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Abstract—Error correction and detection are the core com-
ponents of all modern memory systems. Current computing
memory systems use simple coding schemes to simultaneously
meet the resiliency and latency requirements. In this paper, we
review our recent results on context-aware coding for computing
memories, an approach that explicitly takes into account various
intrinsic side information for improved robustness to faults. We
discuss both error correction and detection, codes’ theoretical
properties, and provide examples of how these solutions can be
implemented in practice. We explicitly describe the special case
of the error localization codes. We also discuss promising future
directions and connections with classical information theoretic
concepts.

Index Terms—Error Correction and Detection, List Decoding,
Computing Memories.

I. INTRODUCTION

Word-addressable computing memories (such as caches and
main memories) have become ubiquitous and nowadays span a
wide spectrum from on-chip memories embedded in Internet-
of-Things (IoT) devices all the way up to off-chip main
memories for high-performance server applications. Unfortu-
nately, errors in computing memories have also increased.
For example, Google has observed 70000 failures in time
(FIT)/Mb in commodity on-chip memory, with 8% of modules
affected per year [1], while Facebook has found that 2.5% of
their servers have experienced memory errors per month [2].
With the proliferation of computing memories, and the surge
in applications that use them, these trends are expected to
worsen even further.

A conventional way of dealing with errors in memories
is to deploy error control coding. As in all other memory
and storage technologies, error-control codes (ECCs) are a
classic way to build resilient computing memories by adding
redundancy: A code maps each information message of length
k bits (symbols) to a unique codeword of length n bits
(symbols), n > k, that allows up to a certain number
of errors to be detected and/or corrected. The theoretical
development of ECCs for computing memories, including
SRAM and DRAM, have thus far implicitly assumed
that every message is equally likely to be stored and that
every error pattern of the same weight is equally likely
to occur. This approach has allowed for simplicity in the
ECC design, which typically uses codes capable of correct-
ing a small number of bit or symbol errors, e.g., (39, 32)
and (72, 64) Single-Error-Correcting Double-Error-Detecting
(SEC-DED) codes are routinely used in on-chip memories

[3]–[5], and (144, 128)16 Single-Symbol-Correcting Double-
Symbol-Detecting (SSC-DSD) codes—such as ChipKill—are
popular in server mainframes [6]–[9]. Here and elsewhere
(n, k)q denotes a linear code that maps k input bits (symbols)
into a codeword of length n bits (symbols) over a finite field
of size q. If the code is binary, we omit the q = 2 subscript.
Relatively short codes (with inevitably limited error correc-
tion) are necessary in computing memories due to stringent
latency and implementation complexity constraints. However,
current ECC techniques have become too weak to overcome
the errors caused by the ever-increasing density of RAM
in warehouse-scale computers, high-performance computer
(HPC) applications [10], and low-cost on-chip SRAM memory
[11]–[13].

While there has been a recent explosion of results on
coding for memories [14]–[17], these works have primarily
tackled non-volatile memories (NVMs), and Flash memories
in particular as the main NVM technology. On the other hand,
computing memories are at present predominantly volatile
memories, although future computing memories may also
include emerging non-volatile devices such as MRAMs. Com-
puting memories differ from storage memories, such as Flash,
in terms of function, organization, and the underlying physics,
and, as a result, in terms of error types and patterns as well
as acceptable coding solutions. As a result, the rich literature
on coding for Flash is not readily applicable to the domain of
computing memories.

As an alternative to using more expensive codes which
would incur prohibitively high latency and complexity, we
present a recently developed context-aware approach that
relies on side information drawn from system properties, while
still using relatively short and simple codes [18]–[21]. In this
context-aware approach, one seeks to design more powerful
ECCs for computing memories by taking into account the
inherent redundancy in both the data and in the architectural
organization while maintaining the simplicity of the codes.
context-aware coding is a powerful machinery that may find
applications in other domains including machine learning
and natural language processing, see e.g., for related work
[22], [23]. For the rest of this short survey paper, we will
exclusively focus on the applications in computing memories.
We first discuss the basic framework that uses conventional
error correction/detection codes, and then we show how to
expand it to error localization codes. We also provide several
pointers for future investigation.



Fig. 1: Two-dimensional illustration of candidate codewords
for 2-bit DUEs in the n-dimensional Hamming space of a
binary SECDED code.

II. SD-ECC FRAMEWORK

We first investigate how architectural context can substan-
tially improve the error recovery even for a fixed code, in
the framework we call software-defined ECC (SD-ECC) [18].
SD-ECC uses system information and practical list decoding
to improve error tolerance. As a representative exemplar of
the errors we seek to correct, we focus on the detectable-
but-uncorrectable errors (DUEs) in the context of (t)-symbol
error-correcting, (t + 1)-symbol error-detecting codes (for
short, (t)SC(t+1)SD codes). DUEs are especially problematic
since they typically cause the entire system to panic or rolling
back to a checkpoint to avoid data corruption; both operations
harm system availability and degrade the performance. For
instance, even with state-of-the-art strong memory protection
using a ChipKill-Correct ECC, the Blue Waters supercomputer
suffers from a memory DUE rate of 15.98 FIT/GB [24].
This rate is high enough that whole-system checkpoints would
likely be required every few hours, and would add a significant
performance and energy overhead to HPC applications [10].
For industry-standard SECDED codes that perform better
and use less energy than ChipKill, DUEs are at least an
order of magnitude more frequent [24] and compound the
reliability/availability problem further.

A. DUE theoretical analysis

SDECC is based on the fundamental observation that when
a (t + 1)-symbol DUE occurs in a (t)SC(t + 1)SD code C,
there remains significant information in the received string ~x.
This information can be used to recover the original message
~m with reasonable certainty. It is not the case that the original
message was completely lost, i.e., one need not naı̈vely choose
from all qk possible messages. In fact, there are exactly

N =

(
n

t+ 1

)
(q − 1)(t+1) (1)

ways that the DUE could have corrupted the original code-
word, which is far less than qk. But guessing correctly out
of N possibilities is still difficult. In practice, there are just

a handful of possibilities: we call them candidate codewords,
or CEs for short.

If the hardware ECC decoder registers a DUE, there can be
several equidistant candidate codewords at the q-ary Hamming
distance of exactly (t + 1) from the received string ~x. We
denote the set of candidates by Ψ(~x) ⊆ C. See Fig. 1 for
illustration.

The size of the candidate codeword list |Ψ(~x)| is indepen-
dent of the original codeword; it depends only on the error
vector ~e due to linearity of the code C. That is,

|Ψ(~x)| = |Ψ(~c+ ~e)| = |Ψ(~e)|. (2)

The number of candidate codewords |Ψ(~e)| for any given
(t + 1) DUE ~e has a linear upper bound that makes DUE
recovery tractable to implement in practice.

Lemma 1. For any error ~e with wtq(~e) = (t + 1) in a
(t)SC(t+ 1)SD linear q-ary code C of length n,

|Ψ(~e)| ≤
⌊
n(q − 1)

t+ 1

⌋
.

Proof. The received string ~x is exactly q-ary distance 1 from
the t-boundary of the nearest Hamming sphere(s). Thus, there
are at most n(q− 1) single-element perturbations ~p such that
~y = ~x+~p is a CE inside a Hamming sphere of a codeword. For
each perturbation that results in a CE, there must be exactly t
more single-element perturbations to fully arrive at a candidate
codeword ~c′. Because we cannot perturb the same elements
more than once to arrive at a given ~c′, there cannot ever be
more than b(n(q − 1))/(t+ 1)c candidate codewords.

The probability of correctly guessing the original
codeword—without the use of any side information—for a
specific error ~e is simply the reciprocal of the number of
candidate codewords: PG(~e) = 1/|Ψ(~e)|. Let PG be the
average probability of guessing the correct codeword over all
possible (t + 1)-symbol DUEs. Also let

∑
~e represent the

summation over all possible (t+1) symbol-wise error vectors
~e. Then

PG =
1

N

∑
~e

1

|Ψ(~e)|
. (3)

For a particular construction of a given code, we define
Wq(w) as the total number of codewords that have q-ary
Hamming weight w. Then Wq(dmin) refers to the total num-
ber of minimum weight non-~0 codewords; its value depends
on the exact constructions of the code parameters (including
the generator matrix, parity check matrix, minimum distance
dmin of the code, and the message and codeword dimensions).
The average number of candidate codewords over all possible
(t+ 1)-symbol DUEs is denoted as µ.

Lemma 2. For a linear q-ary (t)SC(t+1)SD code C of length
n and with given Wq(dmin = 2t+ 2), the average number of
candidate codewords µ over all possible (t+1)-symbol DUEs
is

µ(n, t, q) =

(
2t+2
t+1

)
Wq(2t+ 2)(

n
t+1

)
(q − 1)(t+1)

+ 1.



Proof. In order to find the average number of candidate
codewords, we must sum the number of candidate code-
words for each unique (t + 1) q-ary error ~eE where E =
i1, i2, · · · , i(t+1), and i1 6= i2 6= · · · 6= i(t+1). We then divide
that sum by the number of error-vectors (n choose (t + 1)).
By linearity and without loss of generality, assume ~c = ~0.
We know that the only codewords ~c′ ∈ C that can sat-
isfy ∆(~c − ~c′, ~e) = (t + 1) have weight Wq(dmin). Each
such ~c′ that has ~ci1 = ~ei1 , ~ci2 = ~ei2 , etc., then has
(dmin choose (t+1)) distinct error-vectors ~eE . Thus summing
over all error-vectors, each codeword ~c′ with wt(~c′) = dmin

contributes to (dmin choose (t+1)) candidate codewords. To
average, we divide [(dmin choose (t + 1))] ×Wq(dmin) by
(n choose (t + 1)). We also divide by (q − 1)(t+1) because
each non-zero element of the error vector ~eE can take values
from 1 to q− 1. Finally, we add 1 to the expression since the
original codeword ~c is a candidate codeword for every possible
error-vector, and was not already counted in Wq(dmin).

We find that µ is often easier to compute than PG for long
symbol-based codes; this is useful because 1/µ is a lower
bound on PG.

In the context of the current set-up, for any linear (39, 32)
SEC-DED code (which necessarily has minimum weight 4),
we find by elementary counting arguments that there can never
be more than 19 candidates for any double-bit DUE; in other
codes of interest, the number is usually smaller. The most
commonly used (39, 32) SEC-DED code in main memory sys-
tems is the Hsiao code [5] as it minimizes the overall number
of logic gates. The highest number of candidate codewords for
any DUE with the Hsiao (39, 32) SEC-DED code is 15. As
a result, for this (39, 32) SEC-DED code, simply using the
basic side-information of instruction frequencies allows our
SD-ECC framework to achieve 34% recovery of all possible 2-
bit DUEs, as compared to 8.5% recovery by randomly picking
a candidate codeword [18].

So far we have bounded the number of candidate codewords
for any (t+ 1)-symbol DUE; we now show how to find these
candidates. The candidate codewords Ψ(~x) for any (t + 1)-
symbol DUE received string ~x is simply the set of equidistant
codewords that are exactly (t+1) symbols away from ~x. More
formally, let subscripts be used to index symbols in a vector,
starting from the most significant position. Then

Ψ(~x) = ~c ∪ {~c′ ∈ C :

∆q(~c′ − ~c) = dmin, ~c′i = ~xi ∀i where ~ei 6= 0}. (4)

Notice that this equation depends on the error ~e and original
codeword ~c, but we only know the received string ~x.

Fortunately, there is a simple and intuitive algorithm (shown
in Alg. 1) to find the list of candidate codewords Ψ(~x) with
runtime complexity O(nq/t). The essential idea is to try every
possible single symbol perturbation ~p on the received string.
Each perturbed string ~y = ~x + ~p is run through a simple
software implementation of the ECC decoder, which only
requires knowledge of the parity-check matrix H (O(rnlogq)
bits of storage). Any ~y characterized as a CE produces a
candidate codeword from the decoder output.

Algorithm 1 Compute list of candidate codewords Ψ(~x) for
a (t+ 1)-symbol DUE ~x in a linear (t)SC(t+ 1)SD code with
parameters [n, k, dmin]q . For error vectors, subscripts indicate
the symbol positions of errors, but not their q-ary values. For
example, ~e3 corresponds to [00100 . . . 0].

for i = 1 : n do
for j = 1 : q − 1 do

~p ← j ∗ ~ei //(symbol i in p gets q-ary value j, all others
0)

~y ← ~x + ~p
if Decoder(~y) not DUE then

~c′ ← Decoder(~y) //Compute candidate codeword
if ~c′ /∈ Ψ(~x) then //If candidate not already in list

Ψ(~x)← Ψ(~x) ∪ ~c′ //Add candidate to list
end if

end if
end for

end for

Further pruning of the list of candidate codewords until one
arrives at a single codeword can be done in a variety of ways,
using a combination of system knowledge and elementary
statistical properties of the data. One such example uses
empirical entropy of the data, as we next discuss.

B. Experimental results

Entropy is one of the most powerful metrics to measure
data similarity. Software applications typically have inherent
value locality in their data, regardless of their hardware
representation. For example, an image-processing program is
likely to work on regions of pixels that exhibit similar color
and brightness, while a natural language application will see
certain characters and words more often than others.

Based on the above observations, we propose a simple
but effective data recovery policy that chooses the candidate
that minimizes the overall cacheline Shannon entropy. For
example, a 512-bit cacheline is often comprised of 8 64-bit
words. If one of these words yields a DUE, we plug in each
candidate codeword, one at a time, and calculate the overall
sample entropy.

More concretely, let P (X) be the normalized relative
frequency distribution of a ` × b-bit cacheline that has been
carved into equal-sized Z-bit symbols, where each symbol
χi can take 2Z possible values. Entropy symbols are not
to be confused with the codeword symbols, which can also
be a different size. Then we compute the Z-bit-granularity
entropy as follows:

entropy = −
`×b/Z∑
i=1

P (χi)log2P (χi). (5)

We observe low byte-granularity intra-cacheline entropy
throughout the integer and floating-point benchmarks in the
SPEC CPU2006 suite, and thus our entropy-based policy has
high levels of success. Additionally, we mitigate the chance
that our policy chooses the wrong candidate message by
deliberately forcing a panic whenever the mean cacheline
entropy is above a specified threshold Panic Threshold.



TABLE I: Percent Breakdown of SDECC Entropy-8 Policy: (S = success, P = forced panic, M = MCE)

panics taken panics not taken random baseline
S P M S P M S P M

conv. baseline - 100 -
[39, 32, 4]2 SECDED 69.1 25.6 5.3 72.7 - 27.3 8.5 - 91.5
[72, 64, 4]2 SECDED 71.6 23.7 4.7 75.3 - 24.7 5.0 - 95.0
[45, 32, 6]2 DECTED 77.5 20.3 2.2 85.5 - 14.5 28.2 - 71.8
[79, 64, 6]2 DECTED 84.0 14.5 1.5 89.0 - 11.0 20.5 - 79.5
[36, 32, 4]16 SSCDSD 85.7 12.8 1.5 91.5 - 8.5 39.9 - 60.1

Results in Table I are an archetypical exemplar of our study.
In this experiment, we randomly introduce (t + 1)-symbol
DUEs into 20 SPEC CPU2006 benchmarks compiled against
GNU/Linux for the open-source 64-bit RISC-V instruction
set v2.0 [25]. We produce representative memory access
traces, consisting of randomly-sampled 64-byte demand read
cachelines. Table I contains the resulting outcome percentages,
for a variety of codes, in three different scenarios: panics al-
lowed, panics not allowed, and randomly choosing a candidate
codeword (thus forming the baseline).

As more errors beyond the guaranteed error correction are
being recovered from, the chance of miscorrections (MCEs)
also increases. The proposed framework carefully balances
the increased error tolerance over the baseline setting while
controlling for the increase in MCEs. We observe that when
panics are taken the MCE rate drops significantly, by a factor
of up to 7.3×, without significantly reducing the success
rate. This indicates that our Panic Threshold mechanism
appropriately judges when we are unlikely to correctly recover
the original information.

III. SD-ECC FRAMEWORK FOR ERROR LOCATING CODES

The previous section demonstrated how the SD-ECC frame-
work can be effectively used with the existing error correcting
techniques, such has SECDED. However, for certain emerg-
ing applications, e.g., microcontroller-class IoT devices, even
simple error correcting method are often too costly in terms
of overhead, power, and latency. Due to its simplicity, a single
parity bit error-detecting code is often used; however, even in
our context-aware framework, basic parity is of limited help in
recovery. For example, any DUE produced by a k-bit message
with parity detection will necessarily have k + 1 candidate
codewords, since each possible bit-flip produces the correct
overall parity.

We have proposed a new class of codes, Ultra-Lightweight
Error-Localizing Codes (ULELCs) [21], that reside in between
simple parity and Hamming codes, both in terms of com-
plexity and correction capability. Generally, error-localizing
codes split a codeword into fixed-sized chunks, and when
an error occurs, are able to locate the chunk that contains
the error. The fixed-size property is due to the creation of
error-localizing codes through the tensor product operation of
the parity-check matrices of an error-detecting and an error-
correcting code. The primary ability of ULELC is the ability to
localize any single-bit error to a specific, customizable chunk
of bits in the codewords. Then, using similar recovery policies
as before, we can choose the most likely candidate codeword.

The customizability and non-uniformity of the chunks allow
us to create the ULELC with specific data architectures in
mind.

A. Theoretical Analysis

One possible way of detecting a single-bit error in a chunk
is to use a parity-bit per chunk. However, the redundancy
overhead of this trivial segmented parity code is equal to the
number of chunks. The proposed ULELC is more efficient
than that. Given r redundant parity bits, there can be 2r − 1
distinct non-zero columns in the parity check matrix H. Using
this fact, the ULELC can localize any single-bit error to within
one of the 2r−1 possible chunks. To create a ULELC code, we
first assign to each chunk a distinct non-zero binary column
vector of length r bits. Then each column of H is simply
filled in with the corresponding chunk vector. Note that r of
the chunks will also contain the associated parity-bit within
the chunk itself; we call these shared chunks, and they are
precisely the chunks whose columns in H have a Hamming
weight of 1. Since there are r shared chunks, there must be
2r − r − 1 unshared chunks, which each consist of only data
bits. Shared chunks are unavoidable because the parity bits
must also be protected against faults, just like the message
bits. An ULELC code has a minimum distance of two bits by
construction to support detection and localization of single-
bit errors. Thus, the set of candidate codewords must also be
separated from each other by a Hamming distance of exactly
two bits.

B. Experimental results

ULELC provides the ability to localize the error to a specific
chunk of bits in the codewords. This reduces the number
of possible candidate codewords for which a single bit error
could have produced the received codeword. Once the error
is localized, software defined heuristic recovery policies that
leverage on side-information about memory contexts such as
observable patterns and structure found in both instructions
and data, as mentioned in the previous sections, are then
used to choose the most likely codeword. Hence, we call
this Software-Defined Error-Localizing Codes (SDELC). We
have evaluated SDELC on a set of five small embedded
benchmarks (blowfish and sha from the mibench suite
[26] as well as dhrystone, matmulti and whetstone)
and six larger benchmarks from the AxBench approximate
computing suite [27]. For each workload, we randomly select
1000 instruction fetches and 1000 data reads from the trace
and exhaustively apply all possible single-bit faults to each



of them. Separate recovery policies are used for instruction
and data memories. For instruction memory, a lookup table
containing the relative frequency of all instructions is pre-
computed and the candidate codeword that represents the
instruction with the highest frequency is chosen. For data
memory, the average Hamming distance to nearby data in the
same 64B chunk of memory is computed and the candidate
with minimum average hamming distance is selected. SDELC
correctly recovers from up to 90% (70%) of random single-bit
soft faults in data (instructions) with just three parity bits per
32-bit word.

IV. CONCLUDING REMARKS

In this paper, we presented a brief overview of the new
paradigm of context-aware coding for computing memories
using system side information. We used simple examples
and error models to illustrate the key idea; future directions
abound. We now summarize extensions of the baseline frame-
work that would be interest for future investigation:
• Theoretical analysis of the decoding list size under more

refined error models and data types;
• Establishment of the structural code properties in the

context of SD-ECC (e.g., distance relationships among
minimum weight codewords).

• Investigation of other types of similarity metrics and the
development of theoretical guarantees on the decoding
performance and on the MCEs, under these metrics;

• Development of error localization codes with non-
uniform segments, see e.g., [20];

• Implementation of various error models for different
architectures and different data types (data vs. instruction
memory; RISC-V ISA, MIPS, etc.).
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