Parity++: Lightweight Error Correction for Last
Level Caches

Irina Alam, Clayton Schoeny, Lara Dolecek and Puneet Gupta
Department of Electrical and Computer Engineering, University of California, Los Angeles,
irinal @ucla.edu, cschoeny @ucla.edu, dolecek@ee.ucla.edu and puneetg@ucla.edu

Abstract—As the size of on-chip SRAM caches is increasing
rapidly and the physical dimension of the SRAM devices is
decreasing, reliability of caches is becoming a growing concern.
This is because with increased size of caches, the likelihood
of radiation-induced soft faults also increases. As a result,
information redundancy in the form of Error Correcting Codes
(ECC) is becoming extremely important, especially to protect
the larger sized last level caches (LLCs). In typical ECCs, extra
redundancy bits are added to every row to detect and correct
errors. There is additional encoding (while writing data) and
decoding (while reading data) procedures required as well. In
caches, these additional area, power and latency overheads need
to be minimized as much as possible. To address this problem,
we present in this paper Parity++: a novel unequal message
protection scheme for last level caches that preferentially
provides stronger error protection to certain “special messages”.
This protection scheme provides Single Error Detection (SED)
for all messages and Single Error Correction (SEC) for a subset
of messages. Thus, it is stronger than just a basic SED parity and
has much lower parity storage overhead (4X lower for a 64-bit
memory) and lower error detection energy than a traditional
Single Error Correcting, Double Error Detecting (SECDED) code.
We also evaluate Parity++ with a memory speculation procedure
that can be used with any ECC scheme to hide the decoding
latency while reading messages when there are no errors.

Index Terms—caches, lightweight error-correction, memory
speculation

I. INTRODUCTION

As demand and size of on-chip caches is increasing rapidly
and the physical dimension and noise margins are decreasing,
reliability of caches is increasingly becoming an important
issue. As given in [1l], [2], the vulnerability of SRAM caches
to soft errors grows with increase in size. Also with reduction
in physical dimensions of these devices, the critical charge
required to flip the content of a cell due to a particle strike
decreases. As a result, the soft error rate is higher for large
capacity caches. The widely used technique to guarantee relia-
bility of storage devices is using information redundancy in the
form of Error Correcting Codes (ECC). In typical ECCs, extra
redundancy bits are added to every row to detect and correct
errors. There are additional encoding (while writing data) and
decoding (while reading data) procedures required as well. Thus
ECCs come with encoding and decoding mechanisms that incur
additional overheads in terms of latency and energy. Both these
overheads are critical for caches and hence, ECC protection
was not widely used in caches till recently. However, due to
the increased reliability concerns of large capacity caches and
processor performance degradation due to occurrence of errors,
cache protection using ECC schemes is becoming increasingly
popular. Nevertheless, these additional area, power and latency
overheads need to be minimized in caches as much as possible.

In this paper, we present Parity++: a novel unequal message
protection scheme for last level caches that preferentially

provides stronger error protection to certain “special messages”.
As the name suggests, this coding scheme requires one extra
bit above a simple parity Single Error Detection (SED) code
while providing SED for all messages and Single Error
Correction (SEC) for a subset of messages. Thus, it is stronger
than just basic SED parity and has much lower parity storage
overhead (3.5X and 4X lower for 32-bit and 64-bit memories
respectively) than a traditional Single Error Correcting, Double
Error Detecting (SECDED) code. Error detection circuitry
often lies on the critical path and is generally more critical
than error correction circuitry as error occurrences are rare
even with an increasing soft error rate. Our coding scheme
has a much simpler error detection circuitry that incurs lower
energy and latency costs than the traditional SECDED code.
Thus, Parity++ is a lightweight ECC code that is ideal for
large capacity last level caches. We also evaluate Parity++
with a memory speculation procedure [3|] that can be generally
applied to any ECC protected cache to hide the decoding
latency while reading messages when there are no errors.

II. BACKGROUND AND RELATED WORK
A. Error Correcting Codes

Error-correcting codes (ECCs) increase the resiliency of
communication and storage systems by adding redundant bits
(or symbols, but in this work we focus on the binary regime). A
code ¢ can be thought of as an injective mapping of messages
of length k to codewords of length n. Let r be the number of
redundant bits, i.e., r=n—k. A binary code is considered linear
if the sum of any two codewords in € is also a codeword in %.

A linear block code is described by either its (k x n)
generator matrix G or its (rxn) parity-check matrix H, with
the relation GH” =0. A particular message m is encoded to its
corresponding codeword ¢ by multiplying it with the generator
matrix as follows: mG=c. Each row of H is a parity-check
equation that all codewords must suffice, thus HceT =0. We
define the received vector at the output of the channel as
y =c+e, in which e is the error-vector representing which
bits have been flipped. The receiver calculates the syndrome,
s=Hy", and if s#0, then it is known that the received vector
is not a valid codeword. At this point, the decoder can either
attempt to determine the most likely originally transmitted
codeword or it can simply raise a flag that an error was detected
(depending on the system goals and design). We say a code is
systematic if a message is directly embedded in the codeword,
i.e., each message bit is equal to a specific codeword bit.

A useful parameter of a linear code is its minimum distance,
dpmin, Which is the minimum Hamming distance between any
two (non-identical) codewords. Additionally, since a linear

code must include the 0 codeword, the minimum distance of
a linear code is simply the minimum weight of any (non-zero)
codeword in the code:
dpin=min_[dy(cy,¢2)]=min[wt(c)].
€1,62€7; cEY;
17 c#0

A linear code guarantees correction of up to =3 (duin—1)]
bit-errors, or detection of up to (dy; — 1) bit-errors (without
any correction guarantees). For even values of d;,, a linear
code simultaneously guarantees correction of up to ¢ bit-errors
and detection of up to (¢r+1) bit-errors. Further explanation
of the fundamental properties of codes can be found in classic
textbooks [4], [15]].

B. SRAM Reliability and Error Detection and Correction in
Caches

As mentioned before, SRAM reliability concerns are growing.
Although the soft error rate of SRAM cell has almost been
constant at 1073 FIT/bit [6], [7]], the likelihood of a particle
striking the array is increasing with increase in size. Most of
the recent processors with large capacity caches have ECC
protected L2 and/or L3 caches. Some of the common and recent
examples include Qualcomm’s Centriq 2400 processor [8],
AMD’s Athlon [9] and Opteron [10] processors as well as
IBM Power 4 [11] processors. Most of the commercially
available processors use traditional (72,64) SECDED [12]
code on each 64-bit word in the cache line. A lot of past
works have suggested decoupling error detection and correction
mechanisms so as to reduce the complexity and overhead of
error detection since that is more critical than error correction.
In [13], the authors suggest using SRAM for only error
detection and storing the ECC correction bits within the
memory hierarchy to reduce the overhead. In another work on
ECC in caches, the authors of [14] suggest protecting only
those cache lines that have been recently used. Thus, they trade-
off protection with area and energy. Some past works like [[15]]
have also focused on ECC protection schemes for L1 cache.

C. Application Characteristics

Data or instructions in applications are generally very struc-
tured. Frequencies of instructions in most applications follow
power law distribution [16]]. This means that some instructions
get more frequently accessed than the rest. If the opcode (that
primarily determines the action taken by the instruction) in a
certain instruction set architecture (ISA) is, for example, the
first x bits, then the relative frequency of the opcodes of the
common instructions are high. This means most instructions in
the memory would have the same prefix of x-bits. Table[[|shows
the fraction of the two most frequently occurring opcode over
each of the benchmark suites. The benchmarks were compiled
for 32-bit RISC-V (RV32G) [17] instruction set v2.0 were the
least significant 7 bits are designated as the opcode. This is true
not just for instructions but also for data. In most applications,
the data in the memory is usually low-magnitude signed data of
a certain data type. However, these values get represented ineffi-
ciently, for e.g., 4-byte integer type used to represent values that
usually need only 1-byte. Thus, in most cases, the MSBs would
be a leading-pad of Os or 1s. Table[l]shows that, for a wide range
of data sets, most stored data starts with a leading pad of zeros.
Our approach of utilizing these characteristics in applications

complements recent research on data compression in cache
and main memory systems such as frequent value/pattern
compression [18], [19], base-delta-immediate compression [20]]
and bit-plane compression [21]. However, our main goal is to
provide stronger error protection to these special messages that
are chosen based on the knowledge of data patterns in context.

TABLE I: Fraction of Special Messages per Benchmark Within
Suite

First 6 bits are 0
(Data Memory)

Top Two Most Freq Opcodes
(Instruction Memory)

Benchmark Suite Max Mean Max Mean
AxBench 0.51 0.46 0.92 0.86
SPEC CPU2006 0.56 0.37 0.99 0.89

III. LIGHTWEIGHT ERROR CORRECTION CODE
A. Theory

The code we developed in this work, which we call Parity++,
is a type of unequal message protection code, in that we a
priori designate specific messages to have extra protection
against errors as can be seen in Figure |[I} As in [22], there
are two classes of messages, normal (non-special) and special,
and they are mapped to normal (or non-special) and special
codewords, respectively. When dealing with the importance
or frequency of the underlying data, we refer to the messages;
when discussing error detection/correction capabilities we
refer to the codewords.

Special codeword

Non-special
o codeword

P o

Hamming
sphere
1-bit DUE on f 1-bit correcta.ble
. @ crroron special
non-special
codeword
codeword

Fig. 1: Conceptual Illustration of Parity++ for 1-bit error

Codewords in Parity++ have the following error protection
guarantees: normal codewords have single-error detection;
special codewords have single-error correction. Let us partition
the codewords in our code ¥ into two sets, .4 and .7, rep-
resenting the normal and special codewords, respectively. The
minimum distance properties necessary for the aforementioned
error protection guarantees of Parity++ are as follows:

uyverll}tl/l,lll;év H(u7V) — ()

“693516:5” 1 (w,v) >3, 2
. -

u,vénj}’f:,#vdfl (u,v) = 3 (3)

A second defining characteristic of the Parity++ code, is
that the length of a codeword is only two bits longer than a
message, i.e., n=k+2. Comprehensive comparisons between
Parity++ and other popular ECCs are included in some of the
subsequent sections.

For the context of this paper, let us assume that our Parity++
always has message length k as a power of 2. The overall
approach to constructing our code is to create a Hamming
subcode of a SED code [23]]; when an error is detected, we
decode to the neighboring special codeword. The overall code
has dpi, =2, but a block in G, corresponding to the special mes-
sages, has d,;;, > 3. For the sake of notational convenience, we
will go through the steps of constructing the (34,32) Parity++
code (as opposed to the generic (k+2,k) Parity++ code).

We begin by creating the generating matrix for the Hamming
code whose message length is at least as large as the message
length in the desired Parity++ code; in our case, we use the
(63,57) Hamming code. Let o be a primitive element of
GF(2°) such that 1+x+4x%=0, then our generator polynomial
is simply gs(x) =1+x-+x° (and we construct our generator
matrix using the usual polynomial coding methods). We then
shorten this code to (32,26) by expurgating and puncturing (i.e.,
deleting) the right and bottom 31 columns and rows. Now, we
add a column of Is to the end, resulting in a generator matrix,
which we denote as Gg, for a (33,26) code with d,;,;, =4.

For the next step in the construction of the generating matrix
of our (34,32) Parity++ code, we add Gy on top of Gg, where
Gy is the first 6 rows of the generator matrix using the generator
polynomial gy (x) =1+x, with an appended row of Os at the end.
Note that Gy is the generator polynomial of a simple parity-
check code. By using this polynomial subcode construction, we
have built a generator matrix with overall d,,;, =2, with the sub-
matrix Gy having d,,;;, =4. At this point, notice that messages
that begin with 6 Os only interact with Gg; these messages
will be our special messages. Note that Conditions [T] and [3] are
satisfied; however, Condition 2] is not satisfied. To meet the
requirement, we add a single non-linear parity-bit that is a NOR
of the bits corresponding to Gy, in our case, the first 6 bits.

The final step is to convert Gy to systematic form via elemen-
tary row operations. Note that these row operations preserve all
3 of the required minimum distance properties of Parity++. As
a result, the special codewords (with the exception of the known
prefix) are in systematic form. For example, in our (34,32) Par-
ity++ code, the first 26 bits of a special codeword are simply the
26 bits in the message (not including the leading run of 6 Os).

At the encoding stage of the process, when the message is
multiplied by G, the messages denoted as special must begin
with a leading run of log, (k) +1 0’s. However, the original
messages we deem to be special do not have to follow this
pattern as we can simply apply a pre-mapping before the
encoding step, and a post-mapping after the decoding step.

In our (34,32) Parity++ code, observe that there are 226
special messages. Generalizing, it is easy to see that for a
(k+2,k) Parity++ code, there are 2¢-1°22(K)=1 gpecial messages.

B. Error Detection and Correction

We separate the received—possibly erroneous—vector y into
two parts, ¢ and 1, with ¢ being the first k+ 1 bits of the
codeword and 7 the additional nonlinear redundancy bit (n =0
for special messages and 11 =1 for normal messages). There
are three possible scenarios at the decoder: no (detectable)
error, correctable error, or detected but uncorrectable error.

First, due to the Parity++ construction, every valid codeword
has even weight. Thus, if ¢ has even weight, then the decoder

concludes no error has occurred, i.e., ¢ was the original
codeword. Second, if € has odd weight and 1 =0, the decoder
attempts to correct the error. Since Gy is in systematic form,
we can easily retrieve Hg, its corresponding parity-check
matrix. The decoder calculates the syndrome sy :Hgé. If s¢
is equal to a column in Hg, then that corresponding bit in ¢
is flipped. Third, if ¢ has odd weight and either s; does not
correspond to any column in Hg or 1 =1, then the decoder
declares a DUE (detected but un-correctable error).

The decoding process described above guarantees that any
single-bit error in a special codeword will be corrected, and
any single-bit error in a normal codeword will be detected
(even if the bit in error is 7).

Let’s take a look at two concrete examples for the (10,8)
Parity++ code. Without any premapping, a special message
begins with log,(3)41=4 zeros. Let our original message be
m=(00001011), which is encoded to ¢=(1011010110). Note
that the first 4 bits of ¢ is the systematic part of the special
codeword. After passing through the channel, let the received
vector be y = (1001010110), divided into ¢ = (1001010110)
and 1 =0. Since the weight of c is odd and 11 =0, the decoder
attempts to correct the error. The syndrome is equal to the 3rd
column in Hg, thus the decoder correctly flips the 3rd bit of c.

For the second example, let us begin with m=(11010011),
which is encoded to (0011111101). After passing through the
channel, the received vector is y =(0011011101). Since the
weight of € is odd and n =1, the decoder declares a DUE.
Note that for both normal and special codewords, if the only
bit in error is 1 itself, then it is implicitly corrected since
¢ has even weight and will be correctly mapped back to m
without any error detection or correction required.

C. Architecture

For a cache with error detection and correction (EDAC)
mechanism, there is additional error detection/correction
latency. Error detection latency is more critical than error
correction as occurrence of an error is a rare event when
compared to the processor cycle time and doesn’t fall in the
critical path. The data/instruction being read from the cache
goes through the ECC error detection engine first. If there
are no errors then the decoded message moves ahead. In case
of an error, the received message goes through an additional
correction engine to retrieve the correct message and then the
message can be used in the rest of the computation flow.

When using Parity++, the flow almost remains the same.
Parity++ can detect all single bit errors but has correction
capability for “special messages”. When a single bit flip occurs
on a message, the error detection engine first detects the error
and stalls the pipeline. If the non-linear bit says it is a “special
message”’(non-linear bit is ‘0’), the received message goes
through the Parity++ error correction engine which outputs the
corrected message. This marks the completion of the cache
access. If the non-linear bit says it is a non-special message
(non-linear bit is ‘1), then a DUE is declared and it is checked
if the cache line is clean. If so, the cache line is simply read
back from the lower level cache or the memory and the cache
access is completed. However, if the cache line is dirty and
there are no other copies of that particular cache line, it leads
to a crash or a roll back to checkpoint. Note that both Parity++

and SECDED have equal decoding latency of one cycle that is
incurred during every read operation from an ECC protected
cache. The encoding latency during write operation does not fall
in the critical path and hence, is not considered in our analyses.

Next in this paper we present a memory speculation scheme
that helps to hide the latency incurred by the error detection
engine when there are no errors.

1) Memory Speculation: Figure [2| shows the flow of a read
operation when the memory speculation scheme is used. The
basic idea behind this speculation scheme is to predict the
original message from the encoded codeword without having
to go through the decoding/error detection circuitry in order to
hide the additional latency incurred by the decoding/detection
mechanism. While the decoding happens, the predicted instruc-
tion/data can move forward to the next stages in the pipeline.
If the predicted value is correct, then no action is required
and pipeline goes ahead as usual without any additional stalls.
In case an error is detected, the mis-predicted instruction or
all the dependent instructions that received the mis-predicted
data needs to be squashed. This prediction scheme for ECC
protected caches is similar to what was proposed in [3] for
stronger error protection in on-chip memories.

Cache Access
Initiated

Feed speculated
value to the
pipeline

Cannot be
corrected -
crash/rollback

Fig. 2: Flow of read operation in cache with memory speculation
and Parity++ protection schemes

This speculation scheme is most effective when the encoded
ECC codewords are systematic. When systematic, the original
message can be easily retrieved by truncating the additional
redundant bits that are generally added to the end of the actual
message in case of no errors in the received codeword. Instead
of waiting for the decoding to get done, the original message
can be speculated by truncating the redundant bits. Thus, the
computation moves ahead with the predicted data/instruction
without any stalls while the decoding for error detection
happens in parallel. A major difference between SECDED and
our scheme, Parity++ is that all codewords under SECDED
are systematic while only the special messages for Parity++
are systematic. As a result, for Parity++, speculation is used
only if the message is special. If not, computation is stalled
for one cycle while decoding/error detection happens. Special

messages can be distinguished from non-special messages
using the non-linear bit.

2) Additional Cache Support for Speculation: Figure
depicts the additional circuitry that needs to be added to a
traditional cache to support the memory speculation scheme
with Parity++.

Cache
Read Port

Nen-linear
bit

1
ECC engine
Truncate | (Detection + Correction)

Speculated value

StallSquash
Control Block

[Error
Codeword
IDetected

speculation

Corrected

Codeword

Fig. 3: Cache architecture to implement Parity++ with memory
speculation

The non linear bit is first checked. If it is a special message,
then speculation is triggered and the speculated value is
forwarded to the next stage. This speculated value comprises of
the lower 26-bits of the received codeword to which the special
prefix is separately appended. Meanwhile, the decoding and the
error detection circuitry works in parallel. If an error is detected,
the control module initiates a squash operation to squash all the
dependant instructions that used the mis-predicted data and the
ECC correction engine provides the correct output. The control
module also stalls the pipeline when the non linear bit indicates
that the message is not special and hence, the codeword is
not systematic. Therefore, speculation cannot be used and
the pipeline needs to be stalled for one cycle till the original
message is decoded. The stall latency is, of course, greater than
one cycle when an error is detected and the ECC correction
engine needs to be triggered. This additional control module is
simple and has minimal overhead in terms of area and energy.

D. Coverage and Overheads

1) Detection/Correction Coverage: As given in Table
single-bit parity detects any single-bit error. Our Parity++
scheme keeps this single-bit error detection guarantee, and
additionally provides single-bit error correction for special
messages. Also, any 2-bit error on a special message in our
Parity++ scheme is guaranteed detectable.

The coverage of SECDED and DECTED codes can be
understood from their names. SECDED codes guarantee
correction of any single bit error and detection of any double
bit error; DECTED codes guarantee correction of any double
bit error and detection of any triple bit error.

TABLE II: Error Detection and Correction Coverage for
Parity++ along with some widely used ECC schemes
ECC scheme Error Bits Detected
Parity- Single Error
Detecting (SED)

Error Bits Corrected
1 0

Parity++ Special Messages - 2 Special Messages - 1
Non-Special Messages - 1 Non-Special Messages - 0

SECDED 2 1

DECTED 3 2

2) Storage Overhead: Single-error detection requires only a
single parity bit; our Pairty++ scheme adds an additional parity-
bit for a total of 2. The most efficient SEC code is the Hamming

code. Assuming our message length, k, is a power of 2, then
the number of redundancy bits required for the (shortened)
Hamming code is log(k)+1. Since the Hamming code has a
minimum distance of 3, we can create a SECDED code—the
extended Hamming code—with the addition of a single parity
bit, yielding a total of log(k)+2 redundancy bits. Similarly, we
can use a (shortened) extended BCH code as a DECTED code,
with 2log(k)+ 3 redundancy bits. The parity storage overhead of
these schemes for different cacheline sizes is given in Figure

—*-Parity ++

--DECTED

§3s -=-Parity
2

g -

Zx SECDED

32 64 128 256
Cache Block (ECC Word) size in bits

Fig. 4: Storage overhead of different commonly used ECC
schemes along with our scheme Parity++

3) Latency and Energy Overhead: The encoding and
decoding latencies when writing to/reading from the memory
are almost identical for Parity++ and SECDED. They would
both require an additional one cycle for each of the two
operations. Error correction in case of Parity++ requires
an extra matrix multiplication. However, this latency is not
critical as occurrence of errors is a rare event compared to
the cycle time of the processor. With the proposed memory
speculation scheme, SECDED incurs no additional decoding
latency when there are no errors. For Parity++ the one cycle
extra decoding latency happens only when it is a non special
message (only 20-25% of messages are typically non-special).

The encoding energy overhead is almost similar for both
Parity++ and SECDED. The decoding energy overheads are
slightly different. For SECDED, the original message can be
retrieved from the received codeword by simply truncating
the additional ECC redundant bits. However, all received
codewords need to be multiplied with the H-matrix to detect
if any errors have occurred. For Parity++, the original message
can be retrieved using truncation when it is a special messages.
For the 20-25% non special messages, the non-systematic
received codeword needs to be multiplied with a decoder matrix
to get the original message. This decoder matrix multiplication,
when sythesized using an industrial 45nm library has ~4x
higher energy overhead than the H-matrix multiplication
of SECDED since the Parity++ decoder is larger than the
SECDED H-matrix. However, for Parity++, the error detection
scheme is much simpler. It is just a chain of XOR gates and
the synthesized detection engine consumes ~10x lower energy
than the H-matrix of SECDED required for error detection.
For Parity++, all messages go through the chain of XOR
gates for error detection and only the non special messages
need to be multiplied with the decoder matrix to retrieve
the original message. Since the error detection in Parity++ is
much cheaper in terms of energy overhead than SECDED and
the non special messages only constitute about 20-25% of the
total messages, the overall read energy in Parity++ turns out to
be much lesser than SECDED. Also, with reduced array size
for caches with Parity++ due to lower storage overhead, the
leakage energy is also less than that in caches with SECDED.

IV. EXPERIMENTAL METHODOLOGY

We evaluated Parity++ over applications from the SPEC
2006 benchmark suite. Two sets of core micro-architectural
parameters (provided in Table were chosen to understand
the performance benefits in both a lightweight in-order(InO)
processor and a larger out-of-order(OoO) core. Performance
simulations were run using GemS5 [24], fast forwarding for
1 billion instructions and executing for 2 billion instructions.

The first processor is a lightweight single in-order core
architecture with a 32kB L1 cache for instruction and 64kB
L1 cache for data. Both the instruction and data caches are
4-way associative. The LLC is a unified IMB L2 cache which
is also 8-way associative. The second processor is a dual core
out-of-order architecture. The L1 instruction and data caches
have the same configuration as the previous processor. The
LLC comprises of both L2 and L3 caches. The L2 is a shared
512kB SRAM based cache while the L3 is a shared 2MB cache
which is 16-way associative. For both the baseline processors
it is assumed that the LLCs (L2 for the InO processor and L2
and L3 for the OoO processor) have SECDED ECC protection.

The performance evaluation was done only for cases where
there are no errors. Thus, latency due to error detection is taken
into consideration but not error correction as correction is rare
when compared to the processor cycle time and doesn’t fall in
the critical path. In order to compare the performance of the
systems with Parity++ against the baseline cases with SECDED
ECC protection, the size of the LLCs were increased by
~10% due to the lower storage overhead of Parity as provided
in Section [[II-Dl We call this iso-area since the additional
area coming from reduction in redundancy is used to increase
the total capacity of the SRAM. The iso-area evaluation was
done for both with and without memory speculation. The
analysis was also done for the iso-capacity where the memory
capacity of the systems with Parity++ and SECDED remain
same and their performances are measured. As mentioned
before, SECDED allows speculation in all cases and thus,
incurs no additional read latency due to error detection when
there is no error. But for Parity++, only the special messages
are systematic and thus, for all non-special messages, there is
an additional one cycle read latency due to the error detection
circuitry. This additional latency for non-special messages was
also taken into consideration for our simulations.

TABLE III: Core Micro-architectural Parameters

Processor-1 Processor-2
Cores 1, InO (@ 2GHz) | 2, 000 (@ 2GHz)
L1 Cache per core 32KB I$ 32KB I$
64KB D$ 64kB D$
4-way 4-way
L2 Cache IMB (unified) (sharz(li,zﬁrllgiﬁe)
8-way 8-way
L3 Cache - 2MB (shared)
16-way
Cache Line Size 64B 64B
Memory 4GB of 8GB of
Configuration 2133MHz DDR3 | 2133MHz DDR3
Nominal Voltage v v

V. RESULTS AND DISCUSSION

In this section we discuss the performance results obtained
from the Gem5 simulations (as mentioned in Section [[V]).
Figures 5] and [6] show the comparative results for the two

Normalized Exec Time
o 4 o 9o g
o o ©o ©o o
N B & & » S

]

]

1

]

|

]

]

|

]

1

]

]

1

]

]

]

]

]

]

1

1

1

4
©

o.gg L EWS U

B SECDED

@ Parity++_lIso_Area

B Parity++_lso_Capacity

Fig. 5: Comparing Normalized Execution Time of Processor-I with SECDED and Parity++ (with memory speculation)

1.02

1.01

- _ _ _ _
g
£ 099
]
£ 098
T
N 0.97
s
£ 0.96
5
4
0.95
0.94
0.93
< &
& “ &

&
Nl e 2
Q.,,«\ o G 4 &

el
&

RN
©
N\ & B

5 &
& &
& &

&
o EN
K& L

&
& ¢

ESECDED [Parity++_Iso_Area H Parity++_lso_Capacity

Fig. 6: Comparing Normalized Execution Time of Processor-II with SECDED and Parity++ (with memory speculation)

different sets of core micro-architectures across a variety of
benchmarks from the SPEC2006 suite when using memory
speculation. In both the evaluations, performance of the system
with Parity++ was compared against that with SECDED. The
evaluation was further split into iso-area and iso-capacity as
explained in Section

For both the core configurations, the observations for the
iso-area case are almost similar. With memory speculation it
is seen that with additional memory capacity for iso-area, the
system with Parity++ has upto ~4% better performance (lower
execution time) than the one with SECDED. This improvement
in performance happens in spite of the additional one cycle
latency incurred on non special messages in the case of
Parity++. The applications showing higher performance benefits
are mostly memory intensive. Hence, additional cache capacity
with Parity++ reduces overall miss rate to an extent such that
the slight increase in average LLC hit time gets offset. For
most of these applications, this performance gap widens as the
LLC size increases for Processor-1I. The applications showing
roughly similar performances on both the systems are the ones
which already have a considerably lower LLC miss rate. As
a result, increase in LLC capacity due to Parity++ doesn’t
lead to a significant improvement in performance. The same
evaluation was also done for the case where there is no memory
speculation, i.e., both Parity++ and SECDED protected caches
have additional hit latency of one cycle for all read operations
(figure ommitted due to space constraints). The results show that
with the exact same hit latency, Parity++ has upto 7% lower ex-
ecution time than SECDED due to additional memory capacity.

A more significant result is the iso-capacity case with
memory speculation. It is seen that even with additional
one cycle latency for non special messages in Parity++, the
performance of the system with Parity++ is at par with that

of SECDED. This means that by using our lightweight error
correction scheme, we manage to save about 5-9% last level
cache area (excluding decoder and peripheral circuit area) with
negligible hit in performance. Since the LLCs constitute more
than 30% of the processor chip area, the cache area savings
translate to a considerable amount of reduction in the chip
size. This additional area benefit can either be utilized to make
an overall smaller sized chip or it can be used to pack in more
compute tiles to increase the overall performance of the system.

Farity++ in Lightweight Approximation-Friendly Embedded
Memory

Instead of limiting ourselves to last level on-chip caches,
we extended the evaluation to on-chip memories in embedded
devices. Embedded systems at the edge of the Internet-of-
Things (IoT) is driven by the need for low cost and low
energy consumption. On-chip memories in these lightweight
embedded systems consume a significant portion of system
energy. As a result, having strong error correction schemes like
SECDED or ChipKill [25] is too costly, in terms of overheads,
for such devices. Based on the iso-capacity results, Parity++
(with 3.5X lower parity storage overhead than SECDED in a 32-
bit memory) seems to be a good fit for SRAM based embedded
memories. Since Parity++ helps in reducing area (in turn reduc-
ing SRAM leakage energy) and also has lower error detection
energy, it provides a better protection mechanism in such
devices than SECDED. It is also stronger than a single-error
detecting (SED) Parity code and hence can reduce the number
of crashes/hangs when there is a single bit flip in the memory.

Most of the applications that run on these low-cost IoT
devices are approximation-tolerant. Hence, we analyzed the
benefits of using Parity++ in such devices on 6 applications
from AxBench [26], an approximate benchmark suite. The

1000

NI

900

N\

800
700
600
500

#of runs

400
300
200
100

No ECC Parity++]

No ECC Parity++

No ECC Parity++ No ECC Parity++| No ECC Parity++(No ECC Parity++|

FFT BLACKSCHOLES JPEG SOBEL INVERSEK2) JMEINT

‘ O Recover (Correct) MCE - benign B MCE - SDC E Hangs/Crash ‘

Fig. 7: Output Quality of AxBench benchmarks for memory
with no ECC vs with Parity++

AxBench benchmarks were compiled for the open-source
64-bit RISC-V (RV64G) instruction set v2.0 [[17]] using the
official tools [27]. Each benchmark was ran till completion
1000 times on top of the RISC-V proxy kernel [28] using
the Spike simulator [29]] that was modified to produce
representative memory access traces. For each run, a single bit
error was randomly injected on a demand data memory read.
We compared Parity++ against the case when there is no ECC
protection and the program continues with erroneous message.
In case of non-special messages in Parity++, even though a
single bit flip is detected, the program continued with the
wrong message instead of crashing immediately since these
applications are approximation-tolerant. The results are shown
in Figure [/| It can be seen that Parity++ reduces intolerable
Silent Data Corruption (SDC), that is, an SDC with more than
10% output error, by upto 84.2%(avg. 32.5%). It significantly
reduces the number of crashes/hangs by upto 95.3%(avg.
85.6%). This means Parity++ not only improves the quality of
output, the system will be much more resilient to hangs/crashes
in case of unpredictable single bit flips during runtime.

VI. CONCLUSION

In this work, we present a novel lightweight error protection
scheme, Parity++, for last level caches based on unequal
message protection. From our analysis, we find that about 80%
of messages/words have same prefix bits (leading 0’s) and we
denote these as special messages. For a 64 bit word, Parity++
uses only 2 additional redundant bits and provides SECDED
protection for these special messages while providing only
SED for the non-special messages. In iso-area evaluations,
up to about 4% performance benefit can be obtained, while
iso-capacity evaluations showed almost negligible (<0.2% in
all but one case) performance degradation with ~9% lower
storage overhead than a traditional SECDED scheme which
translates to about 5% cache area savings.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their
constructive feedback. This work was supported by the 2016
USA Qualcomm Innovation Fellowship. The authors thank
Dr. Greg Wright from Qualcomm Research for his feedback
and guidance of this work.

REFERENCES

[1]1 S. S. Mukherjee, J. Emer, T. Fossum, and S. K. Reinhardt, “Cache
scrubbing in microprocessors: myth or necessity?,” in [0th IEEE
Pacific Rim International Symposium on Dependable Computing, 2004.
Proceedings., pp. 37-42, March 2004.

[3]

[4]
[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]
[20]

(21]

[22]

(23]
[24]

[25]
[26]

[27]

[28]
[29]

J. Yan and W. Zhang, “Evaluating instruction cache vulnerability to
transient errors,” in Proceedings of the 2006 Workshop on MEmory
Performance: DEaling with Applications, Systems and Architectures,
MEDEA 06, (New York, NY, USA), pp. 21-28, ACM, 2006.

H. Duwe, X. Jian, and R. Kumar, “Correction prediction: Reducing
error correction latency for on-chip memories,” in 2015 IEEE 2Ist
International Symposium on High Performance Computer Architecture
(HPCA), pp. 463-475, Feb 2015.

F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting
codes. Elsevier, 1977.

S. Lin and D. J. Costello, Error control coding, vol. 2. Prentice Hall
Englewood Cliffs, 2004.

J. Maiz, S. Hareland, K. Zhang, and P. Armstrong, “Characterization
of multi-bit soft error events in advanced srams,” in IEEE International
Electron Devices Meeting 2003, pp. 21.4.1-21.4.4, Dec 2003.

C. W. Slayman, “Cache and memory error detection, correction, and re-
duction techniques for terrestrial servers and workstations,” IEEE Transac-
tions on Device and Materials Reliability, vol. 5, pp. 397-404, Sept 2005.
“Qualcomm Centriq 2400 Processor.”

J. Huynh, “White Paper: The AMD Athlon MP Processor with 512KB
L2 Cache,” tech. rep., May 2003.

C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway, “The amd
opteron processor for multiprocessor servers,” IEEE Micro, vol. 23,
pp. 6676, March 2003.

J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy,
“Power4 system microarchitecture,” IBM Journal of Research and
Development, vol. 46, pp. 5-25, Jan 2002.

M. Y. Hsiao, “A Class of Optimal Minimum Odd-weight-column
SEC-DED Codes,” IBM Journal of Research and Development, vol. 14,
pp. 395401, July 1970.

D. H. Yoon and M. Erez, “Memory mapped ecc: Low-cost error
protection for last level caches,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture, ISCA °09, (New
York, NY, USA), pp. 116-127, ACM, 2009.

S. Kim and A. K. Somani, “Area efficient architectures for information
integrity in cache memories,” SIGARCH Comput. Archit. News, vol. 27,
pp. 246-255, May 1999.

N. N. Sadler and D. J. Sorin, “Choosing an error protection scheme
for a microprocessor’s 11 data cache,” in 2006 International Conference
on Computer Design, pp. 499-505, Oct 2006.

M. Gottscho, C. Schoeny, L. Dolecek, and P. Gupta, “Software-defined
ECC: Heuristic recovery from uncorrectable memory errors,” tech. rep.,
University of California, Los Angeles, Oct. 2017.

A. Waterman, Y. Lee, D. Patterson, and K. Asanovic, “The RISC-V
Instruction Set Manual Volume I: User-Level ISA Version 2.0,” 2014.
J. Yang, Y. Zhang, and R. Gupta, “Frequent value compression in
data caches,” in Proceedings 33rd Annual IEEE/ACM International
Symposium on Microarchitecture. MICRO-33 2000, pp. 258-265, 2000.
A. R. Alameldeen and D. A. Wood, “Frequent pattern compression: A
significance-based compression scheme for 12 caches,” 2004.

G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Base-delta-immediate compression: Practical data
compression for on-chip caches,” in Proceedings of the 21st International
Conference on Parallel Architectures and Compilation Techniques, PACT
’12, (New York, NY, USA), pp. 377-388, ACM, 2012.

J. Kim, M. Sullivan, E. Choukse, and M. Erez, “Bit-plane compression:
Transforming data for better compression in many-core architectures,” in
Proceedings of the 43rd International Symposium on Computer Architec-
ture, ISCA 16, (Piscataway, NJ, USA), pp. 329-340, IEEE Press, 2016.
C. Schoeny, F. Sala, M. Gottscho, I. Alam, P. Gupta, and L. Dolecek,
“Context-aware resiliency: Unequal message protection for random-access
memories,” in Proc. IEEE Information Theory Workshop, (Kaohsiung,
Taiwan), pp. 166-170, Nov. 2017.

R. W. Hamming, “Error detecting and error correcting codes,” Bell Labs
Technical Journal, vol. 29, no. 2, pp. 147-160, 1950.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, pp. 1-7, Aug. 2011.

T. J. Dell, “A White Paper on the Benefits of Chipkill-Correct ECC for PC
Server Main Memory,” tech. rep., IBM Microelectronics Division, 1997.
A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran,
“Axbench: A multiplatform benchmark suite for approximate computing,”
IEEE Design Test, vol. 34, pp. 60-68, April 2017.

Q. Nguyen, “RISC-V Tools (GNU Toolchain, ISA Simulator, Tests) —
git commit 816a252.”

A. Waterman, “RISC-V Proxy Kernel — git commit 85ael7a.”

A. Waterman and Y. Lee, “Spike, a RISC-V ISA Simulator — git commit
3bfc00e.”

