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ABSTRACT 

 
In Additive Layer Manufacturing, the layer-based nature of the process results in error in the final object, 

termed staircase error. This error can be reduced by using a smaller layer thickness, and hence more layers, to print 

the object. However, in 3D printing with stereolithography, the print time is mostly determined by the number of 

layers, since the movement of the laser in the X-Y plane is much faster than the movement of the build platform. 

Therefore, using finer layer thicknesses can significantly increase the print time.  
In this work, we propose a novel adaptive slicing algorithm that balances accuracy and print time. The 

proposed, near-optimal, dynamic programming (DP) based algorithm for adaptive slicing minimizes the number of 

layers subject to a global volumetric error constraint. Our approach reduces slice count by up to 36% (52%) compared 

to a state of the art adaptive slicing (uniform slicing) method under the same volumetric error. The results were tested 

on Formlabsunder the same volumetric error. The results were tested on Formlabs Form1+ SLA-based printers. The 

print time was improved by up to 32% (53%) for a selection of objects. 
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1. INTRODUCTION 

The technology of 3D printing, or layered additive manufacturing, has advanced quickly in the past decade, 

allowing its use in a wide range of applications ranging from the manufacturing of large objects for use in industrial 

applications to the construction of small objects for individual use. 3D printers may be used to quickly manufacture 

an object of arbitrary geometry using a single process, called additive manufacturing (AM). In an additive 

manufacturing process, objects are built by slowly adding material rather than carving out unnecessary material. 

Objects are typically built in slices, where material is successively deposited or solidified in layers along the slicing 

plane. However, due to the slice-by-slice approach to the manufacturing process, error is introduced in each layer 

because the contour of the object does not always have upright vertical edges . The error in the print from this source 

is termed staircase error (Figure 2). 

The staircase error can be reduced by an increase in the vertical contour resolution, which can be 

accomplished by reducing the thickness of each slice. Decreasing the minimum thickness means that the 3D printer 

must print more layers to manufacture the object. The increase in the layer count can lead to a significant increase in 

the print time. One method of balancing these two factors is adaptive slicing. In most 3D printers, the default 

configuration is to slice the object uniformly, which means that the object will be sliced at the same vertical precision 

throughout the object. If high print accuracy is desired, then the entire object must be printed at a small slice thickness. 

Slicing the object in this way can lead to unnecessary increases in the print time, depending on the object’s geometry. 

For example, if a section of an object has a particularly complex vertical contour but the rest of the object’s vertical 

contour is very flat, then printing at a small slice thickness will improve accuracy in the complex section but will lead 

to no improvement in accuracy for the rest of the object. Additionally, the simple sections will be printed with thin 

slices, effectively wasting print time. Since most additive manufacturing technologies allow adjustment in slice 

thickness during the print, this can be overcome by adaptively changing the slice thickness during the print to match 

the complexity of the section of the object being printed.  

Adaptive slicing has been explored by various authors in the past, and several different methods for obtaining 

an adaptive slicing scheme have been proposed. This article presents a novel dynamic programming based method for 

adaptively slicing a 3D object that takes into consideration a global volumetric constraint and returns a near-optimal 

slicing scheme under that constraint.  

 



2. RELATED WORKS 

 This section will provide a short summary of work that has already been done on improving print speed for 

3D printing, and will also contain a detailed examination of works that focus on quantifying error in 3D printing and 

works that focus on methods for adaptive slicing. 

  The print time of a 3D printer is influenced by a variety of different factors. Some work has been done on 

studying the effect of support structures on print time, and how to modify the construction of support structures to 

improve print time1, 2. Another area of study is the process of orienting the object during the print to improve print 

time3. Additionally, for deposition printers in particular, the improvement of the nozzle path planning process during 

the deposition of each single layer has been studied4, 5. Finally, many different methods for improving print time and 

print accuracy through adaptive slicing have been proposed. This paper focuses on the latter, which necessitates a 

discussion of how print accuracy and error are quantified and the details of other adaptive slicing methods.  

2.1 Error in 3D printing 

 There are two main metrics that quantify error in 3D printing. One method is called the cusp height error. 

This metric quantifies the effect of staircase error on the final printed object by defining the error as the largest distance 

from the printed object to the vertical contour of the original object for each layer6. If the cross section of the missing 

or additional material volume is depicted as a right triangle, then the cusp height is the length of the altitude drawn 

from the right-angle vertex to the opposite edge (Figure 1).  

 
Figure 1: An illustration of cusp height error 

 While this method of quantifying error estimates the difference between the printed object and the original, 

the other popular method defines error as simply the volumetric difference between the printed object and the original 

object. For each layer, the error from the print would be the total volume of material that is either additional or missing 

in the printed result. The volumetric error metric for optimization in 3D printing has been used in the past in the 

context of build orientation optimization7, 8, and it has been noted that using this as the error metric guarantees that the 

metric will correspond to actual deviation in the printed object while the cusp height error estimate may fail to 

represent error in some cases9. 



 

Figure 2: A depiction of staircase error. The original model's vertical profile is in red, while the printed model is in blue. The 

gaps between the red curve and the blue rectangles represent missing material. 

2.2 Adaptive slicing methods 

 Adaptive slicing for 3D printing has been explored in great detail, with many different proposed methods for 

determining a slice scheme that results in a fast build time while retaining print accuracy. Dolenc and Mäkelä6.  give 

a method for adaptive slicing that analyzes the input CAD model on a local level, and determines whether additional 

slices are necessary based on geometric heuristics. They use the cusp height error metric to control error on a local 

level. Suh and Wozny10 offer a similar solution, with more attention to the vertices of the CAD model. Their method 

involves sampling points along the cross-section contours and analyzing the local geometry to determine the next slice 

height. The cusp height error metric is used here as well. Sabourin11 proposes and implements a solution that utilizes 

stepwise uniform refinement. In this method, the model is sliced at the maximum thickness to begin with, and each 

slab is divided further if the error in the slab exceeds a maximum value. Instead of determining the slice thickness 

across the entire 2D cross section of the object at each height, Tyberg and Bøhn12 develop a method that slices the 

model locally in the XY plane. In their method, different areas of the model at each height are sliced differently so 

that a feature that requires precise slicing does not force a separate feature at the same height from being sliced the 

same way. Rianmora and Koomsap’s13 adaptive slicing solution directly slices the CAD model using an image-based 

error metric, instead of the more common cusp-height or volumetric error. Their method involves taking orthographic 

projections of the original CAD file, finding the edges using image processing techniques, and producing slices by 

analyzing the contour deviation locally and slicing if the deviation is under a maximum allowable contour deviation. 

Wang et al.14 present a method that draws on work done on mesh saliency metrics to provide a method for quantifying 

how humans perceive objects. Using this metric, they weight the importance of each layer of the model to visual 

quality (saliency). They then slice the object using the cusp-height error metric, weighted by the computed saliency 

of each layer.  Siraskar et al.15 use a modified octree boundary data structure (MBODS) to recursively break down an 

object file into cubes. Cubes were divided based on the slant of the object within each cube as well as the volume of 

the object contained within each cube, and the slices to be used in the print were determined from the sizes of cubes 

at each height . 

 Compared to these works, the approach taken in this paper produces a slicing scheme that considers 

volumetric error globally rather than locally, and provides a near-optimal slicing scheme that optimizes for build time 

under a given volumetric error constraint in polynomial time. 

 

3. ADAPTIVE SLICING PROBLEM FORMULATION 

The objective of the problem is to produce an adaptive slicing scheme that minimizes build time while staying 

under the given global volumetric error constraint. Build time can be minimized for two different types of 3D printers, 

deposition printers and layer solidification printers, in different ways. Deposition printers print an object layer by layer 

by moving a nozzle that deposits material onto appropriate parts of the object, while layer solidification printing 

involves solidifying an entire layer of some fluid material into a layer of the desired object. The method discussed in 

this article applies to layer solidification printers, such as printers that use stereolithography to solidify layers. Since 

the laser can be made to move extremely quickly during the solidification process, this part of the process takes very 



little time, so the time of the print is mostly proportional to the number of slices that need to be printed rather than the 

overall volume of the object. Therefore, the objective of speeding up printing can be reduced to the objective of 

minimizing the number of slices for layer solidification printers. 

An adaptive slicing scheme is a set of slice thicknesses that sum up to the height of the object to be printed, 

since the scheme must cover the entire object. The range of possible slice thicknesses present in the scheme must be 

determined from the 3D printer that this technique is being applied to. With this in mind, the objective of producing 

an adaptive slicing scheme that minimizes build time while considering a global error constraint becomes a constrained 

combinatorial optimization, where the goal is to find the combination of slices with the smallest slice count while still 

meeting the volumetric error requirement. 

 

4. ALGORITHM 

A naïve way to solve this optimization problem is to just traverse through all possible slice schemes 

recursively and find the solution that gives the smallest error. However, since the set of possible slicing schemes is 

massive, this is not feasible. To solve this in a reasonable time complexity we use dynamic programming. In dynamic 

programming, the problem is broken down into many subproblems. Each subproblem is solved optimally and its 

solution reused in construction of the optimal solution of the bigger problem. Since subproblem solutions are 

memoized, they don’t need to be recomputed, making the optimization tractable.  

To break down this problem we consider how it would be solved with a simple traversal. Starting with a 

height 𝐻 remaining to slice and an error budget of 𝐸, choosing a slice of thickness 𝑡𝑖 with associated error 𝑒𝑖 will 

reduce the height remaining to ℎ = 𝐻 − 𝑡𝑖 and the error budget to 𝑒 = 𝐸 − 𝑒𝑖. This would continue until either the 

error budget is expended (reduced to 0 or a negative value) or the height is reduced to 0. In the case that the error 

budget is expended, that particular branch cannot meet the error requirement so it is removed. In the case that the 

height reaches 0, the object has been fully sliced through some sequence of slices thicknesses and an error equal to 

the sum of all the errors from each slice. Each successful scheme would then have to be compared to find the one with 

the smallest number of slices. 

The performance of this traversal can be improved by defining the subproblems to be different combinations 

of heights and error budgets, (ℎ, 𝑒). Note that if there exist two different sequences of slices that reach this situation 

there is no reason to pick the sequence with more slices, so only the sequence with the smallest number of slices 

should be kept as the optimal solution to this subproblem. To extend this to the whole problem, a large 2-dimensional 

array can be constructed where each cell represents a different subproblem (ℎ, 𝑒) and holds information about the 

number of slices in its optimal solution and the slice thickness used to reach it. One complication with this strategy is 

that since the error may be any real number, the size of this array would be infinitely large. To get around this, all 

error values must be rounded to some rounding factor 𝑟. This makes the dimensions of the array 
𝐻

𝑡𝑚𝑖𝑛
×

𝐸

𝑟
, where 𝑡𝑚𝑖𝑛 

is the smallest difference between any linear combination of the given slice thicknesses. With the array constructed as 

such, the problem can be solved with the following recursive algorithm. 

 

Define solutions, errors 

Procedure findOptimalSolution( height, errorBudget ): 

 If errorBudget is negative: 

  Return bad solution 

 If solutions[height] exists: 

  Return solutions[height ] 

 If height is 0: 

  Return solution with 0 slices and 0 error 

  

 For each possible slice thickness t at this height: 

  Get error e of slice from errors 

  Record result of: findOptimalSolution( height – t, errorBudget – e) 

  

best_solution result with least slices and most error budget found above with one new slice and the new 

error 

 

store  best_solution in solutions 



 Return best_solution  

 

At the beginning of the algorithm, the large array solutions is created to store information about solutions to 

the subproblems as described above. Each entry of the array represents a result of the findOptimalSolution procedure 

and contains information about the number of slices used in the partial solution, the resulting error, and the first slice 

thickness used to generate the solution. Additionally, the array errors is filled with the error information. Next, the 

recursive procedure findOptimalSolution is called on the entire object with the desired error budget.  

In the recursive portion of the algorithm, several conditions are first checked for indications that the recursive 

branch should stop. If the error budget remaining, errorBudget, is negative, then this branch cannot produce a slicing 

scheme that meets error requirements and returns a result with a number of slices greater than the maximum number 

of slices to indicate that a solution was not achieved. If the array solutions already contains data from a recursive 

instance run with the same parameters, then the stored data is simply returned immediately. If the height parameter 

given is 0, then this branch of recursion has reached the end of the object and should return a solution with 0 slices 

and no error. This condition serves as the base case. 

If none of the conditions are met, then computation must continue. The algorithm will begin a new branch of 

recursion for each possible new slice at height with the appropriate errors from errors and await the solutions. Once 

all solutions are returned, the result with the smallest number of slices will be taken as the optimal solution at this 

height and error budget. If multiple solutions have the same number of slices, then the solution with the smallest error 

cost will be taken. Finally, the algorithm will add one new slice and the appropriate error to the taken solution, and 

save and return it.  

By storing the best intermediate result in the array during execution, all possible configurations of slice 

thicknesses are being implicitly explored in a much smaller time complexity. In the worst case, the algorithm will 

compute a result for each entry in the array, so the time complexity is at worst 𝑂 (
𝐻𝐸

𝑡𝑚𝑖𝑛𝑟
). Note that this neglects the 

computation of error, which can be performed as a separate step, as explained in the next section. Once the algorithm 

finishes running, the solution found will have the minimum number of slices possible under the given volumetric error 

bound. The slicing scheme used to achieve that result can then be recovered by tracing through the array and collecting 

the slice thicknesses used for each intermediate result. 
 

5. IMPLEMENTATION PROCEDURE 

The algorithm was implemented and tested in Python in two separate segments, a volumetric error 

computation segment and a slice determination segment. This was done so that the error could be precomputed quickly 

and the algorithm could quickly lookup the volumetric error resulting from placing a slice of a certain thickness at a 

certain height. 

To compute the volumetric error, two different methods were used. The first method was to essentially 

numerically integrate the error across the plane of each single slice. For each different possible height and slice 

thickness, a dense grid of points was formed to represent points on the top face of the slicing plane. Then, for each 

point, a ray was cast outwards to a point outside the object and the number of intersections with the object’s geometry 

was counted to determine whether the point lay inside the object or not. Finally, a ray was cast downwards to the 

bottom of the slice plane. The length of the ray that lay inside the object and the length that lay outside the ray were 

calculated, and these lengths were used to determine the contribution to the volumetric error of that section of the slice 

plane. The contributions of each point in the grid were summed up to obtain the volumetric error of the entire slice. 

These volumetric error numbers were recorded in an array with dimensions 𝑚 × 𝑛, where 𝑚 represents the number 

of heights that it is possible to slice the object at and 𝑛 represents the number of slice thicknesses.  

A second, more approximate, method was also used because the first method was deemed too slow. In this 

method, the object was broken down into voxels through the use of mesh voxelization software16, 17. Then, the error 

was determined for each slice and height by counting the number of voxels that did not match the voxel value at the 

top of each slice. These voxels contribute to error because during the 3D printing process, they will be replaced by 

voxels matching the top voxel. This is illustrated in Figure 3, an image of a cross section of a single voxelized slice. 

Each square represents a voxel, and the ones in red represent voxels that will contribute to error. The dashed lines 

surround the area that will actually be printed. The error obtained using this method was compared to the error obtained 

using the first method and was found to be close. For example, computing the error for a sample object (Figure 4c) 

using the numerical integration method yielded 19.63 mm3 while the voxelization method yielded 19.91 mm3, a 



discrepancy of 1.4%. The discrepancy across a series of sampled objects averaged 1.7%, so the voxelization method 

was used for volumetric error computation for its speed.  

 

 

 

 

 

 
Figure 3: An illustration of the error computation by voxelization. 

The slicing algorithm itself was implemented in Python 3 following the algorithm description above. The 

volumetric error information computed using the methods above was loaded into a global array, and was referenced 

any time the algorithm needed the error information. After the algorithm was finished running, the slice scheme was 

recovered by tracing through the memorization array and collecting the slice thicknesses used. 

 
 

6. EXPERIMENTAL PROCEDURE AND RESULTS 

The proposed algorithm was tested against uniform slicing procedures and another state of the art octree-

based adaptive slicing method15 on a Formlabs Form 1+ 3D SLA printer to compare volumetric error and print time. 

Slicing schemes were gathered from each method for 4 different objects and the total volumetric error for each method 

was determined using the computed volumetric error tables. For the dynamic programming based method, since the 

result depended on the volumetric error constraint parameter, multiple constraints were used for each object. The four 

different benchmark objects are shown in Figure 44. The objects in figure 4(a) and figure 4(b) were obtained from 

publicly available 3D model repositories17, 18. The object shown in figure 4(c) was created for the purposes of this 

project in the Blender 3D mesh editor, and the object shown in figure 4(d) was obtained from the UCLA School of 

Dentistry. 

 



 
Figure 4 Objects used in experiments. Their volumes are a) 190 mm3, b) 1940 mm3, c) 7380 mm3, and d) 32,660 mm3. 

To determine the print time, the Form 1+ printer was modified to use non-uniform slice schemes through the 

use of the open source software OpenFL. The different slicing schemes were uploaded to the printer and the print time 

for one object was recorded by printing it directly. To avoid directly printing each object, the OpenFL software was 

used to access the print time estimation information. This provided a good estimate of the print time of different slice 

thicknesses, and this information was used to estimate the print time of the entire object for any given slice scheme. 

The print time estimated using this method was compared to the print time of the object printed directly and found to 

agree, so this was used to obtain the estimated print time for each object. Some results are shown in the following 

table, and plots of volumetric error against print time for each method are shown below as well. 

 



 
Figure 5 A plot of volumetric error vs. print time for results generated by the various slicing methods used on the object in figure 

4a. The object's volume was 190 mm3. 

 

 

Figure 6 A plot of volumetric error vs. print time for results generated by the various slicing methods used on the object in figure 

4b. The object's volume was 1940 mm3. 
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Figure 7 A plot of volumetric error vs. print time for results generated by the various slicing methods used on the object in figure 

4c. The object's volume was 7380 mm3. 

 

 

Figure 8 A plot of volumetric error vs. print time for results generated by the various slicing methods used on the object in figure 

4d. 

 Each of the plots above show that the dynamic programming approach achieves either the same or better 

time and error characteristics when compared to both the uniform slicing and octree adaptive slicing methods. The 

print-time volumetric error pareto curve for the dynamic programming approach is consistently under the curves that 

represent the other methods. However, note that at the extremes of each plot, the curves each intersect at the same 
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points. This occurred because when either algorithm was run with very tight or very loose constraints, they both 

returned the same scheme as the smallest or largest uniform slice scheme, respectively.  

 Because the adaptive slicing algorithms usually returned results with both different errors and print times, 

the individual results were difficult to compare directly. The time-error plots above provide a much better idea of 

relative performance. Nevertheless, looking in particular at the rounded cube example (Figure 4c) the following 

comparisons can be made (see table 1). Dynamic Programming approach gives significantly shorter print time with 

same volumetric error. 

Table 1 A comparison of the dynamic programming method and octree method on figure 4c. The volume was 7380 mm3. 

Octree 

Method 

  Dynamic 

Programming 

Method 

      

Error 

(mm3) 

Time 

(min) 

Slice 

Count 

Error (mm3) Time 

(min) 

Slice 

Count 

Error 

Change 

Time 

Change 

Slice 

Count 

Change 

Model 

Volume 

Error 

Change 

12.73 106 556 12.714 72 356 -0.13% -32.1% -35.9% -

0.00023% 

26.948 52 248 26.629 44 215 -1.18% -15.4% -13.3% -

0.00043% 

7. CONCLUSION 

This paper introduces a novel method for adaptive slicing that uses dynamic programming to minimize the 

number of slices needed to print an object when given a volumetric error constraint. The algorithm presented has the 

advantage of returning the slice scheme with a near-optimal minimum number of slices for the given constraint in 

polynomial time, due to the implicit exploration of all possible slice combinations with dynamic programming.  

The algorithm was tested on a series of objects with a range of volumetric error constraints and compared 

against a different adaptive slicing algorithm. The results of these two slicing methods were compared to the result 

of uniformly slicing the objects by each of the different slice thicknesses. For each of the 4 different objects tested, 

the dynamic programming approach was found to perform significantly better than the octree adaptive slicing 

algorithm as well as the uniform slicing procedure. 
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