparable to what is seen in today’s commodity non-ECC
DRAM devices. While STT-RAM is not susceptible to radiation
induced soft errors [42], the transient read disturb/write/retention
error rates can be much worse than the transient bit error rates of
DRAM. We use the Samsung design point for our analysis since
it has higher bit error rates and used the geometric mean of the
block failure probabilities across all benchmarks. We analyze using
STT-RAM scrubbing (refresh with ECC) intervals of 64ms (same
as the DRAM refresh interval) as well as one second. The DRAM
error FIT rate was obtained from [34]. We only considered DRAM
transient FIT for our analysis. Note that the FIT rates are for DDR2
DRAM technology. With scaling, the FIT rates for the later DRAM
technologies, DDR3/4, are expected to be worse. The results are
shown in Figure 17.
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Figure 17: MTTF of STT-RAM devices (with different protec-
tion schemes and scrubbing intervals) and non-ECC DRAM
devices of different sizes. Note that the y-axis is in log scale.

With baseline protection, the MTTF of STT-RAM device is much
lower than a same sized DRAM device, even with 64ms scrub-
bing interval. In fact, CME with one second scrubbing interval has
2.65x higher MTTF than SECDED based baseline protection with
64ms scrubbing interval. However, it is still not as good as DRAM.
With scrubbing interval of 64ms, STT-RAM with CME protection
achieves almost similar (sim1.07x higher) MTTF as DRAM.Without
scrubbing, the MTTF per Mbit, with CME, drops from a few years
to less than an hour, making it almost unusable. Thus, CME pro-
tection scheme, with scrubbing, allows STT-RAM to be as reliable
an alternative as non-ECC DRAM. The baseline (72,64)SECDED
protection scheme requires much lower scrubbing interval (less
than 6ms) as compared to 64ms with CME, to achieve similar MTTF
and thus, makes it almost infeasible energy and performance-wise.

7 CONCLUSION
In this work, we proposed a new ECC protection scheme for STT-
RAM based main memories, compression with multi-ECC (CME).
First we try to compress every cache line to reduce its size and then
apply hamming weight aware inversion coding to reduce the ham-
ming weight of each block. Based on the amount of compression
possible, we use the saved additional bits to increase the protection
using stronger ECC codes if possible. Compression with inversion
itself reduces the hamming weight of the cache lines, thus reducing
the probability of 1→0 bit-flips. Opportunistically using stronger
ECC codes further helps tolerate multiple bit-flips in a cache line.
Our results show that for STT-RAM based main memories, CME
can reduce the block failure probability by up to 240x (average 7x)
over using a (72,64) SECDED for each cache line word when using
two different CME schemes proposed in this paper. The latency
and area overheads of CME is minimal with average performance
degradation of less than 1.4%.
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