
Context-Aware Resiliency: Unequal Message
Protection for Random-Access Memories

Clayton Schoeny, Frederic Sala, Mark Gottscho, Irina Alam, Puneet Gupta, and Lara Dolecek
Email: {cschoeny, fredsala, mgottscho, irina1}@ucla.edu, {puneet, dolecek}@ee.ucla.edu

University of California, Los Angeles (UCLA), CA 90095

Abstract—A common way to protect data stored in DRAM
and related memory systems is through the use of a single-error-
correcting/double-error-detecting (SECDED) code. Traditionally,
these error-correcting codes provide equal protection guarantees
to all messages. In a recent work, we demonstrated enhanced
error correction capabilities for SECDED codes by taking into
account contextual side-information about the data. This paper
is concerned with a closely related scenario: unequal message
protection (UMP), where a subset of special messages is afforded
additional error-correction ability. UMP is relevant to computing
systems where certain messages are critical and failures cannot be
tolerated. We study practical UMP constructions where messages
are guaranteed either one or two bit-error-correction. We provide
upper and lower bounds on the number of special messages. We
introduce an explicit and practical code construction based on
BCH subcodes and demonstrate the efficacy of our technique on
data from the AxBench and SPEC CPU2006 benchmark suites.

I. INTRODUCTION

Error-correcting codes (ECCs) play a critical role in mem-
ory resiliency. Traditionally, the metric of interest is the
minimum distance of a code, which provides guarantees on
error-correction and error-detection capabilities. Intriguingly,
side-information about the underlying data and communication
channels can be used to enhance such a system, extending the
traditional notions from classical coding theory.

Recently, we proposed Software-Defined Error-Correcting
Codes (SDECC), a class of heuristic techniques to recover
from detected but uncorrectable errors (DUEs) [1]. SDECC
can be considered as a highly practical list-decoding frame-
work that utilizes any linear code capable of correcting t errors
and detecting t+1 errors. Traditionally, when a DUE occurs,
the system will either crash or restore to a checkpoint. In our
SDECC framework, however, when a DUE occurs, we first
compute a list of candidate codewords—the closest neighbor-
ing codewords—and then probabilistically decode based on
available side-information. SDECC is applicable to a wide
variety of memory applications and systems ranging from
large-scale servers in data centers to embedded systems in
Internet-of-Things devices.

In this work, we focus on the encoding-side of SDECC:
instead of using side-information to heuristically decode, we
a priori designate specific messages to have extra protection
against errors. This unequal message protection (UMP) is fun-
damentally different from unequal error protection (UEP) [2],
in which extra protection is provided for specific bit positions
or certain error patterns (such as adjacent bit errors) among
all codewords. UMP is a powerful approach when the special

messages are chosen based on knowledge of data patterns.
It is particularly useful when compression is not possible
yet specific messages—or parts of specific messages—are
very frequently stored/transmitted. Additionally, given side-
information about the meaning of underlying messages, we can
add extra protection to those messages whose miscorrections
would be very costly at a system level.

Due to its frequent application in computer memories such
as DRAM and SRAM [3], [4], we take particular interest in
the extended Hamming code. This simple code is capable
of correcting any single bit error and detecting any double
bit error. Our goal is to guarantee single bit error correction
for every codeword while maximizing the number of special
codewords that are also correctable in the case of a double
bit error. In the SDECC framework, special codewords can be
viewed as a set with the property that no two elements from
the set are ever in the same candidate list.

The paper organization is as follows. In the remainder of
this section, we provide preliminaries, notation, objectives,
and an overview of related work. In Section II, we derive
an upper bound on the number of special messages using a
nonlinear program and compare it to a sphere packing upper
bound. In Section III, we provide two lower bounds on the
maximal number of special messages; the first using a maximal
independent set argument from graph theory, and the second
using properties of sub-codes. We develop an explicit code
construction in Section IV, using a BCH code as a sub-code—
without using additional redundancy— motivated by analysis
of memory benchmarks.

A. Preliminaries and Notation

A code C is a subset of {1, 2, . . . , q}n, where q ≥ 2 is
the alphabet size and n is the code length. We set M = |C|
to be the cardinality of the code. As usual, for linear block
codes the parameter k is the code dimension (so that M = qk

messages can be represented). In this work we only consider
binary linear codes, i.e., q = 2. Code C has minimum distance
d if d = minx,y∈C,x6=y dH(x,y), where dH is the Hamming
distance. If C has minimum distance d, it can correct t = b(d−
1)/2c errors. We use the standard (n, k, d) notation to denote
a code’s length, dimension, and minimum distance properties
and d(C) as shorthand for the minimum distance of C.

We partition the M codewords into the sets Mi, where
the codewords in Mi have the property that they are guar-
anteed correctable in the presence of up to (and not more

than) i errors. In this work, we focus solely on the par-
tition of the M codewords into the sets M1 and M2.
Let M1 = |M1| and M2 = |M2|. We call such a
code a single-error-correcting/special-message-double-error-
correcting (SEC-smDEC) code. We thus have the following
minimum distance properties:

min
x,y∈M1,x6=y

dH(x,y) ≥ 3, (1)

min
x∈M1,y∈M2

dH(x,y) ≥ 4, (2)

min
x,y∈M2,x 6=y

dH(x,y) ≥ 5. (3)

For code parameters (n, k), our objective is to fully partition
the code into the setsM1 andM2 and maximize M2. That is,
we require that every codeword is correctable given a single
error, and we seek to maximize the number of codewords
that are correctable in the presence of up to two errors. We
denote the codewords in M2 as special codewords (and their
associated messages as special messages).

Let us examine the code parameters of interest. A (2m −
1, 2m − m − 1, 3) Hamming code is a perfect code since it
achieves the Hamming bound, thus M2 = 0 (any codeword
given double error protection properties would necessarily
force other codewords to lose their guaranteed correction
capabilities). Any code with fewer redundancy bits than the
associated Hamming code is not in our region of interest since
it cannot be a valid SEC-smDEC code. However, with the
addition of a single overall parity-bit, the Hamming code is
transformed into the (2m, 2m −m− 1, 4) extended Hamming
code. Extended Hamming codes are routinely used as single-
error-correcting/double-error-detecting (SECDED) codes [3],
[4]; however, we can give up the DED property to create
a SEC-smDEC code with the same level of redundancy. In
the following example, we use the same codewords from the
(8, 4) extended Hamming code, but we consider the Hamming
sphere around the all-1s codeword and the all-0s codeword to
have radius 2.

Example 1. C =M1 ∪M2 is an (8, 4) SEC-smDEC code.

M1 = {(11100001), (10011001), (01010101), (00101101),
(00110011), (01001011), (10000111), (01111000),

(10110100), (11001100), (11010010), (10101010).

(01100110), (00011110)}.
M2 = {(00000000), (11111111)}.

At the other extreme of interest is the (2m − 1, 2m −
2m− 1, 5) BCH code, which is trivially a SEC-smDEC code
with M2 = |C|. Therefore, in this work we are interested in
the redundancy parameters between (but not including) the
Hamming code and the t = 2 BCH code; we denote the
following as our SEC-smDEC parameters of interest:

n− 2dlog(n)e − 1 < k ≤ n− dlog(n)e − 1.

B. Related Work

The majority of research into UEP codes has focused on
bit-wise UEP, in which specific positions of a codeword are

more robust to errors [2], [5]. Masnick and Wolf [2] created
a framework for constructing linear bit-wise UEP codes in
which each bit in a codeword is assigned an error protection
level. Bit-wise UEP codes are useful when errors in specific
bit positions are more severe, e.g., the most significant bit of
a binary integer or the destination address header of a packet.

Another type of UEP is error-wise UEP, in which spe-
cific error patterns are guaranteed to be correctable. Error-
wise UEP codes are useful when bit-error locations are not
independent. A code that is designed to correct burst errors
can be thought of as an error-wise UEP code. For ex-
ample, single-error-correction/double-error-detection/double-
adjacent-error-correction (SEC-DED-DAEC) codes guarantee
correction in the case of one bit in error or two adjacent bits
in error [6], [7]. Error-wise UEP codes are also useful when
different sections of the codeword are stored in different chips
in computer hardware, in which case a faulty chip only causes
errors on a specific subsection of the codeword [8], [9].

In this work, we focus on UMP, i.e., message-wise UEP,
in which specific messages have extra protection from errors.
In this setting, Broade et al. used an information-theoretic
approach to prove that it is possible to encode many special
messages, even at rates approaching the channel capacity [10].

Shkel et al. [11] also examine the UMP problem. The
main distinction between this work and ours is that they
are concerned with producing information-theoretic bounds
(achievability and converse) for such codes with average and
maximal error probability over a probabilistic channel. Shkel
et al. follow the line of work considered in Broade et al., but
they also look at the finite-length regime by applying the finite
blocklength framework from Polyanski et al. [12] to the UMP
setting. Nevertheless, theirs is a different setting compared
to ours: we are interested in adversarial, not probabilistic,
errors and we wish to produce explicit non-randomized code
constructions.

Lastly, UMP is related to the red alert problem, in which
a specific message not only requires a small probability of
missed detection, but also a small probability of false alarm
[13]. In this work, we are not concerned with mitigating false
alarms of our special messages.

II. UPPER BOUNDS ON SPECIAL MESSAGES

In this section, we derive upper bounds on the cardinality
of the special message set with two different methods. First,
we derive a modified version of the classical sphere-packing
bound and then we create a modified version of Delsarte’s
linear programming bound [14]. Both of these bounds are valid
for any parameters (n, k) in our region of interest.

A. Sphere-Packing Bound

The sphere-packing bound (also known as the Hamming
bound) is a simple upper bound on the cardinality of a block
code. We can rewrite the sphere-packing bound as a function
of the radii of the Hamming spheres (as opposed to the
minimum distance of the code):

|C| ≤ qn∑
j:Mj 6={∅}Mj

∑j
i=0

(
n
i

)
(q − 1)i

.

For our purposes, we fix n and k, and we wish to maximize
M2. We use the same idea as in the classic sphere-packing
bound, but with differently-sized balls B1 and B2, correspond-
ing to message sets M1 and M2, respectively. In the binary
setting we solve for M2 as follows:

M1|B1|+M2|B2| ≤ 2n

=⇒ (2k −M2)

1∑
j=0

(
n

j

)
+M2

2∑
j=0

(
n

j

)
≤ 2n

=⇒M2 ≤
2n − 2k(n+ 1)(

n
2

) . (4)

The resulting bound is intuitive: there are 2n−2k(n+1) points
outside of the radius-1 Hamming spheres, which can become
radius-2 Hamming spheres with the addition of

(
n
2

)
points.

Note that for (2m, 2m −m− 1, 4) extended Hamming codes,
the sphere packing bound simplifies to M2 ≤ 2n−2 log(n).

B. Nonlinear Programming Bound

For traditional codes, the sphere-packing bound is not
the tightest upper bound available in either the finite-length
or asymptotic regimes. A better bound is provided in both
cases by Delsarte’s linear programming (LP) bound [14].
The LP bound considers the distance distribution vector
g = (g0, g1, g2, . . . , gn), where

gi = |{(x,y) : x,y ∈ C, dH(x,y) = i}|/|C|.

All values of gi are nonnegative, g0 = 1, and gi = 0 for
1 ≤ i < dmin. The remaining condition in the LP bound is
gQ ≥ 0, where Q is the so-called second eigenmatrix of the
Hamming association scheme on Fn

2 . Delsarte showed that
Q can be formed by the relation Qi,j = Kj(i), with the
Krawtchouk polynomial defined as

Kk(x) =

k∑
j=0

(−1)n
(
x

j

)(
n− x
k − j

)
. (5)

Clearly, we have that
∑n

i=0 gi = |C|, and thus maximizing∑n
i=0 gi also maximizes the size of the code.
We are ready to introduce our modified bound. For our pur-

poses, we have two classes of codewords, regular codewords
and special codewords, and we create three separate distance
distribution vectors. Distance distribution vectors a,b, and
c contain distances between two regular codewords, one
regular codeword and one special codeword, and two special
codewords, respectively:

ai = |{(x,y) : x,y ∈M1, dH(x,y) = i}|/|C|,
bi = |{(x,y) : x ∈M1,y ∈M2 or

x ∈M2,y ∈M1, dH(x,y) = i}|/|C|,
ci = |{(x,y) : x,y ∈M2, dH(x,y) = i}|/|C|.

Recall that our goal is to maximize M2. Summing over all
the entries in c, we have:

n∑
i=0

ci =
(M2)

2

|C|
=⇒ M2 =

√√√√2k
n∑

i=0

ci,

and thus, for given n and k, our objective function is to
maximize

∑n
i=0 ci. Note that a, c, and a + b + c are valid

(scaled) distance distribution vectors of codes. Due to the
multiple distance distribution vectors, there are a number of
substantial differences in the constraints of our programming
bound and those from Delsarte’s LP bound.

We first establish inequality constraints. Our first three
inequality constraints are aQ ≥ 0, cQ ≥ 0, and (a + b +
c)Q ≥ 0, where Q is the same eigenmatrix based on the
Krawtchouk polynomial in Equation 5. Similarly to the LP
bound, we require all ai, bi and ci to be nonnegative.

We now establish the equality constraints. We have∑n
i=0 bi =

2M1M2

|C| . Thus our total codewords condition is:
n∑

i=0

(ai + bi + ci) =
(M1)

2 + 2M1M2 + (M2)
2

|C|
=
|C|2

|C|
= 2k.

Due to the minimum Hamming distances in the distribution
vectors, we have ai = 0 for 1 ≤ i ≤ 2, bi = 0 for 0 ≤ i ≤ 3
and ci = 0 for 1 ≤ i ≤ 4. Additionally, since a0 = M1/|C|
and c0 =M2/|C|, we have that a0 + c0 = 1.

So far, we have constructed a linear program, i.e., the
objective function as well as all the constraints are all affine
functions. Unfortunately, while the condition a0 + c0 = 1 is
necessary, it is not specific enough to guarantee a solution
consistent with our distribution vector definitions. We require
an extra condition on ai and ci, as follows:

a0 =
M1

2k
=⇒ 2k(a0)

2 −
n∑

i=0

ai = 0,

c0 =
M2

2k
=⇒ 2k(c0)

2 −
n∑

i=0

ci = 0.

This equality constraint is not affine, and thus our program is
no longer a convex optimization.However, given the smooth-
ness of our quadratic constraints, there are many efficient
optimization techniques for this nonlinear program (NLP) [15].

Theorem 1. For a given n and k, we have

M2 ≤
√
2k
∑n

i=0 c
∗
i ,

where c∗ is the solution to the following nonlinear program:

maximize:
n∑

i=0

ci subject to:

Inequality Constraints Equality Constraints
a ≥ 0, ai = 0, 1 ≤ i ≤ 2,
b ≥ 0, bi = 0, 0 ≤ i ≤ 3,
c ≥ 0, ci = 0, 1 ≤ i ≤ 4,
aQ ≥ 0, a0 + c0 = 1,

cQ ≥ 0,

n∑
i=0

(ai + bi + ci) = 2k,

(a+ b+ c)Q ≥ 0, 2k(a0)
2 −

n∑
i=0

ai = 0,

2k(c0)
2 −

n∑
i=0

ci = 0.

The NLP bound correctly returns infeasible solution for any
parameters (n, k) with less redundancy than the associated

Hamming code. Additionally, for any (n, k) with more re-
dundancy than the associated t = 2 BCH code, the program
correctly returns M2 = 2k. As shown in Table I, the NLP
bound is not strictly tighter than the sphere packing bound.

III. LOWER BOUNDS ON (MAXIMAL) SPECIAL MESSAGES

Next, we present two lower bounds on the maximal number
of special messages. The first, based on graph coloring, is
applicable to any given linear code with minimum distance
2t+2. The second, based on subcodes, is stronger, but is only
applicable to our specific SEC-smDEC regime, i.e., t = 1.

A. Graph Coloring Bound

Suppose we have a linear (n, k, 2t+2) code C, i.e., t errors
are correctable and t+1 errors are detectable (in the traditional
sense, without UMP). Our goal is to derive a lower bound on
how many special codewords we can have; that is, we seek to
partition C into Mt and Mt+1 and to maximize Mt+1.

Code C yields the graph G = (V,E) where vertices V
represent the codewords in C, so that |V | = 2k. Two vertices
have an edge between them if and only if their Hamming
distance is exactly 2t + 2. The following remark establishes
the connection between G and our SEC-smDEC code.

Remark 1. The size of the maximal independent set of G,
denoted as α(G), is a lower-bound on Mt+1 for C.

Proof: Recall that a codeword can correct up to t errors
if its Hamming sphere around the codeword has radius t. In
C, with dmin = 2t + 2, no two codewords in Mt+1 can be
at a distance 2t + 2 apart (or else their Hamming spheres
would intersect). Thus in our graph, no two vertices associated
with codewords in Mt+1 can be adjacent. The vertices in
the maximal independent set of G correspond directly to the
codewords in Mt+1, thus we have α(G) ≥Mt+1.

The linearity of C implies that G is a regular graph, that
is, each vertex is incident to the same number of edges. For
regular graphs, the following bound (equivalent to Turan’s
theorem [16]) is tight: α(G) ≥ |V |/(1 + deg(V)), where
deg(V) is the degree of a vertex in the graph. The degree
of each vertex is equal to the number of minimum weight
codewords in C, denoted as W (2t + 2). Thus we have the
following bound on the number of special codewords.

Lemma 1. Any linear (n, k, 2t+2) code C can be partitioned
into Mt and Mt+1 with

Mt+1 ≥ (2k)/(1 +W (2t+ 2)).

To apply this bound to the SEC-smDEC scenario, note that
for the (2m, 2m−m−1, 4) extended Hamming code, we have
W (4) =

(
n
2

)
(n2−1)/6, as expected. Applying Lemma 1 yields:

Lemma 2. A (2m, 2m −m − 1, 4) extended Hamming code
can be partitioned into M1 and M2 with

M2 ≥
6 · 2k

6 +
(
n
2

)
(n2 − 1)

.

In Table I, we only include results for the extended Ham-
ming code parameters and the optimum values of W (4) for
the (22, 16) and (39, 32) cases.

TABLE I
UPPER AND LOWER BOUNDS ON log(M2)

Lower Bounds Upper Bounds
(n,k) Graph Col. BCH Subcode Sphere Packing NLP

(10, 4) – 1 4.17 3.59
(9, 4) – 1 3.17 2.59
(8, 4) 1 1 2 2
(7, 3) – 0 1.59 1.59

(18, 11) – 7 10.51 10.33
(17, 11) – 7 9.43 9.42
(16, 11) 3.91 7 8 8.73
(15, 10) – 6 7.29 8

(22, 16) 8.03 11 13.51 13.75
(39, 32) 21.93 26 28.93 28.98

B. BCH Subcode Bound

A code CS ⊆ C1 is called a subcode of code C1. If d(CS) ≥
5, d(C1) ≥ 4, and CS ⊆ C1, then Equations (1), (2), and (3)
are satisfied with the following mapping: c ∈ M2 if c ∈ CS ,
and c ∈M1 if c ∈ C1 and c /∈ CS . Therefore, C1 can be used
as a SEC-smDEC code with M2 = |CS |.

The parity-check matrix of a (2m−1, 2m−m−1, 3) Ham-
ming code can be represented as H = [1 α α2 · · ·αn−1],
where α is a primitive element of GF(2m) (the bold elements
represent column vectors of length m). We expurgate H by
adding the row [1 α3 α6 · · ·α3(n−1)], resulting in the parity-
check matrix for a (2m−1, 2m−2m−1, 5) BCH code. Lastly,
we extend the code by adding an overall parity bit, yielding
HS , the parity-check matrix for the subcode:

HS =

1 α α2 · · · αn−1 0
1 α3 α6 · · · α3(n−1) 0
1 1 1 · · · 1 1

 .
Notice that CS , the code associated with HS is a (2m, 2m −
2m−1, 6) extended binary BCH code that is a subcode of the
(2m, 2m −m− 1, 4) extended Hamming code. Therefore, for
(n, k) = (2m, 2m −m− 1), we have:

M2 ≥ 22
m−2m−1 = 2n−2 log(n)−1.

The subcode property is preserved in the process of short-
ening if in both the overall code and the subcode parity-check
matrices the same columns are eliminated. The following
lemma provides the results for Table I.

Lemma 3. For a code C with parameters (n, k) in our SEC-
smDEC region of interest, M2 ≥ 2n−2dlog(n)e−1.

IV. EXPLICIT SEC-SMDEC CODE CONSTRUCTION

Data is often highly structured; for example, in instruction
memory encoded with RISC-V instruction set architecture
(ISA) v2.0 [17], the least-significant 7 bits are the opcode
that primarily determines the action taken by the instruction.

Due to the popularity of (39, 32) SECDED codes in byte-
oriented architecures, we seek a (39, 32) SEC-smDEC coding
framework that efficiently maps special messages of our choice
to special codewords. For our coding scheme, we build upon
Section III-B by using a BCH subcode. For a (39, 32) code,
Lemma 3 yields log(M2) ≥ 26. There are two natural choices
for our special messages. First, since there are 25 non-opcode

Fig. 1. The generator matrix G for our (39, 32) SEC-smDEC code, and the
generator matrix G2 for the (39, 26) BCH subcode. The white and black
squares represent 1s and 0s, respectively.

bits in the message, we are able to offer DEC protection to
2 opcodes and all of their associated messages. Alternatively,
we can offer full DEC protection to any message beginning
with a run of 0s of length at least 32− 26 = 6 bits.

To create the generator matrix G in Figure 1, start with the
generator matrix for a (63, 51, 5) BCH code, then

1) Extend the matrix with an overall parity bit.
2) Shorten the matrix to (39, 26) and use elementary row

operations to convert it to systematic form; this is G2.
3) Augment the matrix (by adding 6 rows) while ensuring

the overall minimum distance is at least 4; this is G.

Since the minimum distance of G2 is 6, and the minimum
distance of the overall matrix G is 4, conditions (1), (2), and
(3) are satisfied and we have a (39, 32) SEC-smDEC code
with M2 = 226. G maps special messages to codewords as
follows: pre-map the special messages so that the first 6 bits
are all 0; this way, the encoding of these messages takes place
entirely within G2. In general, this can be a daunting task;
however, when there is structure to the special data, such as
the opcodes, the user can easily perform the pre-mapping.

The parity-check matrix H2, corresponding to G2, can
easily be found since G2 is in systematic form. To find H , the
overall parity-check matrix, we use elementary row operations
to convert G to systematic form (this does not alter H).

The decoding process follows a two-step approach. First,
use H to decode as usual with a SEC-DED code. If there
were no errors or only a single bit in error, then the decoding
process is finished; however, if the error results in a DUE,
then we use H2 to decode. After the decoding process, we
map our resulting codeword back to its original message.

We collected dynamic memory access traces of various
benchmarks and analyzed them to determine the most frequent
opcodes (in instruction memory) and the relative frequency of
common patterns (in data memory) over the entire suite; the
results are shown in Table II. We find that the distribution of
opcodes is highly asymmetric—the two most frequent instruc-
tions, LOAD and OP-IMM [17], comprise an average of 51%
and 56% of the instructions in the AxBench [18] and SPEC
CPU2006 suites, respectively. For data memory the majority of
stored vectors begin with a run of 0s consistently throughout
each benchmark (as demonstrated by the low variance values).

TABLE II
FRACTION OF SPECIAL MESSAGES PER BENCHMARK WITHIN SUITE

Most Freq. 2 opcodes First 6 bits are 0
(Instruction Memory) (Data Memory)

Suite Max Mean Var Max Mean Var

AxBench 0.51 0.46 1.3E-3 0.92 0.86 4.0E-3
SPEC CPU2006 0.56 0.37 2.1E-2 0.99 0.89 2.0E-2

Using the same number of redundancy bits as the SECDED
code, our SEC-smDEC coding scheme offers full DEC pro-
tection to special messages based on a customizable mapping
scheme. Depending on the user goal, our construction could
lead to system-level benefits such as less frequent checkpoints
in supercomputers and decreased risk of catastrophic failure
from erroneous special messages. Preliminary results indicate
that the (39, 32) SEC-smDEC scheme can improve the overall
failure rate (due to a DUE or an MCE) by up to 9x with no
additional redundancy using the leading run of 0s mapping
technique.

V. CONCLUSION

We studied a practical class of UMP codes, introduced
bounds on code cardinality, an explicit construction based on
subcodes, and provided motivating applications from real data.

REFERENCES

[1] M. Gottscho et al., “Software-defined error-correcting codes,” in Proc.
IEEE/IFIP Int. Conf. on Dependable Systems and Networks Workshops,
Jun.-Jul. 2016, pp. 276–282.

[2] B. Masnick and J. Wolf, “On linear unequal error protection codes,”
IEEE Trans. Inf. Theory, vol. 13, no. 4, pp. 600–607, Oct. 1967.

[3] P. Nikolaou et al., “Modeling the implications of DRAM failures and
protection techniques on datacenter TCO,” in Proc. ACM Int. Symp. on
Microarchitecture, Dec. 2015, pp. 572–584.

[4] J. Chang et al., “The 65-nm 16-MB shared on-die L3 cache for the dual-
core Intel Xeon processor 7100 series,” IEEE J. Solid-State Circuits,
vol. 42, no. 4, pp. 846–852, Mar. 2007.

[5] I. Boyarinov and G. Katsman, “Linear unequal error protection codes,”
IEEE Trans. Inf. Theory, vol. 27, no. 2, pp. 168–175, Mar. 1981.

[6] N. Abramson, “A class of systematic codes for non-independent errors,”
IRE Trans. Inf. Theory, vol. 5, no. 4, pp. 150–157, Dec. 1959.

[7] P. Reviriego et al., “A method to design SEC-DED-DAEC codes with
optimized decoding,” IEEE Trans. Device Mater. Rel., vol. 14, no. 3,
pp. 884–889, Sep. 2014.

[8] S. Kaneda and E. Fujiwara, “Single byte error correcting double byte
error detecting codes for memory systems,” IEEE Trans. on Comput.,
vol. 31, no. 7, pp. 596–602, Jul. 1982.

[9] T. J. Dell, “A white paper on the benefits of chipkill-correct ECC for PC
server main memory,” IBM Microelectronics Division, vol. 11, 1997.

[10] S. Borade, B. Nakiboglu, and L. Zheng, “Unequal error protection:
An information-theoretic perspective,” IEEE Trans. Inf. Theory, vol. 55,
no. 12, pp. 5511–5539, Dec. 2009.

[11] Y. Y. Shkel, V. Y. Tan, and S. C. Draper, “Unequal message protection:
Asymptotic and non-asymptotic tradeoffs,” IEEE Trans. Inf. Theory,
vol. 61, no. 10, pp. 5396–5416, Oct. 2015.

[12] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307–2359, May 2010.

[13] B. Nazer, Y. Y. Shkel, and S. C. Draper, “The awgn red alert problem,”
IEEE Trans. Inf. Theory, vol. 59, no. 4, pp. 2188–2200, Apr. 2013.

[14] P. Delsarte, “An algebraic approach to the association schemes of coding
theory,” Ph.D. dissertation, Université Catholique de Louvain, Jun. 1973.

[15] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
[16] P. Turán, “On an extremal problem in graph theory,” Mat. Fiz. Lapok,

vol. 48, no. 436-452, p. 137, 1941.
[17] A. Waterman et al., “The RISC-V Instruction Set Manual. Volume 1:

User-Level ISA, Version 2.0,” DTIC Document, Tech. Rep., 2014.
[18] A. Yazdanbakhsh et al., “AxBench: A multi-platform benchmark suite

for approximate computing,” IEEE Design & Test, 2016.

