
Foundations and TrendsR© in
Electronic Design Automation
Vol. 6, No. 1 (2012) 1–120
c© 2012 J. Lee and P. Gupta
DOI: 10.1561/1000000019

Discrete Circuit Optimization: Library
Based Gate Sizing and Threshold

Voltage Assignment

By John Lee and Puneet Gupta

Contents

1 Introduction 2

1.1 Other Types of Cell Optimization Problems 2
1.2 The Physical Design Process 5
1.3 The Standard Cell Library 8
1.4 The Gate Sizing and Vt Assignment Problem 10
1.5 Notations and Acronyms 11

2 Static Timing Analysis 12

2.1 Concepts and Terminology 13
2.2 Computing Arrival Times and Slacks 17
2.3 Interconnect Delay 19
2.4 Gate Delay Models 21
2.5 Slew Propagation 26
2.6 Power and Clock Domain Considerations 27
2.7 Additional Considerations 28
2.8 Difference between STA Timers 28
2.9 Incremental Timing Analysis 28
2.10 Statistical Static Timing Analysis (SSTA) 29

3 Gate Sizing and Vt Assignment
Fundamentals 32

3.1 Delay Trade-offs 32
3.2 Power Trade-offs 36
3.3 Gate Sizing Examples 40

4 Methods for Discrete Gate
Sizing and Vt Assignment 45

4.1 Preliminaries 46
4.2 Score and Rank Algorithms 50
4.3 Slack and Delay Budgeting Methods 56
4.4 Continuous Sizing Based Methods 58
4.5 Dynamic Programming Based Algorithms 62
4.6 Lagrangian Relaxation 67
4.7 Slew Targeting Methods 71
4.8 Linear Programming Based Assignment Methods 74
4.9 Summary 77

5 Comparing Sizing and
Assignment Methods 78

5.1 Setting Up Experiments 79
5.2 Post-layout Considerations 82
5.3 Comparisons 86

6 Statistical Gate Sizing 95

6.1 Motivating Examples 96
6.2 Slack-wall Methods 100
6.3 SSTA Based Methods 100
6.4 Gate Delay Approximation Heuristics 101
6.5 Convex Functions of Statistical Delay 101
6.6 Statistical Power Considerations 102
6.7 Statistical Delay Considerations 104

7 Conclusion 106

Acknowledgments 108

References 109

Foundations and TrendsR© in
Electronic Design Automation
Vol. 6, No. 1 (2012) 1–120
c© 2012 J. Lee and P. Gupta
DOI: 10.1561/1000000019

Discrete Circuit Optimization: Library
Based Gate Sizing and Threshold

Voltage Assignment

John Lee1 and Puneet Gupta2

1 UCLA, Los Angeles, CA 90095, USA, lee@ee.ucla.edu
2 UCLA, Los Angeles, CA 90095, USA, puneet@ee.ucla.edu

Abstract

Discrete gate sizing and threshold assignment are commonly used tools
for optimizing digital circuits, and ideal methods for incremental opti-
mization. The gate widths and threshold voltages, along with the gate
lengths, can be adjusted to optimize power and delay. This mono-
graph surveys this field, providing the background needed to perform
research in the field. Concepts such as standard cell libraries, static
timing analysis, and analytical delay and power models are explained,
along with examples and data to help understand the tradeoffs involved.
Comparative results are also provided to show the current state of the
field.

1
Introduction

Gate sizing and threshold voltage assignment1 are widely used to opti-
mize digital circuits. They can be used to manage trade-offs in power,
timing, area, yield, crosstalk, statistical power, statistical delay and
soft-errors. They can also be used incrementally and as a method
for optimizing post-layout designs after placement and interconnect
routing. After over three decades, research is still active in the area.

This work will consider the case of gate sizing and threshold voltage
assignment for standard library cell designs. In this context, gates are
chosen from a library of pre-characterized gates that act as the funda-
mental building blocks. Cell-based designs compose the majority of the
digital designs today.

1.1 Other Types of Cell Optimization Problems

There are other variants of gate sizing and threshold voltage assignment
that are not covered in this work:

(1) Transistor sizing for analog design
(2) Transistor sizing for custom digital design

1 While the title explicitly states the gate sizing and Vt assignment, the material is relevant
to other cell optimization methods, such as gate-length biasing problems.

2

1.1 Other Types of Cell Optimization Problems 3

These variants are a minority of IC designs. Custom digital design is
mainly limited to high-performance designs. However, analog designs
are becoming increasingly important with the increase in systems on
a chip (SoC) methodologies that integrate entire TVs or radios on a
single die [63].

1.1.1 Transistor Sizing for Analog Designs

In analog design, there are many different constraints and performance
specifications: gain, accuracy, linearity, signal-to-noise, and impedance
matching. For example, the pair of transistors forming a current mir-
ror or differential pair must be matched, or have very similar electri-
cal characteristics. Also, transistors that function as voltage-controlled
resistors must be operating in the linear region, and an amplifier must
have the proper signal-to-noise ratio for the system to work properly.
While standard cells mask much of the underlying electrical waveforms
using logic states, analog designs utilize these underlying characteris-
tics to produce amplifiers, digital-to-analog converters, current sources,
etc. However, many more facets of the design must be controlled for a
proper function.

The main challenge in automated analog sizing is to input the design
specifications and models into a form that can be used by the sizing
method. This is challenging because the range of analog designs is large.
For instance, while the analytical performance models for a given op-
amp topology might be well known, it is difficult to write down the
equations that govern the sizing of an arbitrary design.

Early methods for automated sizing were knowledge-based, where
templates [52, 55, 72] were used to synthesize designs. These pre-
characterized templates would carry information on a good initial siz-
ing and on how to optimize the given template. Sizing these designs
was therefore equivalent to executing the design plans. For example,
in [52], the sizing proceeds by determining the bias current, then the
W/L ratios, followed by the 1/f noise consideration, and finally the W

and L of each device. In [72], the values are chosen using a fixed point
method, where the parameters are determined serially. Each parameter
is chosen to best satisfy the design considerations, assuming the other
parameters to be fixed.

4 Introduction

The time required to construct these templates, however, was often
much greater than the time needed to design the circuit directly [63].
The accumulation of knowledge bases, and the codification of the expert
knowledge was not practical. This, coupled with the limited range
of circuits that the method could handle, led to the decline of these
types of methods. However, there is recent interest in automating the
knowledge-extraction process [108], and in identifying substructures in
a design automatically [107].

Another branch of analog sizing is the optimization-based methods.
These methods use optimization procedures, rather than codified design
rules, to size the design. The first subclass of optimization methods con-
sists of equation based methods2 [64, 75, 87] that rely on the designer
to provide the equations, but in contrast to the knowledge-based meth-
ods, the sizing process is automated using optimization methods, rather
than rules. The optimization process may use simulated annealing [64],
steepest-descent [87], or convex optimization [75]. This sub-class works
well in certain contexts (such as in [75]), but they may be limited by
their accuracy.

The second subclass of optimization based methods are the sim-
ulation based methods [54, 58, 88, 118, 119, 126] that use numeri-
cal simulations to measure the performance. The simulations provide
these methods with greater accuracy, however they create a large over-
head that makes these methods much slower than their equation-based
counterparts.

1.1.2 Transistor Sizing for Custom Digital Designs

In the custom digital setting, every transistor in the design is available
for optimization [7, 44, 45, 82, 153]. The early papers on gate sizing
were based on transistor-level sizing (see [60, 135]), until standard cells
became widespread in the 1990s.3 With the increasing complexity of
designs, standard cell libraries are almost universally used.

Custom digital design techniques are primarily used for high-
performance parts of high-volume designs which is needed to recover

2 See [63] for the taxonomy of analog sizing methods and a comprehensive review of methods
prior to 2000.

3 See, for example, [159].

1.2 The Physical Design Process 5

the increased cost of designing at a transistor level, as in the case of
microprocessors [12]. Custom digital transistor sizing is still an active
area of research today and most current research is directed toward
the statistical design of custom circuits [8, 43, 146]. However, these
methods account for a minority of the digital designs.

1.2 The Physical Design Process

Gate sizing and threshold voltage assignment are a part of the
larger Electronic Design Automation (EDA) ecosystem that transforms
Register Transfer Language (RTL) descriptions into a physical layout.
The process of creating the physical layout is called the physical design
process, and consists of six steps:

(1) Logic synthesis.

• Input: RTL/HDL design description, standard cell
library information, timing constraint information.

• Output: Netlist mapped to the standard cell library.

Transform the RTL/HDL design description into a gate level
netlist, using a given cell library. Convert state machines,
map arithmetic blocks, etc.

(2) Floorplanning.

• Input: synthesized netlist, macro information,
standard cell library information, standard cell row
information, information on chip inputs and outputs.

• Output: floorplan with rows for standard cell place-
ment, pads for input and output, locations for
macros.

Create a die for the design, and allocate space for input–
output ports, macros, and library gates.

(3) Placement.

• Input: synthesized netlist, floorplan.

• Output: locations for each of the cells in the design
in a standard cell row.

6 Introduction

Places, flips and rotates cells into the rows created by the
floorplanning algorithm. Minimizes the wirelength in the
resulting layout, while meeting timing constraints (timing-
driven placement).

(4) Clock Tree synthesis.

• Input: placed design, clock nets.

• Output: clock tree to distribute the clock signal to
the sequential elements (flip-flops, latches, etc.).

Creates a clock tree to distribute the clock signal across the
design. The goals are to minimize the size of the clock tree
(to minimize power), and the skew at each of the outputs of
the clock tree. Buffers may be added to help distribute the
clock signal.

(5) Routing.

• Input: placed design, connection information, metal
and via information from the library.

• Output: design with cells connected with wires.

Connects cells in the library using metal layers and vias. The
objective is to minimize the amount of interconnect needed,
while observing design rules and meeting timing.

(6) Physical verification and yield enhancement.

• Input: placed, routed design.

• Output: verified design with improved yield.

Improves the yield of the design. Corrects design rules viola-
tions, inserts metal fill, doubles vias, checks connectivity and
topology.

A flowchart for the EDA process is shown in Figure 1.1.
Although gate sizing and threshold voltage assignment are not

explicitly in the design flow above, they are used throughout the design
flow to correct timing errors, and to optimize the design. For example,
they are commonly used after placement to resize gates that violate
maximum fanout rules or flip-flop setup time requirements (see, for
example [22]). After clock tree synthesis, they are used to further fix

1.2 The Physical Design Process 7

Fig. 1.1 Electronic Design Automation flow.

rule violations and setup and hold violations, using the clock informa-
tion from the clock-tree synthesis. After routing, they are again used to
fix setup and hold violations, along with design rule violations. At this
step, an incremental routing may be needed to account for changes in
the cell sizes, and their corresponding pin locations.

They are also used at different points in the design flow to reduce
the power consumption [2]. While this may reduce the power using the
same timing constraint, in other instances the timing constraints may
need to be relaxed to achieve a power reduction.

Gate sizing and threshold voltage assignment are powerful tools for
optimization, and are the most widely used incremental optimization
tools. These methods are more powerful and less intrusive than adjust-
ing the placement or routing of the design. For example, fixing setup
time violations using placement would require the gates on the violating
path to be moved, and would require rerouting the interconnects. Sim-
ilarly, fixing setup time violations using routing would also require the
connections between the cells to be rerouted. In both the cases, a signif-
icant portion of the design will need to be rerouted to provide benefits.

On the other hand, gate sizing and threshold voltage assignment are
less disruptive than re-placing the cells or re-routing them. For exam-
ple, the timing of a buffer driving a large wire load could be improved

8 Introduction

by increasing its size. This may result in a local rerouting to accom-
modate the different pin locations of the larger cell, and if there is no
space around the surrounding cell, then an incremental placement will
be needed to create space for the cell. However, this is preferable to
rerouting large sections of the design, or adjusting the placements of
tens or hundreds of cells.

In some cases, when only the gate lengths or threshold voltages
change, the disruption is very minimal. In these cases, the cell dimen-
sions and pin locations are the same, and these cell alternatives can
be swapped without any change in the routing or the placement. The
only verification needed is to ensure that the crosstalk noise, power,
and timing constraints are satisfied.

Another advantage of gate sizing and threshold voltage assignment
is that they are versatile, as they can be targeted to different optimiza-
tion objectives. They have been used for power and timing optimiza-
tion [46], to fix noise constraints due to crosstalk [98, 170], to harden
soft-errors due to radiation [174], to improve yield [37, 50], and to
minimize statistical power [42, 151].

1.3 The Standard Cell Library

The standard cell library contains logic cells such as inverters, ands,
not–ands (nands), and x-ors that implement Boolean logic functions.
There are also sets of sequential cells such as flip-flops, latches, and their
variants with capabilities for setting, resetting and reading in scan-
chains. These sequential cells provide memory, allowing pipe-lining,
state machines, and a memory for computations. Lastly, there are util-
ity cells, such as filler cells, antenna cells, and buffer cells, which are
tools to help with the physical implementation of the design.

The library generally provides several gate options for each logic
function. Each of the options are logically equivalent — they implement
the same boolean function — but have varying electrical characteristics,
due to differences in their gate lengths, widths, PMOS–NMOS width
ratios and threshold voltages Vt. These alternative options can be used
to optimize the design. For example, critical paths can be sped up by
swapping high-Vt cells by low-Vt cells, and gates with fanout violations

1.3 The Standard Cell Library 9

can be fixed using alternatives with larger-transistor widths and smaller
effective resistances at the gate outputs.

Two library files that are used for sizing and threshold voltage
assignment are:

(1) Physical library information.
(usually expressed in Library Exchange Format (LEF)):

• Cell information: dimensions of the cell and locations
of the pins.

• Interconnect information: dimensions, pitch, capaci-
tance, and resistances for each metal layer.

• Via information: dimensions, resistance, and layers
that are connected.

(2) Timing library information.
(usually expressed in Liberty Format):

• Library characterization information: temperature,
voltage and process.

• Parameters used in the library: slew thresholds,
input thresholds, output thresholds, and measure-
ment units.

• Cell information: delays, area, logic function, short-
circuit power, switching power, leakage power. For
flip-flops the hold and setup time requirements are
also given.

• Cell pin information: capacitances, maximum loads.

The geometry information in the LEF file is used for placement and
routing. This information tells the program how to create standard cell
rows for floorplanning, and the dimensions of each cell for placement.
Next, the pin locations, interconnect geometries, and via dimensions
are used for routing, and once routing is complete, the capacitance and
resistance information is used to extract information about the wire
parasitics.

The timing and power information from the Liberty file is used for
the timing and power analysis of the design. The timing information

10 Introduction

is used in conjunction with the wire parasitic information to create
delay estimates and power estimates with interconnect loading model-
ing. This will be covered in more detail in Section 2.4.

1.4 The Gate Sizing and Vt Assignment Problem

Of the many variations on the gate sizing and threshold voltage assign-
ment problem, this work will consider the following metrics:

• Leakage power
• Dynamic power
• Clock period

The application most commonly found in literature today is to min-
imize the power, or some combination of the leakage power and the
dynamic power, with a constraint on the clock period. When timing
closure is important, the objective is to minimize the clock period, and
in post-layout situations, the noise and crosstalk violations are often
optimized.

The variables in the optimization process are the cells used to imple-
ment the gates. These cells can be swapped to decrease the delay or
power, or to modify the output signal waveform. The cells may be
different sizes, and have different pin locations.

Functionally equivalent cells that can be interchanged may be iden-
tified by the designer, the design tool, or by the library by having
the same footprint. For example, the inverter-type cells will have an
“inverter” footprint, which identifies the family of cells that can be
used to replace the gate. Each of these cells performs the same logic
function, thus changing the cells does not affect the functionality of the
design.

Formally, the problem may be written as an optimization problem.
For example, with the vector of cell options �ω, the delay-constrained
power optimization problem is:

minimize Power(�ω)

subject to Delay(�ω) ≤ Tmax
(1.1)

where Tmax is the clock period. This form helps summarize the objec-
tives and constraints in the optimization process.

1.5 Notations and Acronyms 11

Table 1.1. Notation.

Symbol Meaning

G Set of gates in the design
g A gate in the design

ω,ω0 A cell option, current cell option
CellOptions(g) Set of alternative library cell options for g

wg The width for gate g
vthg The threshold voltage for gate g

ta Arrival time
ta(g) Set of arrival times for the inputs of gate g

tr Required arrival time
tr(g) Set of required arrival times for the inputs of gate g

τg Set of input transition slews for gate g
d Delay
p Power

PI Primary inputs input ports in the design
PO Output ports in the design

fi(g) The set of gates that drive the inputs of gate g
fo(g) The set of gates that are connected to the output of gate g

ε A small positive number
ρ Power/delay tradeoff sensitivity

The delay is estimated using a Static Timing Analysis method (see
Section 2) and timing constraints are usually expressed in a Synop-
sys Design Constraint (SDC) format. These constraints can be very
complex, with multicycle paths, multiple clocks, power domains, and
false-path definitions. In addition, parasitic information in a Standard
Parasitic Exchange (SPEF) format is used to approximate the inter-
connect delay.

1.5 Notations and Acronyms

While new notation is avoided when possible, notation for certain key
concepts are unavoidable. The notation for key symbols used in this
monograph are summarized in Table 1.1. These symbols, and concepts,
will be elaborated in the remainder of the monograph; for example, the
slew and other timing concepts will be covered in the following section.

2
Static Timing Analysis

Gate sizing and threshold voltage assignment methods that optimize
timing or use timing constraints rely on Static Timing Analysis (STA)
based timers. Static timing analysis computes the delays and arrival
times in the graph without requiring data inputs or simulations. This
is in contrast to dynamic timing methods which require simulation
vectors to find critical paths. In this section, a broad overview of STA
will be reviewed. For readers new to the subject of STA, we refer [137]
for a comprehensive treatment of the subject, and [14] for a practical
introduction.

The principle behind STA is to propagate the best- and worst-case
delays through the circuit. The arrival times (ta) at each node are com-
puted by traversing the circuit in topological order, starting with the
primary inputs, and propagating the delays through to the primary out-
puts. The slacks (s) are computed in reverse-topological order, starting
with the required arrival times (tr) at each of the outputs and prop-
agating these times through to the inputs. In sequential circuits, the
inputs of the sequential elements are also considered to be primary
outputs and the outputs are considered as primary inputs.

12

2.1 Concepts and Terminology 13

When setup or long-path violations are of interest, the STA propa-
gates the worst-case times through the graph to find the critical, or max
path. This is to find whether the signal will arrive at its destination by
the time it is required to arrive.

Similarly, when hold or short-path violations are of interest, the STA
propagates the best-case times through the graph to find the shortest,
or min path. This is used to find whether the signal arrives too fast at
the input of a flip-flop or latch, causing the input state of the flip-flop
to be set improperly, potentially causing metastability at the output.

2.1 Concepts and Terminology

The terminology used to describe the topology and the signal and delay
characteristics of a circuit is presented in this section. The first set of
terms are used to describe the topology of the circuit. These terms are
used to identify the inputs and the outputs of the circuit, the neighbor-
ing gates, and an ordering of the gates that can be used for performing
the timing analysis.

• Primary inputs (PI): input ports in the design that are
driven by external sources.

• Primary outputs (PO): output ports in the design.
• Fanins of a gate (fi(g)): the set of gates that drive the

inputs of gate g.
• Fanouts of a gate (fo(g)): the set of gates that are driven

by gate g.
• Fanin cone of a gate: the set of gates whose outputs have

a path to the input of the given gate. This includes the fanins
of the gate, the fanins of the fanins, and so on.

• Fanout cone of a gate: the set of gates whose inputs have
a path from the output of the given gate. This includes the
fanouts of the gate, the fanouts of the fanouts, and so on.

• Topological order: a way of ordering, or numbering the
gates where the fanins of a gate have a number smaller than
the fanouts of a gate. When sequential elements are present,
the sequential elements are placed at the top of the list. This
ordering is generally not unique.

14 Static Timing Analysis

For example, in Figure 2.2, the primary inputs are {IN[0], IN[1]}.
The primary outputs are {OUT[0]}. The fanin of gate G2 is {G1} and
the fanout of G3 is {G2}. In this example, a topological ordering is
{G1,G3,G2}.

The second set of terms are used to describe the output waveform
and delay characteristics. These terms are used to describe the time the
signal arrives at a given point, and the characteristics of the waveform
that arrives.

• Cell rise time or rise delay: time from when the input
crosses 50% voltage to when the rising output crosses 50%
voltage.

• Cell fall times or fall delay: time from when the input
crosses 50% voltage to when the falling output crosses 50%
voltage.

• Cell rise transition or slew: the time elapsed from when
the output signal crosses the 30% voltage to when it crosses
70%.

• Cell fall transition or slew: the time elapsed from when
the output signal crosses the 70% voltage to when it crosses
30%.

• Arrival time (ta): the time that the signal crosses the 50%
voltage threshold at a given point in the circuit. The time
associated with a rising and falling signal are called the rise
arrival time and the fall arrival time, respectively.

• Required arrival time (tr): the time a signal needs to cross
the 50% voltage threshold at a given point in the circuit to
be timing feasible. The required arrival time associated with
a rising and falling signal are called the rise and fall required
arrival time, respectively.

• Slack (s): the difference of the required arrival time and the
arrival time, represents the amount of timing slack available
at that point in the circuit.

An example of these concepts is shown in Figure 2.1. This figure
shows a falling transition for an inverter in a 45 nm [114] process. The
input is assumed to be an ideal ramp, however, the output transition

2.1 Concepts and Terminology 15

Fig. 2.1 Plot of the transition and delay times for a size 1 inverter driving a 0.05 pF load.

is not ideal. The input slew is 0.1 ns, the fall time is 0.2 ns, and the
output slew is 0.12 ns.

The 50% threshold for the delays, and the 30–70% thresholds for
the slews are parameters that are set by the given timing library. The
50% threshold is generally standard across libraries, but libraries may
differ in the slew thresholds. In libraries today, a 20–80%, or a 30–70%
threshold are the most common.

At a given point in the circuit, the arrival time (ta) is the time that
a signal crosses the delay threshold. This is the time that the signal
is said to arrive at the given point. Arrival times are widely used to
convert the arriving waveform into a single time. There are two types
of arrival times:

• Minimum arrival time: the fastest time that a signal can
arrive. Used to check for hold-time violations.

• Maximum arrival time: the slowest time that a signal can
arrive. Used to check for setup-time violations and primary
output arrival time requirements.

The hold-time requirements ensure that the signal does not arrive too
quickly to the input of a sequential element. The setup-time require-
ments ensure that the signal does not arrive too late to be stored in
the sequential element or be read from the primary output.

16 Static Timing Analysis

At a given point in the circuit, the required arrival time (tr) is the
time that the signal is required to arrive to meet the setup time and
the output arrival time requirements. This is computed by subtracting
the clock period with the delays downstream from the gate. Thus, if the
signal arrives by the required arrival time, the delay conditions at the
primary output or flip-flop inputs should be met.

The main use of the required arrival time is in computing the
slack (s). The slacks is defined as the difference between the required
arrival time and the arrival times:

s = tr − ta (2.1)

Thus, it measures the amount of timing “slack” that is available at the
point in the circuit and how much the timing may be increased or must
be decreased at that point in the design. Timing is infeasible wherever
the slack is negative (s < 0), and timing is feasible wherever the slack
is non-negative (s ≥ 0).

The last set of terms are used to relate the signal waveforms and
the arrival times between different adjacent parts of the design.

• Timing arc: a concept used to relate the delay between two
adjacent points in the circuit.

• Positive unate: when a rising input to a gate causes a rising
output, or a falling input causes a falling output.
• Negative unate: when a rising input to a gate causes a

falling output, or a falling input causes a rising output.

The timing arcs are useful abstractions to connect the delays of adja-
cent points in the circuit. For example, the delay from an input A to
output ZN is a timing arc, and the delay between an output of a gate
to an input of another gate is a timing arc. This helps to conceptualize
the circuit timing in terms of a graph with the delays, represented by
timing arcs, along the edges.

The terms positive and negative unate are used to describe timing
arcs in a cell. They connect the appropriate rising or falling arrival
times with the corresponding rising or falling arrival time. For example,
the timing arcs in an inverter cell are negative unate — a rising input

2.2 Computing Arrival Times and Slacks 17

will always cause a falling output. In contrast, the buffer cell has only
positive unate timing arcs — a rising input will always lead to a rising
output. In the exclusive-OR gate, there are both positive unate and
negative unate arcs, as a rising input can lead to a rising output (if
both inputs are initially 0), or a falling output (if the other input is 1).

2.2 Computing Arrival Times and Slacks

Signals are propagated through the design using a series of timing arcs
or timing paths. These timing arcs connect:

(1) Primary inputs to gate input pins.
(2) Gate input pins to gate output pins.
(3) Gate output pins to other gate inputs or primary outputs

using interconnects (nets).
(4) Clock signals to input hold and setup conditions.
(5) Clock signals to output “clock-to-Q” (C2Q) delays.

STA works through the following method.

(1) Compute the delays and arrival times at the primary inputs
(PI) and the flip-flop outputs.

(2) In topological order, compute the delays and arrival times for
the remainder of the gates.

(3) Compute the arrival times at the primary outputs (PO) and
the flip-flop inputs.

(4) In reverse-topological order, compute the required arrival
times and the slacks.

The arrival times along a path are found by adding the delays of the
timing arcs.

However, there is a complication when the multiple inputs combine
to form a single output. This happens in the case of multiple input
gates, such as a 3-input AND, a multiplexer, or a 2-input exclusive-
OR. In this case, the maximum of the arrival times at the output are
propagated for a setup time or late-mode analysis, and the minimum
of the arrival times at the output are propagated for a hold-time or
early-mode analysis.

18 Static Timing Analysis

Fig. 2.2 Static timing analysis example–finding the maximum path. The notation
ta: [rise] | [fall] is used to denote the rise arrival times and the fall arrival times, and
d: [rise]|[fall] is used to denote the rise and fall delays.

Figure 2.2 gives a simplified example of the max path STA process.
The STA computes the maximum path delay by computing the arrival
times at:

(1) The output of G3 by using the C2Q delay.
(2) The output of G1 by using the C2Q delay.
(3) G2 from G3 by adding the output delay with the interconnect

delay of net E.
(4) G2 from G1 by adding the output delay with the interconnect

delay of net B.
(5) G2 from IN[1] by adding the arrival time at IN[1] to the

interconnect delay of net C.
(6) The output of G2 by taking the maximum of the sum of the

input arrival times and the gate delay.
(7) The input of G1 by adding the arrival time at IN[0] to the

interconnect delay of net A.
(8) The input of G3 by adding the output arrival time at G2

with the interconnect delay of net D.

2.3 Interconnect Delay 19

(9) The primary output OUT[0] by adding the output arrival
time at G2 with the interconnect delay of net D.

In this example, the worst-case delay is a falling delay of 8 at flip
flop G3. There are two equally critical paths, or the worst-delay paths
with this delay. One is from G3 to G2 to G3, and another is from G1
to G2 to G3.

Finding the shortest path to check for hold-time violations is similar,
except that the minimum arrival times are propagated. The difference
in Figure 2.2 is that the minimum path, from the primary input IN[1]
is propagated through gate G2. In this case, the hold requirement would
be met: the minimum delay is 2, while the hold requirement is also 2.

The slack is computed using an extra backwards (reverse topologi-
cal) pass through the circuit. In the backwards pass, the required arrival
times (tr) are backwards propagated through the circuit. It starts with
the primary outputs and the inputs to the flip-flops, setting the required
arrival time to the latest arrival time that the signal can arrive; this
is generally equal to the clock period, or the clock period minus the
setup time. The required arrival times are propagated backwards by
subtracting the delays at each arc until it reaches the primary inputs
to the flip-flops and latches. Once the required arrival times are set,
the slacks are computed as the difference between the required arrival
times, and the actual arrival times:

s = tr − ta (2.2)

Figure 2.3 shows an example of this process. It starts at the flip-
flop inputs (G3 and G1) and primary output (OUT[0]), and proceeds
reverse-topologically.

The examples above shows how to compute the delay, the required
arrival times and the slacks as a function of the gate delays and inter-
connect delays. The process of computing the gate and interconnect
delays will be explained below.

2.3 Interconnect Delay

As scaling continues, interconnect delay becomes an increasingly large
percentage of the total delay. This has increased the importance of

20 Static Timing Analysis

Fig. 2.3 Static timing analysis example to compute the slack. The required arrival times (tr)
are propagated from the outputs to the inputs, and the slack (s) is computed as s = tr − ta.
The notation tr: [rise] | [fall] is used to denote the rise required arrival times and the fall
required arrival times.

computing accurate wire delays, and has motivated fast and accurate
interconnect delay metrics [23].1

Interconnects are generally extracted from layouts in the form of
parasitic networks. These parasitic networks model the capacitance and
resistance properties of the interconnects and are used to analyze the
propagation of the voltages down the wires.

The simplest and most common of these networks is the RC tree.
This is defined as a tree with:

• one voltage source,
• capacitances are connected to ground,
• resistances to other nodes (but never to ground).

There are more complex variations on the RC tree [137]. If the
restriction to a tree is dropped and loops are allowed, then the resulting
network is called an RC mesh. When inductors are allowed, the result-
ing network is called an RLC tree or RLC mesh. Lastly, a pair of RC

1 For a detailed analysis of the subject, please see [23] or [137].

2.4 Gate Delay Models 21

trees that are connected together using capacitors is called a coupled RC
tree. There are many variations on this that emerge by mixing the type
of network topology (line, tree, mesh), parasitic elements (resistors,
capacitors, inductors), and coupling (coupled or not coupled).

The challenge in computing interconnect delay is to find the propa-
gation delay and the transition time at the outputs. The most accurate
method is to solve the differential equations related to the currents,
charge and voltages in the parasitic network. However, this is compu-
tationally prohibitive in large designs, and especially in the context of
gate sizing and threshold voltage assignment, where fast delay estimates
are needed for optimization.

The simplest method is the Elmore delay [56]. This method approx-
imates the delay as the expected value of the unit step response applied
to the network. This is also equal to the first-moment of the impulse
response, hence the Elmore delay is also called the dominant-time con-
stant, or first-order approximation of the delay. This correlates well
with the actual delay [16] (also see [1]) and can be used for rough delay
estimates or for short interconnect. In [68], the Elmore delay is shown
to be an upper bound on the actual delay, which justifies its use as a
conservative estimate.

When accuracy is important, modern timers may employ more
accurate methods that utilize higher order moments to improve the
accuracy. Examples of this are the Asymptotic Waveform Evaluation
Method [127] and the Krylov subspace methods [59, 144]. We refer the
reader to [23, 137] for more details on these methods.

2.4 Gate Delay Models

The most accurate gate models are in the form of spice level netlists.
These netlists contain transistor level information that can be used
by transistor-level timing methods for static timing analysis.2 These
methods use fast Spice-like simulations without the use of input vectors
to create timing estimates that are comparable to Spice simulations.

2 For example, the Synopsys NanoTime [157].

22 Static Timing Analysis

However, only a small percentage of designs are able to utilize
transistor-level timing, as most designs are too large for transistor level
simulation. Furthermore, these methods are too slow to be used in the
process of optimizing large designs.

The library modeling standard that is used is the Synopsys Liberty
modeling format [156].3 Currently, Liberty uses two different methods,
the Nonlinear Delay Models (NLDM) and the current-source models,
which include the Synopsys Composite Current Source (CCS) and the
Cadence Effective Current Source Model (ECSM). The NLDM format
is a legacy format introduced in 1992, and the CCS/ECSM methods are
newer methods from 2004 that were introduced to improve accuracy.

2.4.1 The Nonlinear Delay Model (NLDM)

The NLDM has long been the de facto standard for static timing
analysis methods, though it is slowly being replaced by the newer
current-source methods. It utilizes tables that store rise and fall times,
and output rise and fall transitions (slews), as a function of the input
transition and the output capacitance load. The model also contains
the capacitances for all of the input pins in the library.

The parameters that define the cell rise, fall, and transition times
are given at the top of the Liberty file. The most common numbers in
modern libraries are a 50% rise/fall threshold and a 20–80% or 30–70%
slew rate.

A table for rise delay, fall delay, rise transition, and fall transition is
provided for each cell in the library. Each of these tables is indexed by
the input transition time, and the output capacitance. Table 2.1 pro-
vides a small example of the cell rise times for a nominal sized inverter
gate. The delays are increasing functions of the input transition and
the output load, and both the input transition and output capacitance
have a large effect on the output delay.

There are also tables for the clock hold time and setup time of
sequential elements. The hold and setup times are given for rise and

3 See http://www.opensourceliberty.org for information on the format, technical papers,
and an open source parser. Also, see [160] for the motivation for current-source methods.

2.4 Gate Delay Models 23

Table 2.1. Rise times (delays) and transitions (slews) in ns for a nominal inverter gate
as a function of the input transition time and the output capacitance.

Output capacitance (fF)

Input slew 0.4 0.8 1.6 3.2 6.4 12.8 25.6

Output rise delay

0.0075 0.018 0.022 0.032 0.051 0.089 0.164 0.315
0.0375 0.032 0.038 0.048 0.066 0.104 0.179 0.330
0.1500 0.059 0.069 0.087 0.117 0.164 0.239 0.388
0.6000 0.129 0.145 0.174 0.224 0.305 0.433 0.628

Output rise transition

0.0075 0.012 0.016 0.025 0.043 0.079 0.151 0.294
0.0375 0.018 0.021 0.027 0.043 0.079 0.151 0.294
0.1500 0.036 0.042 0.052 0.067 0.092 0.152 0.294
0.6000 0.095 0.100 0.114 0.139 0.183 0.252 0.353

Table 2.2. Setup times for a rising input to a nominal D-Flip Flop as a function of the
input transition and the clock transition.

Clock transition (ns)

Input slew 0.005 0.0141 0.0281 0.056 0.113 0.225 0.450

Setup time

0.0075 0.038 0.033 0.028 0.022 0.017 0.017 0.028
0.0375 0.050 0.046 0.041 0.035 0.030 0.031 0.041
0.1500 0.087 0.083 0.078 0.071 0.067 0.067 0.075
0.6000 0.181 0.176 0.170 0.162 0.155 0.153 0.159

Hold time

0.0075 0.009 0.013 0.018 0.022 0.023 0.018 0.002
0.0375 0.045 0.048 0.051 0.051 0.047 0.031 −0.004
0.1500 0.300 0.304 0.308 0.310 0.308 0.298 0.265
0.6000 1.383 1.386 1.391 1.395 1.398 1.388 1.364

fall transitions, as a function of the input transition (slew), and the
clock slew. Table 2.2 shows a small example of the setup time for a
nominal sized D-flip flop.

One limitation of this model is that the load capacitance is not well-
defined at the output of a gate. Gates usually drive other gates through
a series of interconnect that have their own intrinsic resistances. How-
ever, this has the effect of “resistive shielding” as the resistance hides
some of the capacitance from the gate. Essentially, this resistance will

24 Static Timing Analysis

Fig. 2.4 Example of effective capacitance: an inverter driving an RC tree. The effec-
tive capacitance is less than the total capacitance of the tree: Ceff <

∑4
i=1 Ci. Adapted

from [137].

cause the capacitances closer to the gate to be charged faster than the
ones downstream from the gate. Thus, the waveform at the output of
the gate will be faster than having the total capacitance present at the
output of the gate.

STA timers account for the resistive shielding by computing the
effective capacitance of the gate (see [14, 57, 102, 128]) to predict
accurate delays. Figure 2.4 shows an example of this resistive shield-
ing effect. Due to the resistors R1–R4, the effective capacitance seen
at the output of the inverter is strictly less than the total capaci-
tance of the tree. As the resistances increase, the effective capacitance
decreases.

Another limitation is the one-parameter model of the input and
output waveforms [57]. The input and output waveforms are character-
ized only by their transition time. This limits the amount of flexibility
and introduces modeling errors. However, many tools will re-model the
NLDM library to approximate a current-source model (see, for exam-
ple, [81]). The NLDM tables are used to estimate the input–output
current and voltage relationships. This helps to mitigate the limita-
tions of the NLDM.

In the context of gate sizing and threshold voltage assignment, the
NLDM has been the standard timing information for these algorithms
for over a decade, and has heavily influenced these algorithms. Most
algorithms estimate the gate delays to be functions of the input slew
and output capacitance.

2.4 Gate Delay Models 25

2.4.2 Current Source Models

Current source models were introduced to increase the accuracy of the
gate models [57, 84, 160]. They use enhanced driver models, which
model the output of the gates as function of time, and receiver models,
which model both the loading and the Miller coupling effects. These
libraries are generally much larger than the NLDM libraries, as they
need to store voltage or current information over multiple time points,
for each input load and slew value.

The driver models provide an output waveform for each input slew
and output capacitance combination. In the CCS models, the current
is given as a function of time, and in the ECSM model, the voltage
is given as a function of time. This reduces the error of the timing
simulation to approximately 2% for a single stage, when compared to
HSPICE [160].

The receiver models are used to capture the nonlinear characteristics
of the receiver [84, 160]. These models use two tables that give the
receiver capacitance as a function of the input transition and the output
load. The first table gives the input pin capacitance for the first half of
the input waveform, and the second table gives the capacitance for the
second half of the waveform. The capacitances vary greatly; for example
the nominal sized inverter in the Nangate library has capacitances that
range from 0.43 fF to 0.78 fF.

2.4.3 Liberty Power Models

All Liberty models provide leakage power information in the maximum
or average leakage power for the cell, and may additionally provide
the leakage power for the different input combinations. For example,
Table 2.3 shows the leakage information for the NAND2 X1 gate from
the 45 nm Nangate Library as a function of the inputs.

The Nonlinear Power Model (NLPM) is the power analog to the
NLDM. This model provides a series of tables for the rise and fall
internal power of the cell, as a function of the input transition and the
output load. This internal power model gives the internal energy used
at each transition, but excludes the power that is needed to charge the
output load.

26 Static Timing Analysis

Table 2.3. Leakage powers for the NAND2 X1
gate. A1 and A2 are the two input pins.

When Value

!A1 & !A2 1017.82
!A1 & A2 7340.61
A1 & !A2 1204.57
A1 & A2 10286.09

2.5 Slew Propagation

An important part of static timing analysis is the propagation of the
input transitions, or slews [14]. The output waveforms play a major
role in determining the output delay. For example, Table 2.1 shows
that the difference in delay between the minimum and maximum tran-
sition is 2–7×. Thus, ignoring slew effects will cause inaccuracies in
the delay. Furthermore, ignoring the slew in gate sizing and threshold
voltage assignment eliminates the potential in increasing gate sizes or
decreasing the threshold voltage to improve the downstream slew, and
the corresponding downstream delays.

Computing the output slew is a difficult process when there are
multiple inputs. This is because there may be a case where the input
signals overlap. For example, Figure 2.5 shows the case of a two-input
gate. The input A arrives at the gate later (in terms of the 50% delay
threshold), but finishes transitioning faster. The input B arrives at the
input earlier, but has a much slower transition.

When computing the output slews for max path analysis, the slower
slew is usually propagated. This is because the timing analysis is

Fig. 2.5 Output transition (slew) dilemma. The input waveforms to a two-input gate are
shown.

2.6 Power and Clock Domain Considerations 27

intended for design validation, and because it is important to use a
worst-case approach. Thus, in Figure 2.5, the arrival time of input A
will be used to compute the output arrival time, and the slew of input
B will be used to compute the output slew. However, most timers can
also propagate the slew associated with the greatest arrival time if
specified.

Similarly, for min path analysis, the fastest slew is propagated, as
this is the worst case. Thus, in Figure 2.5, the arrival time of input B
will be used to compute the output arrival time, and the slew of input
A is used to compute the output slew.

2.6 Power and Clock Domain Considerations

Most modern designs will also use multiple clock domains, and possibly
multiple power domains [14]. Multiple clock domains arise naturally,
as one clock might be used to synchronize the input of the design,
another clock for the processing within the design and a third clock
to synchronizes the output of the design. Multiple power domains
may show up due to performance considerations. A low-voltage power
domain may be used to handle data paths that are not-critical, while a
higher-voltage might be used for parts of the domain that need a faster
speed.

Multiple power domains require the computation of the appropri-
ate delays for the proper supply voltage, and the delays through the
voltage-level shifters. This affects the delays and slews, and the method
to compute the slews. For example, the delay would need to be com-
puted with a higher voltage, and also the arrival time calculated using
the 50% of the new voltage.

Multiple clock domains are a trickier consideration. While tim-
ing the design is straightforward within a clock domain, complexities
emerge when crossing clock domains. Generally, the data signals use
synchronization or handshaking methods between the different clock
domains. However these paths require special attention to make sure
that these paths are handled correctly, or designers mark them to be
ignored.

28 Static Timing Analysis

2.7 Additional Considerations

There are several additional concepts that are used in Static Timing
Analysis [14] that will not be covered here:

• On-Chip Variations: modeling the variations in operating
conditions (temperature and voltage) and manufacturing
process (transistor dimension and threshold variations,
interconnect dimension variations, etc.).

• Crosstalk: the effect of neighboring interconnects due to
coupling capacitances.

• Timing borrowing: utilizing transparent latches to
improve performance.

Overviews of these topics can be found in [14].

2.8 Difference between STA Timers

While the basic methodologies that the timers use are all similar, there
is still a difference between the outputs of different timers. Timers used
in place and route tools will generally use approximations for variation
modeling, crosstalk and interconnect delay calculations. On the other
hand, sign-off quality timers will use methods that are more accurate,
but will require a longer runtime.

The main benefit to using better timing methods is to reduce the
pessimism. STA is designed to be conservative, as the resulting design
must meet the timing. However, a large amount of pessimism may cause
over-design, while a timing method that is not conservative enough may
result in catastrophic results.

The difference between the timers used in place and route, and the
timers used in sign-off will be discussed in more detail in Section 5.2.1.

2.9 Incremental Timing Analysis

Gate sizing and other optimization methods rely heavily on incre-
mental timing analysis methods [90, 137]. These methods are fast
ways to find the updated timing information after changes in the

2.10 Statistical Static Timing Analysis (SSTA) 29

design, from sources such as gate sizing, threshold voltage assignment,
and routing. The idea is to update only the arrival times that may
change; thus when the changes are relatively small, the speedup and be
substantial.

As an example of incremental timing analysis, consider
Figure 3.9(a). If the gate g5 changes, then the arrival times of
its fanout cone, g7, g8, and g9 may be affected, and must be recom-
puted, or at least checked to make sure the times are still valid.
However, the change in g5 may also change the arrival times at the
output of g2 and g3. Thus the fanout cone of its inputs should also
be recomputed. Furthermore, when slack estimates are required, the
required arrival times must be recomputed, and in this case, the
required arrival times for the fanout cone (the gates whose delays
change), and the fanin cone may need to be updated.

2.10 Statistical Static Timing Analysis (SSTA)

Statistical Static Timing Analysis algorithms update the STA frame-
work to compute statistical delays and arrival times. Instead of numbers
for arrival times and slacks, distributions are used. There is an extensive
literature on the subject4 and in this section, we briefly describe the
basic categories and describe the two main categories of SSTA methods:
block-based methods and path-based methods.

2.10.1 Block-based Methods

Block-based methods for SSTA [25, 86, 161, 165] are a natural exten-
sion of the STA framework. In STA, there are two main mathematical
operations: the summation, when gate delays are added to arrival times,
and the maximum operation, when the latest arrival time is propagate
down the circuit (see Section 2.2). SSTA extends these operations to
work with distributions, thereby making it possible to propagate sta-
tistical arrival times.

4 For a good overview see [15, 61, 94].

30 Static Timing Analysis

Gate delays and arrival times can be described using the canonical
delay model [165]:

a0 +
n∑

i=1

ai∆Xi + an+1∆Ra (2.3)

where ∆Ra and the ∆Xi are zero mean, unit variance random
variables. Each of the ∆Xi describe the n different global sources of
variation, with the ai representing the sensitivity of the delay to the
variation source.5 ∆Ra describes the independent local variation, and
the an+1 describes the sensitivity to the local variation.

When the timing variations are Gaussian, the sum is straightfor-
ward to compute. As the sum of two Gaussian random variables is also
Gaussian, the sum of da and db given by

da = a0 +
n∑

i=1

ai∆Xi + an+1∆Ra (2.4)

db = b0 +
n∑

i=1

bi∆Xi + bn+1∆Rb (2.5)

can be summed directly to form the Gaussian random variable

da+b = (a0 + b0) +
n∑

i=1

(ai + bi)∆Xi +
√

a2
n+1 + b2

n+1∆Ra+b. (2.6)

The maximum operation, however, is problematic, and is the main
difficulty for block-based methods. The maximum of two Gaussian
random variables is not, in general, Gaussian, and the resulting dis-
tribution cannot be computed in closed form. However, the mean and
the variance of the resulting distribution can be computed using the
formulas in [41], which [25] uses to reconstruct a Gaussian distribu-
tion that approximates the maximum. Applied to the canonical delay
model, the maximum of da and db is approximated as [165] as

d̂max{a,b} = (TAa0 + (1 − TA)b0) +
n∑

i=1

(TAai + (1 − TA)bi)∆Xi

+cn+1∆Rmax{a,b} (2.7)

5 Sensitivity can be computed as the partial derivative of the delay with respect to that
variation source.

2.10 Statistical Static Timing Analysis (SSTA) 31

where TA is the probability that da > db, and cn+1 is computed so
that the variance of the approximation d̂max{a,b} matches the actual
variance.

Extensions to this approximation to handle non-Gaussian variations
and delay expressions are studied in [26, 32, 38, 85, 147, 171, 172, 173].
The non-Gaussian methods improve the accuracy of block-based SSTA
by incorporating higher-order effects, or accounting for the skewed
delay distributions.

2.10.2 Path-based Methods

Path-based methods are studied in [3, 5, 19, 35, 62, 97, 99, 103, 120,
129]. These methods select the most critical paths in the design, and
compute the statistical delay pdf using these critical paths, either by
Monte-Carlo, or by using analytical method. They have the advan-
tage of being more accurate because they do not need to approximate
the statistical maximum of two random variables [129]. On the other
hand, these methods are much more computationally intensive than
the block-based methods, as the number of paths is generally believed
to be exponential in the number of cells. However, [129] argues that the
number of paths is sub-quadratic for a commonly used set of bench-
marks, and that path-based SSTA can be used in conjunction with
block based methods to improve accuracy.

3
Gate Sizing and Vt Assignment Fundamentals

Gate sizing, along with gate-length biasing and Vt assignment, works by
matching the drive-strengths of the transistors to the capacitive loads
in the design. Larger gates are used to drive larger capacitive loads
due to long interconnect wires, I/O pads, or large fanouts. However,
improvements in the delay must be weighed against increases in the
power, and this trade-off is the central mechanism behind gate sizing
and threshold voltage assignment.

3.1 Delay Trade-offs

The relationship between the gate size, length and Vt as a function of
the delay can be approximated using an α-power law model [136]:

Delay ∝ 1
W
L (Vgs − Vt)α

. (3.1)

where W is the gate width, L is the gate length, Vgs is the gate-to-
source voltage, and Vt is the threshold voltage. This expression indicates
that the gate delay is roughly linear in the gate length, and inversely
proportional to gate widths.

32

3.1 Delay Trade-offs 33

Fig. 3.1 Normalized inverter gate delays for a commercial 45 nm library.

For a 45 nm commercial library, a sample of the effects of the sizes
and threshold voltages on the delays is given in Figure 3.1.1 α for this
library is approximately 1.4.

Notice that the gate widths in this library are geometrically
spaced — there are 10 gates sized 2.5 and under, and there are 10
gates between 3 and 16. This is because of the inverse relationship
between the gate delay and the gate width: reducing the delay by a
factor of 2 requires the gate width to double in size.

The gates in the library are spaced to cover a wide range of delays.
Increasing to the next gate size will lead to a 10–15% reduction in the
output delay, and the difference between the delay of the minimum size
and maximum size is 12×. In the case of threshold voltages, changing
from vt0 to vt1 or vt1 to vt2 increases the delay by about 10%. However,
increasing the threshold voltage from vt2 to vt3 increases the delay by
the larger margin of 35%.

Increasing the gate widths also increases the capacitances of its
input pins proportional to W · L. For example, Figure 3.2 shows that
this capacitance is roughly linear in the size of the gate. Increasing the

1 In this table, the rise and fall transition thresholds are 20% and 80%, and the delay
threshold is 50%. For example, the rise transition time is the time measured from when
the signal passes 20% of the supply voltage, to when it reaches 80% of the voltage. The
pull-up delay is the time from when the signal reaches the input of the gate (at 50%) to
the time that the output pin voltage reaches 50%.

34 Gate Sizing and Vt Assignment Fundamentals

Fig. 3.2 Normalized inverter input pin capacitances in a commercial 45 nm library.

size will therefore cause the delay of the fanin gates to increase, and
may have a cumulative negative effect on the delay. This is why gate
sizing requires a balancing of the loads in the design (see Section 3.1.1),
rather than increasing the sizes to meet the delay constraints.

Changing the threshold voltages has a milder effect on the input
capacitances. Figure 3.2 shows that the capacitance is a weak function
of the threshold voltage. Moving from vt0 to vt1 gives a 3% decrease
in the capacitance, while moving from vt1 to vt2 gives a 4.5% decrease
in the capacitance. Thus, although the input capacitance changes, the
overall delay effect is very likely to be a decrease. In contrast, increasing
the gate size may not decrease the overall delay — the increasing input
capacitance may cause a larger increase at the fanins than the decrease
in the output.

3.1.1 Delay Optimization and Balancing Loads

From a delay standpoint, and ignoring constraints on power and area,
the goal of gate sizing is to balance the capacitive loads with higher
gate sizes. To illustrate this concept, consider an arbitrary gate that is
driven by a resistor with resistance Rin and that charges a capacitance
CL as shown in Figure 3.3. Using a linear delay model, the resistance
of the gate Reff is Reff0/w and the input capacitance Cin is Cin0 · w.
The time needed for the signal to reach the output is the sum of the
times needed to charge Cin and CL. Using the relations V = IR and

3.1 Delay Trade-offs 35

Fig. 3.3 Example of a gate driven by a resistance Rin that drives a capacitance CL.

I = C · dV
dt gives:

ln(2) · Rin · (Cin0 · w) + ln(2) · (Reff0/w) · CL, (3.2)

where the ln(2) is used to account for the 50% delay threshold. Note
that this time is not necessarily a decreasing function of the gate size w.
While the time needed to charge CL decreases as w increases, the time
needed to charge Cin has the opposite effect. This implies that the gate
size needs to be balanced between the input and the output. The min-
imum can be found by differentiating with respect to w:

∂

∂w
ln(2) · (Rin · Cin0 · w + CL · Reff0/w) (3.3)

= ln(2) · (Rin · Cin0 − CL · Reff0/w2). (3.4)

Setting this equal to zero gives:

w =
CL · Reff0

Rin · Cin0
. (3.5)

This gives an optimal size for minimum delay that balances the load
between the input of the gate, and the output load.

These relations can be used for multi-gate and general circuits as
well. The idea is that to achieve minimum delay, the gate sizes should
balance the drive strength of the fanin gate, Rin, and the output load CL

to minimize the delay. Given the input and output loading information,
the expression in (3.5) can be used to determine the best size.

Logical effort [154, 155] provides a back-of-the envelope way to per-
form this optimization using the linear delay model. This method is a
rule-based and practical way to apply the relations in (3.5) for arbitrary
circuits. The methods in logical effort are often used to perform quick
and approximate computations to size circuits.

36 Gate Sizing and Vt Assignment Fundamentals

3.2 Power Trade-offs

Power is an important concern in gate sizing and threshold voltage
assignment [42, 79]. Power dissipation has increased super-linearly with
the decrease of transistor dimensions, and the power consumption is
increasing faster than the ability to remove the heat from the devices.
Furthermore, there is an increasing focus on low power and mobile
applications.

Power consumption is divided into static power and dynamic power.
The static power is composed of the leakage power, while the dynamic
power is composed of the power used to switch the voltages within the
gates. Recently, the focus on power has been shifting from dynamic
power to static power. At the 45 nm technology node, static power is
comparable to the dynamic power consumption, and the static power
consumption will continue to increase at a much faster rate than the
dynamic power [115].

3.2.1 Dynamic Power

Dynamic power is related to the energy used to switch logic states. This
includes the power used for charging and discharging the interconnect
and also includes the internal energy that is lost in the process of
switching.

The dynamic power due to charging and discharging gates
(pdynamic(cap)) is directly related to the capacitance that is charged.
Thus, if the total capacitance of a gate is Cg, and the gate switches at
a frequency of fswitch, then the power dissipation is approximately:

pdynamic(cap) = fswitch ·
(

1
2
CgV

2
dd

)
. (3.6)

This expression is just the energy stored on the gate, 1
2CgV

2
dd, times

the number of times the energy will be dissipated per second (fswitch).
The capacitance of a gate is linearly related to the area of the gate,

source, and drain:

pdynamic(cap) ∝W · L. (3.7)

3.2 Power Trade-offs 37

Thus, increasing the gate widths will have a linear effect on the dynamic
power due to capacitance charging.

The other component of dynamic power is the short-circuit power,
pdynamic(sc). This is the power that is lost when both the p-MOS and
n-MOS are temporarily on while the gate is in transition. When the
input transition is fast, then the short-circuit power is minimized.
However, a slow input transition can cause a 5–10× increase in the
short-circuit power, and using minimum sized devices may hurt overall
power [138]. From [136], a short-circuit current expression based on the
α-power law is:

pdynamic(sc) ∝ τ · VDD
W

L
· (1 − 2(Vt

VDD
))α+1

(1 − (Vt
VDD

)α
, (3.8)

where τ is the input transition time, and α is a fitting coefficient for
the technology library.2 This indicates that the short-circuit current is
roughly linear in the input transition time and the gate length, and is
inversely proportional to the gate lengths.3

Figure 3.4 gives the relative internal power dissipation for the
inverter gates. The internal power refers to the power that is dissi-
pated inside the boundaries of the cell itself, and does not include the
power dissipated by charging the output load. The figure shows that

Fig. 3.4 Normalized inverter gate internal powers a commercial 45 nm library.

2 For the 45 nm Nangate Library, α ≈ 1.4.
3 This is just an approximation; the threshold voltages are also dependent on the gate
lengths.

38 Gate Sizing and Vt Assignment Fundamentals

the switching power is indeed a linear function of the size. When com-
paring threshold voltages, the vt0 gate has the highest internal power
dissipation. Switching from vt0 to vt1 or from vt1 to vt2 gives an internal
power savings of about 20%. The reduction from vt2 to vt3 is smaller,
at 10%.

3.2.2 Leakage Power

The leakage power comes from the current that flows when there is no
change in the inputs. It is also referred to as the static power to contrast
it with the dynamic power. Leakage became a significant source of
power dissipation from the 130 nm technology node and at 45 nm it is
comparable to the dynamic power dissipation.

There are several sources of leakage power (see Figure 3.5). There
is gate leakage from the gate to the substrate due to tunneling effects,
leakage from the source to the drain due to sub-threshold conduction,
and leakage from the wells to the substrate.

The main source of leakage is due to sub-threshold conduction from
the source to the drain. This happens because the transistor is not fully
“OFF”, and has a current proportional to [142]:

W

L
· e

Vgs−Vt
vT

(
1 − e

−Vds
vT

)
, (3.9)

where vT = 26 mV is the thermal voltage and Vgs is the gate-to-source
voltage. This expression shows that the sub-threshold is a linear func-
tions of gate-width but is an exponential function of the threshold
voltage Vt.

Fig. 3.5 Sources of leakage power.

3.2 Power Trade-offs 39

Table 3.1. Leakage power for a NAND3 cell as a function
of its inputs.

State Leakage (nW)

A1 & A2 & A3 19.78
A1 & A2 & !A3 14.72
A1 & !A2 & A3 7.41
A1 & !A2 & !A3 0.48
!A1 & A2 & A3 15.59
!A1 & A2 & !A3 1.63
!A1 & !A2 & A3 7.15
!A1 & !A2 & !A3 1.27

Fig. 3.6 Normalized inverter gate leakage powers in a commercial 45 nm library.

The leakage power is a strong function of the gate inputs for multi-
input gates. This is because the inputs affect the internal voltages of
stacked transistors. For example, Table 3.1 shows the leakages for the
nominal sized NAND3 cell as a function of the input. The leakage values
range from 0.48 nW to 19.78 nW — a range of over 40×. This range
causes significant modeling error, as it is very difficult to predict the
probabilities for each of the input states.

The exponential relationship between the leakage and the threshold
voltage is the motivator for multiple-Vt cells. Figure 3.6 shows the rel-
ative change in the leakage power as a function of the size (note that
the powers are plotted on a logarithmic scale). While the relationship
between leakage and gate size are linear, the leakage is exponentially

40 Gate Sizing and Vt Assignment Fundamentals

(a)

(b)

Fig. 3.7 Plot of (a) the gate-length bias vs. power and (b) gate-length bias vs. delay. The
data is for a nominal sized inverter in a commercial 45 nm process, with a nominal gate
length of 40 nm.

dependent on the threshold voltage. Thus, high Vt cells enable order of
magnitude reductions that are not available using sizing alone.

Gate length biasing [67] is another tool for optimization. The idea
is to increase the lengths of gates with positive slack. The increase in
gate length will have linear increases on the delay, but near exponential
effects on the leakage power.

Figure 3.7 shows how the delay and leakage power change as a
function of the gate-length bias. Increasing the gate-length by 5% gives
an approximately 35% reduction in the leakage power while creating a
3–11% increase in the delay. Adjusting the gate-lengths also provides
a finer resolution than the Vt-assignment.

3.3 Gate Sizing Examples

In this section, we provide examples that illustrate the trade-offs
involved in gate sizing. The first and second examples show how the
delay target affects the power, while the third example shows the sizes

3.3 Gate Sizing Examples 41

needed for minimum delay. These examples are adapted from the sizing
benchmarks in [65].

3.3.1 Inverter Chain Example

The first example is an inverter chain driving a fanout load equivalent
to 32 minimum-sized inverters. Figure 3.8 shows the gate sizes, dynamic
power, and leakage power as a function of the circuit delay. The power
vs. size shows an intuitive trend — the gate sizes increase as the power
constraint decreases. This is because there is a large load at the end of
the inverter chain, and larger gates are useful for driving this load.

The gate sizes increase beginning with the gates closest to the load
at the end. This points out an important fact about gate sizing — larger
gates do not always help. For example, with all other gates at minimum
size, increasing the size of gate g2 to 32× will increase the delay by
50%! It is important to remember that the goal in minimizing the delay
is to balance the capacitive loads in the design (see Section 3.1.1). Thus,
the size of gate g4 is increased first. Next, g3 is increased to account
for the increased size of g4, and thereafter, g2 and g1 are increased.

The switching power (Figure 3.8(c)) and leakage power (Fig-
ure 3.8(d)) also follow this trend. The switching power increases because
the cumulative sizes of the gates, and hence, the total capacitance
increases. The trend for the switching power follows (3.6), and the
leakage power trend follows (3.9). Thus the trend in these plots is very
similar to the trend in Figure 3.8(b).

The internal power, however, is not a monotonic function of the
cumulative gate sizes. As the internal power is a function of the internal
node capacitances and the short-circuit current, it is affected by the
input transition times. Initially, as the gate sizes increase, the input
transition times decrease, causing the total internal power to increase.
However, as the gate sizes continue to increase, the internal capaci-
tances dominate the internal power, and the power follows a similar
trend as the switching power.

In these figures, the scales on the dynamic power (Figure 3.8(c)),
and the scale on the leakage power (Figure 3.8(d)) are different. This
might suggest that the dynamic power consumption will be 1000×

42 Gate Sizing and Vt Assignment Fundamentals

(a)

(b)

(c)

(d)

Fig. 3.8 Inverter chain driving a fanout of 32 (a capacitance equal to 32 minimum sized
inverters). The schematic is shown in (a). Plots (b)–(d) show the gate sizes, dynamic power,
and leakage power as a function of the circuit delay.

3.3 Gate Sizing Examples 43

larger than the leakage power. However, this is misleading in this
example. The switching power is a function of the switching frequency
(see (3.6)), and in large designs, the likelihood that a node will switch
is much less than 1.

3.3.2 Mesh Circuit Example

The mesh circuit (see [65]) is an example where there are a few gates
with large loads (g2, g3 and g5), and the rest have a fanout of just one
gate. To create a minimum delay configuration, the gate with the most
fanout load, g5, reaches its maximum size (X4), and the remainder of
the gates are sized to balance the loads (see Section 3.1.1). For example,
increasing the sizes of g2 and g3 will increase the load on g1, prompting
g1 to be 32×!

(b)

(a)

(c)

Fig. 3.9 Mesh example from [65]. The optimum sizes for minimum delay are shown.

44 Gate Sizing and Vt Assignment Fundamentals

Fig. 3.10 Star example from [65]. The optimum sizes for minimum delay are shown.

The delay in this example ranges from 0.077 ns for the fastest con-
figuration, and 0.131 ns for the configuration with all gates at minimum
size. The spread in the total powers is larger, ranging from 0.214 mW
at the minimum, and 0.614 mW at the maximum. Note that there is
no dip in the internal power (compared to the inverter chain example
in Section 3.3.1), as the input transitions do not dominate the internal
power.

3.3.3 Star Circuit Example

The star circuit in Figure 3.10 is an example where there is one critical
node at the center. In this design, the g7, g8 and g9 gates have an
increased load — each has two fanouts. However, the size of g7 is limited
to its maximum size of 4×, which limits the sizes of the other gates.

The minimum delay to maximum delay range is 0.112–0.073 ns, with
a corresponding total power range of 0.247–1.025 mW. For the mini-
mum delay sizing, gate g7 is set to its maximum and the remainder
of the gates are sized to balance the loads (see Section 3.1.1). Notice
that the input gates are at maximum size — this is because the delay
needed to drive the primary inputs is not part of the total delay, it is
considered to be driven externally. In the design model the arrival time
is the same, irrespective of the size of the primary inputs. Thus, they
can be maximized to improve the transition times in the circuit.

4
Methods for Discrete Gate
Sizing and Vt Assignment

Discrete gate sizing and threshold voltage assignment methods choose a
cell from standard cell libraries for each gate in the design. As the range
of gate options is discrete, the problem is inherently combinatorial, and
has been shown to be NP-hard [92].

There are many methods that approach the problem of discrete
sizing and threshold voltage assignment using continuous sizing.1 The
methods that use rounding generally have at least 8 gate sizes per cell,
as in [134]. Other methods use the continuous solution as a starting
point, and then employ heuristics to map the gate to discrete sizes [40,
76, 141].

Other methods attack the discrete problem directly. For example,
[46] uses an optimization-derived approach that uses gradient-like func-
tions to minimize the delay or power. Liu and Hu [100] use a dynamic
programming and Lagrangian relaxation based heuristics, and [117]
uses slack allocation via linear programming to improve power. This
section will survey the field of discrete gate sizing and threshold volt-
age assignment, however, the coverage is not exhaustive. Methods that

1 See, for example [40, 76, 134, 141].

45

46 Methods for Discrete Gate Sizing and Vt Assignment

are not covered here include the randomized exhaustive search based
methods [169], and graph based methods [28, 29, 30, 167].

In this section, we cover methods for timing-constrained power
optimization, although similar methods are also applicable for other
objectives.

4.1 Preliminaries

4.1.1 Finding Candidate Moves and Cell Options

During the optimization process, gate sizing and threshold voltage
assignment methods must find candidate gates to consider for opti-
mization. The “Rank-based” algorithms in Section 4.2 and the slack
budgeting methods in Section 4.3 use the idea of a sensitivity between
the power and the delay:

ρd = ∆ta(g,ω;ω0)/∆Power(g,ω;ω0), (4.1)

as in [60], where

∆Power(g,ω;ω0) = Power(g,ω) − Power(g,ω0) (4.2)

∆ta(g,ω;ω0) = ta(g,ω) − ta(g,ω0) (4.3)

and Power(g,ω) is the power of gate g using library cell ω, and ta(g,ω)
is the arrival time at the output of gate g using library cell ω. This sen-
sitivity is used as a first-order type analysis to determine how efficiently
the delay can be improved for a change in power. Thus, the algorithms
can prefer gates with better trade-offs to meet a timing constraint with
a lower power design.

A variant of this method is to use a power vs. slack sensitivity [66]:

ρs = ∆Power(g,ω;ω0)/∆Slack(g,ω;ω0). (4.4)

This does a better job in capturing the effects of the delay, because both
downstream (fanout) and upstream (fanin) effects due to slew will also
be accounted for. For example, downsizing a gate may decrease the
arrival time of the input gates, but the decrease in slew may increase
the rise and fall delays in the fanout gates and in the fanout cone —
all gates that downstream from the gate. Thus, this is an improvement
on the power vs. delay sensitivity above.

4.1 Preliminaries 47

Computing this sensitivity requires computing both the power and
delay for each of the cell-options ω. This requires multiple calls to the
timer to evaluate how the delay changes over the different cell options.
When slacks are involved, this requires recomputing the required arrival
times as well.

Finding and evaluating candidate gate moves is the most time
consuming step in gate sizing and threshold voltage assignment. The
challenge is to search the design and find gates and alternative cell
options that: (1) will not violate timing and (2) will improve the
objective. Many algorithms and most commercial tools use incremental
methods to improve the speed of this process.

4.1.2 Avoiding Significantly Suboptimal Solutions

It is difficult for discrete sizing and threshold voltage assignment algo-
rithms to measure how far it is from optimal. Due to this, algorithms
terminate whenever the method is unable to optimize any further. This
is a major concern for the quality of the result, as it becomes imper-
ative that when the algorithm is unable to optimize further, it is at
a solution that is relatively close to optimal. Thus, many algorithms
will take a circuit-wide or global approach to gate sizing and threshold
voltage assignment.

One reason that the algorithm terminates in a significantly subop-
timal solution is because the evaluation metrics at the core of these
methods are local (see Section 4.1.1). Candidate gates and cell options
are evaluated by how they individually affect local delay, slacks, or
power. However, the effects of changing large groups of gates is what
is needed, and this discrepancy may cause sub-optimality.

Many methods make an effort to incorporate a circuit-wide
perspective. For example, the “global sizing” method from [47] in Sec-
tion 4.2 uses a gradual method, by making a series of smaller steps to
perform the optimization gradually. The justification for this rests upon
the assumption that local metrics are good guides for small changes
but they are not a good guides for large changes. Thus, a series of
smaller changes can help to improve the outcome. The slack, slew

48 Methods for Discrete Gate Sizing and Vt Assignment

and delay budgeting methods in Sections 4.3 and 4.7 incorporate a
circuit-wide view by utilizing a pre-processing step to allocate the slacks
and slews. These allocations may take into account the topology of the
design, or the slacks, or the relationship between slacks of neighboring
gates. These allocations are then used to guide optimization at a local
level. Lagrange multiplier weighting methods in Section 4.6 also use
circuit-wide metrics to guide local optimization. The Lagrange multi-
pliers are updated according to the slack needs across the design. They
are iteratively refined to balance the needs across different parts of the
design.

Another reason for significantly suboptimal solutions is the large
space of solutions that must be searched. For example, a 100,000 gate
design with 5 cell options per gate yields a search space of 5100,000.
While this large search space can be reduced by pruning methods, the
number of options does not reduce down to a manageable size. However,
Dynamic Programming based-heuristics in Section 4.5 perform a smart
enumeration to quantify the interactions between different gates in the
design, and prune the options that are suboptimal.

When evaluating discrete sizing and threshold voltage assignment
methods, it is helpful to keep these considerations in mind. Most
methods were motivated as an improvement upon the greedy heuristic
in [60], and they incorporate specific methods to avoid the pitfalls of
greedy optimization.

4.1.3 Block-based Delay Formulation

In the STA method, the delays are calculated by propagating the
worst-case arrival times and slews at every gate output. This is called
a block-based method, and is in contrast to the path-based method,
where the delays and arrival times are computed independently for
each path. Using the path-based method example in Figure 2.2, the
path from G1→G2→OUT[0] would be computed separately from the
path G1→G2→G3, even though they overlap significantly. This method
is more accurate, as less pessimism is needed when the actual path is
known, but has the drawback of being computationally expensive; the
number of paths is exponential in the number of gates.

4.1 Preliminaries 49

The block-based delay is essential for incorporating timing into
mathematical programming based sizing methods. This is done by
formulating the delays and arrival times in a series of inequalities.
These inequalities express the arrival time at the output of a gate as
the maximum of the input arrival times, plus the delay through the
gate. Thus, at the output of any gate g:

ta(g′) + dg′ ≤ ta(g), ∀g ∈ fi(g′), (4.5)

or equivalently:

ta(g) + dg ≤ ta(g′), ∀g′ ∈ fo(g). (4.6)

For primary input gates, we have:

dg ≤ ta(g), ∀g ∈ PI, (4.7)

and for primary outputs, we can write

ta(g) ≤ Tmax, ∀g ∈ PO, (4.8)

where Tmax is a constant representing the maximum delay constraint
for timing constrained problems, or as

ta(g) ≤ ta(max), ∀g ∈ PO, (4.9)

where ta(max) is a variable that can be used to minimize the maxi-
mum delay. While these inequalities can be replaced by using the max
functions, e.g.,

ta(g) = max
∀g∈fi(g′)

{ta(g′) + dg′}, (4.10)

the expression in terms of inequalities is better suited for use in opti-
mization routines, as the max operator is generally non-differentiable.

The model can be improved to account for rise and fall times, and
the different timing arcs in each gate. For example, the model in (4.5)
can be improved to

ta(g′(rise)) + dg′(rise)→g(fall) ≤ ta(g(fall)), ∀g ∈ fi(g′). (4.11)

In addition, the delays can be written as functions of the gate type, ω,
and the input slew:

ta(g′(rise)) + dg′(rise)→g(fall)(ω,τg′(rise)) ≤ ta(g(fall)), ∀g ∈ fi(g′). (4.12)

50 Methods for Discrete Gate Sizing and Vt Assignment

The differences in the input pins can also be accommodated by adding
new variables, such as ta(g′(rise),in1), ta(g′(rise),in2). As this makes the
notation difficult to follow, it will be omitted in the remainder of the
text. However, it should be understood that the block-based delay for-
mulations can also account for these subtleties.

Hold-time constraints can also be handled using the block-based
formulation. In this case, the minimum arrival time is propagated, and
the greater-than operator is used instead:

ta(g′) + dg′ ≥ ta(g), ∀g ∈ fi(g′). (4.13)

At the primary outputs, the constraint is on the minimum delay:

ta(g) ≥ ta(min), ∀g ∈ PO. (4.14)

Extensions to the hold-time model to handle rise and fall times, input
pin dependencies, and other subtleties can also be made.

4.2 Score and Rank Algorithms

Score and Rank algorithms (SR)2 for gate sizing and threshold volt-
age assignment were developed as fast heuristics for gate sizing. These
methods include TILOS [60], other greedy heuristics [67, 73, 96, 123,
168], and its variants [46, 53, 148, 149, 150]. The defining characteristic
of these methods is a scoring method for each gate that measures its
ability to provide a power versus delay tradeoff, and a ranking step to
select the best gates for optimization. In this method, the gates are first
evaluated using the scoring method; then the highest ranking gates are
evaluated and changed. This process is iterated until no improvement
is possible.

The steps in SR methods are summarized in Algorithms 1 and 2.
The two algorithms are nearly identical but are different in their input
design. Algorithm 1 starts with a timing feasible design, and trades
the extra slack for power savings, choosing the cells that provide the
best power vs. delay tradeoff. On the other hand, Algorithm 2 starts
with a timing infeasible design, and the gates are changed to reduce
the negative slack.

2 Note that the term “Score and Rank” is ours. We believe that it is a useful category that
covers a large and important class of methods.

4.2 Score and Rank Algorithms 51

Algorithm 1: The general Feasible-Start Score and Rank
Algorithm.
Input: Timing Feasible Design
while Slack(G) > 0 do

Step 1: Score the gates and cell options according to a given
score function ρ. Choose the best option for each gate;
Step 2: Choose candidate gate moves by ranking the gates
according to the score. If no power improving options are
available, break;
Step 3: Perform optimizations in decreasing order of
ranking;

end

Algorithm 2: The general Infeasible-Start Score and Rank
Algorithm.
Input: Timing Infeasible Design
while Slack(G) < 0 do

Step 1: Score the gates and cell options according to a given
score function ρ. Choose the best option for each gate;
Step 2: Choose candidate gate moves by ranking the gates
according to the score. If no slack improving options are
available, break;
Step 3: Perform optimizations in decreasing order of
ranking;

end

While all algorithms in this category share these fundamental steps,
they are distinguished by their choice in scoring functions:

• TILOS [60]3 and [168] use the power vs. delay metric

ρd(g,ω;ω0) = ∆ta(g,ω;ω0)/∆p(g,ω;ω0), (4.15)

where ∆p(g,ω;ω0) is the change in the power (p(g,ω) −
p(g,ω0)), and ∆ta(g,ω;ω0) is the change in the arrival times

3 In their paper, the delay vs. size sensitivity is used; however, as we are mainly interested
in power, we present it as the delay vs. power sensitivity.

52 Methods for Discrete Gate Sizing and Vt Assignment

at the output of the gate (ta(g,ω) − ta(g,ω0)). Note that this
formulation accounts for changes in the fanin gate delays due
to the changing input capacitances.

• For gate-length biasing, [66] uses the score:

ρs(g,ω;ω0) = ∆p(g,ω;ω0)/∆s(g,ω;ω0), (4.16)

where ∆p(g,ω;ω0) is the change in the power, and
∆s(g,ω;ω0) is the change in the slack. The change in the
slack accounts for timing changes in the fanout cone due
to slew effects. This provides a more complete picture of the
timing effects than (4.15). Pant et al. [123] approximates slew
effects using sensitivities instead of using the timer.

• The Duet method [148, 149], along with [151], adapts the
scoring function from [53]:

ρduet(g,ω;ω0) (4.17)

= − 1
∆p(g,ω;ω0)

∑
∀α∈G

∆dα(g,ω;ω0)

· 1
sα − smin + ε

(4.18)

where α ∈ G are the timing arcs in the design (see
Section 2.1), ∆dα(g,ω;ω0) is the change in the delay, smin

is the minimum slack in the entire design, and ε is a small
number used for the case sα = smin. Note that in practice,
the ∆dα(g,ω;ω0) values are computed using analytical mod-
els and Elmore delay approximations to improve runtime.

• Coudert [47] uses a relax function to score the gates:

ρRelax(g,ω;ω0) = (α(∆p(g,ω;ω0)) − ε)

·φ
(

∆s(g,ω;ω0)
|s(g,ω0)| + ε

)
(4.19)

where

φ(x) =

1 + x if x ≥ 0
1

1 − x
otherwise.

(4.20)

4.2 Score and Rank Algorithms 53

Table 4.1. Summary of Score and Rank methods for gate sizing and threshold voltage
assignment.

Method Input design Score Application

[60] Min area (4.15) Transistor sizing
[47] Min delay (4.19) Gate sizing
[168] Min area (4.15) Vt, gate sizing
[67] Min delay (4.16) Gate length biasing
[148, 149] All gates at high-Vt (4.17) Vt

These methods are summarized in Table 4.1. The variables vary
from transistor sizing to gate length biasing and Vt assignment.
Also the starting point for each of these methods varies. Methods
[60, 67, 148, 149, 168] start with a design with timing violations, with
the gates at their minimum area and/or high-Vt configurations. These
methods improve the timing until the design is timing feasible, trading
power increases for delay reductions. In contrast, [47, 67] start with a
timing feasible design that meets the timing constraints. In these cases,
positive slacks are traded for power reductions.

These methods will be discussed in greater detail below.

4.2.1 Greedy Methods

Although Greedy methods were first applied to gate sizing over two
decades [60] ago, they are still widely in use [33]. These methods have
the benefit of being scalable, easy to implement, and they perform
reasonably well (see Section 5). They use a locally optimal choice at
each step in the algorithm, which gives these methods the title greedy.

The well known TILOS method [60] was motivated as a fast
heuristic to solve the continuous gate-sizing method. Their paper notes
that the problem has a convex formulation and can therefore be solved
optimally; however, due to runtime reasons, they provide a heuristic
for approximate sizing.

The TILOS method for timing constrained area minimization starts
with a design at minimum size (all gates sized down to their lowest
power sizes), and then scores each gate on the critical paths using
(4.15). The gate with the greatest score is chosen for optimization
and is set to the cell option with minimum delay. This continues until

54 Methods for Discrete Gate Sizing and Vt Assignment

the timing constraint is met. As this algorithm starts with a timing-
infeasible design, this is an instance of a timing-infeasible start greedy
algorithm.

This method can also be used for delay minimization. In this case,
the method terminates when the delay cannot be further decreased.

TILOS has been adapted to other contexts. Wu et al. [168] applies
this method to the simultaneous gate sizing and threshold voltage
assignment problem, by adding multiple Vt options into the optimiza-
tion process. The method is identical to the TILOS algorithm, except
that the cell options include Vt variants along with the different gate
width choices.

Gupta et al. [67] applies the greedy heuristic to gate-length biasing.
This method starts with a timing feasible design at minimum delay
and all gates with nominal gate-lengths. The gate widths are fixed,
and the method scores each of the gates and the cell options with the
different gate length variants. The top ranked gates and options have
their gate lengths increased, and this continues until no slack remains.
As an variation on the original delay vs. power metric however, this
method uses a slack vs. power metric to capture delay changes in the
fanout cone due to slew effects.

References [148, 149, 150] apply a modified score that accounts for
the criticality of each gate– gates with less slack are given greater
weights than gates with larger slack (see Equation (4.17)). Each timing
arc and its delay vs. power sensitivity is weighted as:

1
sα − min(slacks) + ε

. (4.21)

where ε is a small positive constant. For the most critical timing arcs,
the weight is 1/ε, and it decreases as (sα − min(slacks)) increases. Thus,
delays in timing critical paths can be improved even when other delays
in non-critical paths are increased.

4.2.2 Global Sizing

Coudert [47] attempts to improve upon the greedy method. A score
function “Relax” (4.19) is proposed to gradually trade-off the delay for

4.2 Score and Rank Algorithms 55

the power. The rationale for this approach is given in [48]:

“Optimizing the delay gives plenty of alternatives for
power optimization, i.e., going far away from the infea-
sible region makes power optimization less likely to be
trapped in a local minimum.”

“[Timing feasible start optimization works by] relaxing
the delay constraints using a penalty/benefit function,
as opposed . . . to a greedy method that . . . can give
low quality results . . . [because] resizing a few nodes to
their local minimal power too “quickly” creates critical
paths that can prevent most of the other nodes from
being resized and saving more power.”

In effect, the relax function is designed to prevent the algorithm
from converging too quickly to a poor solution, as may be the case
with greedy methods. This method gradually trades the delay for power
reductions, until it settles on a good solution.

In the Global Sizing Algorithm (Algorithm 3) there are two main
differences from the TILOS algorithm. Firstly, the method requires the
computation of a “maximal ordered subset of moves that minimizes the
cost.” They suggest that this be done using a gradient-type approach,
or conjugate gradient method.

Algorithm 3: The Global Sizing method [47].
GLOBAL SIZING: Relax the timing gradually;
Input: Design with gates optimized for minimum delay
while Power improves and Slack(G) > 0 do

Step 1: Score the gates and cell options according to ρrelax

(Equation 4.19);
Step 2: Compute a set of moves: find a maximal ordered
subset that minimizes the Power (rank the gates according to
score, and choose the top k gates);
Step 3: Update the scores for changed gates and gates in
neighborhood of changed gates;

end

56 Methods for Discrete Gate Sizing and Vt Assignment

The second difference is the incremental updates to the sensitivities.
Unlike the TILOS algorithm, which only scores the critical gates, the
global sizing requires that all gates are scored. Thus, an incremental
method is proposed where after the initial iteration, a neighborhood
around each changed gate, which is defined as the gates a given number
of levels away from it, have their scores updated.

4.3 Slack and Delay Budgeting Methods

Delay budgeting methods [31, 117, 122] were developed as fast, scal-
able methods for gate sizing and threshold voltage assignment [31].4

These methods are an improvement over the greedy methods in Sec-
tion 4.2 because they can manage the slack budget between gates —
they understand that the slack used on one gate in the design reduces
the amount of slack left for other gates. Furthermore, these methods
can account for the topology of the design by prioritizing low sensitivity
gates that are bottle-necks for many critical paths.

In this paper, we will focus on the recent approach by [117]. This
method works in two phases:

• Phase I: Allocate a slack budget to each gate in the design.
• Phase II: For each gate, use the slack budget to reduce the

power used by the gate.

In Phase I, there is an important consideration. When the design is
not timing feasible, then the algorithm will need to distribute negative
slacks, along with positive slacks. When a gate is allocated a negative
slack, the gate must improve its timing. To circumvent this difficulty,
a minimum delay design is used as a starting point, where the slacks
are positive and have been maximized.

In Phase I, the slacks are allocated to the gates. This is done by
first computing the power-delay sensitivities using (4.1). These sensi-
tivities are then used in the objective of a linear programming method
(Algorithm 4). These sensitivities weight the slacks allocated to the

4 Dai et al. [49] also provides a method for budgeting-based sizing, applied to a single logic
gate.

4.3 Slack and Delay Budgeting Methods 57

Algorithm 4: Slack budgeting method in [117].
Input: Design with gates optimized for minimum delay

Pbest←∞;
while Power(G) < Pbest do

Pbest← Power(G);
Setup: Compute Power vs. Delay sensitivities;
foreach g ∈ G do

Compute ρg =

max
ω∈{CellOptions(g)}

{ρd(g,ω;ω0) = ∆ta(g,ω;ω0)/∆p(g,ω;ω0)}
(4.22)

end

Phase I: Allocate slacks to gates using LP;
Solve:

minimize
∑

g∈G ρgsg

subject to ta(g) + sg ≤ ta(g′) ∀g′ ∈ fanout(g)
0 ≤ ta(g) ≤ Tmax

0 ≤ sg ≤ Dg,max

(4.23)

with variables sg, ta(g) to get slack allocations sg.

Phase II: Use the slacks to reduce the power;
foreach g ∈ G do

Set library cell of gate g to;
argminω∈{CellOptions(g) | s(g,ω)−s(g,ω0)≤sg}{Power(ω)}

end
end

gates, and the solution to the linear program “allocates the opti-
mal delays to gates depending on their ability to convert slack to
power” [117].

In Phase II, the slacks are converted into reductions in power (see
Algorithm 4). This step is done at a local level, whereby each gate uses
their slack allocation to reduce their power. For example, at a gate g,
the options with smaller power consumption are evaluated to see if the

58 Methods for Discrete Gate Sizing and Vt Assignment

change in delay is within the allocated slack budget. After the options
are evaluated, the gate is changed to the least power option that meets
the slack budget.

The biggest limitation to this method is that changing a gate will
affect the slacks of neighboring gates; the sensitivities for each gate
may change if any of their fanin or fanout gates change. An increase in
the size of an input gate may provide a greater improvement in slack,
while a decrease may cause an opposite effect. Similarly, an increase in
the size of an output gate will improve the slack improvement of the
current gate, and a decrease will reduce the slack improvement. These
interactions are not considered by this method and are accounted for
by performing multiple iterations of this method.

Moreover, due to slew effects, the delay sensitivities may also change
if any gates in its fanin cone have changed. For example, if a change
in the fanin cone from a gate improves the slew dramatically, then this
may dampen the improvement seen at the current gate. Similarly, a
decrease in the slew may increase the improvement that comes from
increasing a gate’s size.

Thus, this algorithm is sensitive to the order in which the slacks
are distributed to the gates. Furthermore, due to these interactions,
positive slack may remain after the first iteration. Thus, the method is
iterated until all of the budget is used.

4.4 Continuous Sizing Based Methods

Continuous sizing based methods are well studied, and have been
applied as heuristics for discrete gate sizing and threshold voltage
assignment. These methods model the delay and power as continu-
ous functions of the design parameters, and then use the models to
formulate an optimization problem,5 which returns a set of continuous
sizes. Next, these continuous sizes are “snapped” to discrete sizes. This
section will cover algorithms for discrete sizing and threshold voltage
assignment, snapping methods, and a short discussion on the limita-
tions of continuous sizing based methods.

5 For further reference on modeling, please see [17, 83, 132].

4.4 Continuous Sizing Based Methods 59

4.4.1 Linear Programming Methods

The simplest models, which are also the fastest to optimize, are the lin-
ear models [11, 158]. Power models are roughly linear (see Section 3.2),
and can be approximated as:

Power =
∑
g∈G

pg,nom · wg, (4.24)

where wg is the width of the gate or the size of the standard library
cell, and pg,nom is the power of a minimum sized gate or library cell.

The gate delay is not linear in the gate size (see Section 3.1), thus
linear models for the gate delay require fitting and approximations.
In [11], the gate delay is linearized by:

dg = c1 + c2wg − c3
∑

g′∈fo(g)

Cg′wg′ , (4.25)

where c1, c2, and c3 are modeling coefficients, wg is the width of gate g,
and Cg is the input capacitance of g. These models can be improved to
be any convex piecewise-linear function by using a series of inequalities:

dg ≥ c1 + c2wg − c3
∑

g′∈fo(g)

Cg′wg′

dg ≥ c4 + c5wg − c6
∑

g′∈fo(g)

Cg′wg′ (4.26)

dg ≥ c7 + c8wg − c9
∑

g′∈fo(g)

Cg′wg′

. . .

The resulting linear program, using the block-based delay formulation
in Section 4.1.3, is:

minimize
∑
g∈G

pgwg

subject to ta(g) + dg ≤ ta(g′), ∀g′ ∈ fanout(g)

c1 + c2wg − c3
∑

g′∈fo(g)

Cg′wg′ ≤ dg

0 ≤ ta(g) ≤ Tmax, ∀g ∈ G
wmin ≤ wg ≤ wmax,

(4.27)

60 Methods for Discrete Gate Sizing and Vt Assignment

whose optimum, w�, are the optimal continuous sizes, that need to be
“snapped” (see Section 4.4.3).

4.4.2 Geometric Programming Methods

An improvement on the linear model is to use posynomial models [60].
Posynomials are equations of the form:∑

k

∏
j

x
αjk

j , (4.28)

where xj is restricted to be positive, but αjk ∈ 	 can be positive or
negative. This form can handle the basic transistor models6 for delay:

Delayg = Rg

∑
g′∈fo(g) Cg′wg′

wg
(4.29)

= Rgw
−1
g

∑
g′∈fo(g)

Cg′wg′ . (4.30)

This results in the geometric programming problem:

minimize
∑
g∈G

pgwg

subject to ta(g) + Rgw
−1
g

∑
g′∈fo(g)

Cg′wg′ ≤ ta(g′), ∀g′ ∈ fanout(g)

0 ≤ ta(g) ≤ Tmax, ∀g ∈ G
wmin ≤ wg ≤ wmax.

(4.31)

While this is not convex as written, it is convex when the change of
variables wg = eyg is made.7 Extensions to these models can be made
for Vt and gate length assignment. Also, methods to improve the accu-
racy of these models can be made by including rise and fall times, wire
delays, and estimating slew effects.8 However, convex models are pre-
ferred, as they have the property that there exists a unique optimum
that can be found in polynomial time [18, 131].

6 For example, the alpha power law model in Equation (3.1).
7 Note that the objective is no longer linear under the substitution.
8 See [17, 83] for a discussion on posynomial models for gate sizing.

4.4 Continuous Sizing Based Methods 61

4.4.3 “Snapping” Continuous Sizes Back to Library Cells

After the continuous model is optimized, the continuous sizes need to
be mapped, or “snapped”, back to the available library cells. Intu-
itively, this is challenging when the number of library cells is sparse,9

however, [77] reports that even in dense libraries, with cell sizes of
{1,2,3,4,6,8,12,16,24,32}, snapping to the nearest library cell results
in slack violations and infeasible designs. Wu et al. [169] shows the
importance of a “snapping” — the difference between an optimal snap-
ping method and a greedy snapping method can be up to 51% of the
power objective.

Moving from a continuous solution to the discrete sizes is difficult,
and not guaranteed to be optimal. For example, suppose that the con-
tinuous solution is used to limit each gate to two cell choices: the library
cell that is larger, and the library cell that is smaller than the continuous
size. This still leaves 2|G| choices, and furthermore the optimal solution
may not be one of these choices [40]; however results in [169] show it
is within 1% of optimal for a set of 20 commonly used benchmarks.

Heuristics for snapping continuous sizes are studied in [40, 104, 134,
141, 175]. Simple snapping to the closest library cell is used in [104, 134];
in [141], the gate sizing is re-performed after the Vt is snapped, followed
by the snapping of the gate sizes. In [40], the continuous solution via
linear programming is used to limit the size options. Gates that are
set at the minimum size by the continuous sizer are fixed to be at
the minimum; the options for the remainder of the gates are the two
sizes that are smaller than, and greater than the continuous size. The
algorithm then creates a state-space tree that is used to enumerate the
different possibilities. This process is tractable as the number of gates
that are not at minimum size is “relatively small”.

Hu et al. [77] uses a dynamic-programming like enumeration
approach. This approach traverses the graph breadth-first from
primary input nodes to output nodes, enumerating all the possible
solution possibilities. When the size of the enumerated space becomes
too large, it is pruned using a locality-sensitive hash that diversifies
the set of solutions.

9 See [9, 70] for a discussion on selecting library cells.

62 Methods for Discrete Gate Sizing and Vt Assignment

4.4.4 Modeling Errors

Modeling errors are a large limitation for continuous-sizing based
approaches. Even with posynomial models, errors of up to 10% were
reported in [83] for a 0.25µm technology and furthermore, these errors
were reported for custom transistors. Standard cells are more difficult
model because the standard height of each cell requires the transis-
tors to be packed using transistor folding, and diffusion sharing, and
requires metal pins to connect the pins to the routing layers. This
alters the behavior of the transistor from the properties of a transistor
in custom layout. In [133] errors of 5–23% were reported for a 0.13µm
standard cell library.

While these errors can be reduced by applying corrections to the
model, to increase the accuracy around the current set of sizes, the
problem is still significant. Even modeling errors of 5% may introduce
a significant suboptimality in the design (see, for example, Figure 5.8).
Furthermore, modeling errors associated with ignoring slew effect affect
gate sizing methods heavily. For example, Figure 5.4 shows the perfor-
mance of sizing methods with and without slews. The performance is
very different between the two slew options.

4.4.5 Limitations of Continuous Sizing Methods

Continuous sizing methods are attractive as they have fast algorithms,
and may have a global optimum that can be found efficiently. How-
ever, there two significant downsides, as noted above: the modeling
errors, and the issues with snapping. Thus, these methods are used
when modeling and snapping errors are tolerable [47, 77], but they are
severely limited in post-layout contexts.

4.5 Dynamic Programming Based Algorithms

Dynamic programming (DP) [10] is an optimization method for
problems with stages.10 At each stage, a decision is made with the
assumption that all prior decisions were optimal. For problems where

10 See [13] for an introduction to the subject.

4.5 Dynamic Programming Based Algorithms 63

optimal prior decisions can be modeled efficiently, this presents an effec-
tive method for optimization.

In the context of gate sizing and threshold voltage assignment,
dynamic programming methods provide a structure to break apart the
problem using decision stages and cost-to-go functions. At each stage,
cost-to-go functions recursively define the cost for the objective for all
prior stages of the design. After all the stages have been traversed, the
final cost-to-go function is used to find the minimum cost solution.

Dynamic programming for gate sizing and threshold voltage assign-
ment has been applied in both forward topological order [24, 77, 95],11

and reverse topological order [100]. In the forward topological order
version, the power and the arrival times are propagated in the form of
cost-to-go functions:

Jg(ta) = min
ω∈CellOptions(g)

Power(g,ω) +

∑
g′∈fi(gk)

Jg′(ta − d(g,ω))

.

(4.32)

The cost function represents the minimum power, as a function of the
arrival time at the gate’s output. It is defined recursively as a function
of the cost functions for its fanin gates, and the term Jg′(ta − d(g,ω))
is the power needed for the signal to arrive at the input by the time
ta − d(g,ω), which is the given arrival time minus the delay at the
current gate. To simplify notation, we can assume that Jg(ta) =∞
when ta < 0, and thus any infeasible arrival time will have a cost ∞.

An example of the forward version is shown in Figure 4.1. In this
example, a simple delay model is used with two cell options for each
gate: either Delay = 1 and Power = 2, or Delay = 2 and Power = 1. At
g1, this means that the arrival time of the output (ta) can be 1 with
a power cost of 2 (Jg1(1) = 2), or the arrival time can be 2 with a
power cost of 1 (Jg1(2) = 1). At g2 the computation becomes more
complex: Jg2 is computed as a function of its fanin, Jg1 . Jg2(2) can be
achieved only using the delay 1 cell option for g2, and using Jg2(1),
for a cumulative power cost of 4. Similar computations can be made

11 Note that [24] does not explicitly refer to itself as Dynamic Programming, but has the
characteristics of DP.

64 Methods for Discrete Gate Sizing and Vt Assignment

Fig. 4.1 Forward topological order dynamic programming example. A simple delay vs
power model is used for the gates, where either Delay=1 and Power=2, or Delay=2
and Power = 1.

for Jg2(3); however, in this case the minimizer is not unique — either
of the two cells, g1 or g2 can be at the minimum delay option. At the
primary output, the cost-function is evaluated with the delay constraint
to yield the optimal power, and the circuit can be traversed backwards
to find the cell options that produce the minimum power design. Note
that the computation of Jg3 was adjusted to avoid double counting the
power of g1.

In reverse-topological order, the procedure works from the primary
outputs toward the primary inputs. The power and the required arrival
times are propagated in this case, and the cost-to-go functions are
defined recursively, as:

Jg(tr) = min
ω∈CellOptions(g)

p(g,ω) +

∑
g′∈fo(g)

Jg′(tr − d(g,ω))

. (4.33)

An example of the reverse topological version is shown in Figure 4.2. In
this case, the cost functions are simpler than the forward topological
case, as the options for negative required arrival times (tr < 0) can

4.5 Dynamic Programming Based Algorithms 65

Fig. 4.2 Reverse topological order dynamic programming example. A simple delay vs
power model is used for the gates, where either Delay=1 and Power=2, or Delay=2
and Power=1. The required arrival time at the primary output is assumed to be 4.

be eliminated.12 Once the cost-to-go functions are propagated to the
primary input, the cost-to-go function is evaluated with tr = 0 to find
the optimal configuration. Again, note that the computation of Jg1 was
adjusted to avoid double counting the power of g3.

Note that in both cost-to-go functions, (4.32) and (4.33), the costs
are computed by enumerating the different options at each gate. The
information needed to store the cost-to-go functions is usually stored
in the form of a table. The size of this table can be reduced by remov-
ing options that are not Pareto-optimal, and this is implicitly done in
the cost-to-go functions. For example, in the forward topological case,
ta = 4 and p = 5 are certainly superior to ta = 5 and p = 5 and the
latter entry would be removed. This helps to reduce the complexity of
the cost-to-go functions.

Dynamic programming based algorithms suffer from two limita-
tions. The first limitation is the size of the solution space that must be
propagated. Even after the non Pareto-optimal elements are pruned,
the number of elements in the table may be very large. To combat
this, [76] uses locality-sensitive hash functions to reduce the number
of entries to the table. In [24, 100], the slews are ignored, reducing

12 However, this can also be done in the forward topological case — options with delay
greater than clock period can be pruned.

66 Methods for Discrete Gate Sizing and Vt Assignment

Fig. 4.3 Design with reconvergent fanout. This structure is problematic in Dynamic Pro-
gramming formulations.

the number of entries to a manageable size. Furthermore, while [100]
uses the dynamic programming methods for slack minimization, they
rely on Lagrangian methods to perform the timing constrained power
optimization (see Section 4.6).

Secondly, they have difficulty with non-tree structures, e.g., when a
gate has multiple paths that lead to it. This is present in the forward
topological case in Figure 4.3; to account for this, the cost-to-go func-
tion must be adjusted. As written in (4.32), Jg4(ta = 4) = 8 because the
cost of g1 is double counted — it is present in Jg2 and Jg3 . However,
the actual minimum cost is Jg4(ta = 4) = 6.

There is also an inconsistency in the cell options that are assigned
by the DP. In the example in Figure 4.3, for a delay constraint of 4,
the cell options are set by traversing the graph in reverse topological
order. g4 is set to the cell option that minimizes Jg4(ta = 4), which
is Delay = 1/Power = 2 option. Next, suppose that g2 is also set to
Delay = 2/Power = 1, but g3 is set to Delay = 1/Power = 2 — this is
valid in the DP algorithm. When assigning the size at g3, it does not
coordinate with the parallel reconvergent path through g2, forcing g1

to be Delay = 1/Power = 2, and resulting in a total power of 7, which
is greater than the optimal power 6.

4.6 Lagrangian Relaxation 67

Liu and Hu [100] use a heuristic to fix this problem by consider-
ing the problem in two steps. In the first step, when the cell options
are being assigned, and multiple cell options are possible (when the
minimizer in (4.32) is not unique), all of the cell options are set as
viable candidates for that cell. After this step is over, each gate may
have multiple candidate cell options that it can be assigned to. This
is reconciled in the next step, when the algorithm traverses the graph
in topological order, and assigns each gate to the cell option that is
locally optimal.

4.6 Lagrangian Relaxation

Lagrangian relaxation is widely used in gate sizing and threshold
voltage assignment to perform continuous sizing with posynomial
models (see, for example, [27, 39, 140, 166]), and it has also been
applied directly to discrete gate sizing [78, 100, 121]. It provides scal-
able methods for large-scale gate sizing, and they provide a useful way
to convert constrained optimization problems into unconstrained opti-
mization problems.

Lagrangian relaxation methods convert a constrained optimization
problem into an unconstrained problem by using by using Lagrange
multipliers,13 also known as dual variables, to add the constraints to
the objective. For the optimization problem:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

gi(x) = 0, i = 1, . . . ,p

xmin ≤ x ≤ xmax,

(4.34)

the associated Lagrangian is:

L(x,λ,ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

νigi(x), (4.35)

where λ and ν are the Lagrangian multipliers. Note that the con-
straints xmin ≤ x ≤ xmax do not appear in the Lagrangian (4.35). In

13 See [18] for a good reference on the subject.

68 Methods for Discrete Gate Sizing and Vt Assignment

gate sizing and threshold voltage assignment problems, it is more effi-
cient to handle these constraints implicitly by restricting the domain
of the function. Thus, the domain of x in (4.35) is restricted to
xmin ≤ x ≤ xmax.

The Lagrange dual problem associated with the Lagrangian is:

max
λ≥0,ν∈	

{
min

xmin≤x≤xmax
{L(x,λ,ν)}

}
. (4.36)

This is the result of minimizing the Lagrangian over the primal vari-
ables, x, and maximizing over the dual variables, λ and ν. This formu-
lation is interesting when the minimization minxmin≤x≤xmax {L(x,λ,ν)}
can be performed faster than solving (4.34) directly.

The main motivation for solving the Lagrange dual problem (4.36)
comes from two theoretical results.

• The solution to the dual problem (4.36) is always less than
the primal (4.34).

• The solution to the dual problem (4.36) is equal to the solu-
tion of the primal (4.34) for a wide class of convex continuous
problems.14

Using the Lagrange dual problem is said to be using Lagrangian relax-
ation,15 and it is a useful method to find lower bounds or optimize
certain types of problems. Generally speaking, these methods perform
well when there is an efficient way to minimize L(x,λ,ν) over x for
fixed λ and ν.

Gate sizing and threshold voltage assignment benefit from
Lagrangian relaxation. In this case, the associated Lagrangian

14 A sufficient, but not necessary, condition for equality comes from Slater’s condition:

(1) x is continuous, and the domain of x is a convex, connected set.

(2) fi is convex ∀ i.

(3) gj is linear ∀j.

(4) There is an x such that fi < 0 ∀ i, and xmin < x < xmax.

15 See [91] for a good reference on Lagrangian relaxation.

4.6 Lagrangian Relaxation 69

for (4.31) is:

L(w,ta,λ) =
∑
g∈G

pgwg (4.37)

+
∑

g

∑
g′∈fo(g)

λg,g′(ta(g) + d(g,w) − ta(g′)) (4.38)

+
∑

g∈PO

λg(ta(g) − Tmax). (4.39)

The associated Lagrangian dual problem is:

max
λ≥0

{
min

ta,wmin≤w≤wmax
{L(w,ta,λ)}

}
. (4.40)

In this expression, the minimization over ta is equal to −∞ for certain
values of λ. This can be seen by reorganizing the terms in (4.43) as:

L(w,ta,λ) =
∑
g∈G

 ∑

g′′∈fo(g)

λg,g′′ −
∑

g′∈fi(g)

λg′,g

 · ta(g)

+
∑
g∈G

pgwg +

 ∑

g∈PO

λg

 · Tmax

+
∑

g

 ∑

g′∈fo(g)

λg,g′

d(g,w) (4.41)

If any of the coefficients of ta are non-zero, then minimizing L(w,ta,λ)
over w and ta would yield −∞, as the ta are free variables and are
unrestricted (the λ are fixed through this minimization). ta with pos-
itive coefficients would have t→−∞ and negative coefficients would
have t→∞. Thus, to avoid these cases, the λ is restricted to the dual
feasible set that satisfies:∑

g′′∈fo(g)

λg,g′′ −
∑

g′∈fi(g)

λg′,g = 0, (4.42)

thereby making all the coefficients of ta in (4.41) equal to zero. For these
dual feasible λ, the Lagrangian reduces into a weighted delay-power

70 Methods for Discrete Gate Sizing and Vt Assignment

minimization:

L(w,ta,λ) =
∑
g∈G

pgwg

+
∑

g

 ∑

g′∈fo(g)

λg,g′

d(g,w)

+

 ∑

g∈PO

λg

 · Tmax. (4.43)

For continuous gate sizes and Vt, there are fast methods to solve this
problem (see [131]) in linear time by cycling through each gate and
choosing the gate width that minimizes the power and weighted delay
combination while keeping all the other gate sizes fixed.

Lagrangian relaxation was also applied to discrete problems in [78,
100, 121]. In this case, idea is to solve the discrete version of the
Lagrangian dual problem:

max
λ≥0

{
min

ta,ω∈CellOptions
{L(ω,ta,λ)}

}
, (4.44)

where the discrete cell options ω replace the continuous variables. This
is done with two loops. An inner loop is used to minimize L over the ω,
e.g., the cell options are chosen to minimize L. The outer loop adjusts λ

to maximize L.
There are two challenges to this discrete Lagrangian relaxation. The

first challenge is in the minimization over ω. While the problem is
unconstrained, the minimization is still combinatorial. Liu and Hu [100]
use a reverse-topological dynamic programming method to perform this
minimization, but this method is limited in that it does not account for
slews, and the reconvergent fanout (see Section 4.5) limit the ability
to apply dynamic programming. Ozdal et al. [121] extracts a “Critical
Tree” from the circuit before the dynamic programming is applied, thus
avoiding the problems related to reconvergent fanout.

The other issue associated with discrete Lagrangian relaxation is the
updating of the multipliers λ. Traditionally, the multipliers are updated

4.7 Slew Targeting Methods 71

according to the sub-gradient (a generalized gradient).

∆λ =
∂

∂λ
(L(ω,ta,λ)). (4.45)

λ next updated using two steps as

(1) λ = λ + α∆λ

(2) λ is projected to satisfy (4.42) and λ ≥ 0.

As the inner minimization over ω is likely to be suboptimal, the
choice of λ and the method that it is updated affects the resulting
solution. Furthermore, large changes in λ will cause the solutions to
oscillate. Huang et al. [78] finds an improved method to update the
multipliers by storing the results of prior values λ for each gate, and
the related arrival times at the gate. The stored results are then used
to prevent overshoot when updating λ.

4.7 Slew Targeting Methods

Slew targets [74] are also used for gate sizing. This works on the idea
that the delay is a monotonically increasing function of the slew; thus
improving the slew will also improve the delay. This is an interest-
ing perspective as the slew targeting is used as a proxy for timing
closure.

Using slew targets is a well known method used by designers and
some commercial tools to perform optimizations. The work in [74] for-
malizes the slew-based optimization for large scale timing closure. This
method is also one of the few discrete sizing methods that deal with
slew directly. Most other methods ignore slew, because it creates long
range interactions between gates that are difficult to model (see Sec-
tion 2). However, as slew has a large effect on the delays, ignoring slews
may introduce sub-optimality into the design.

Held’s algorithm [74] works by alternating between assigning slew
targets, and optimizing the gates for the given slew targets. These slew
targets are assigned as a function of the slacks. Gates with negative
slack will have their slack targets increased, while gates with positive
slacks will have their slack targets decreased.

72 Methods for Discrete Gate Sizing and Vt Assignment

Central to the slack adjustment is the concept of local criticality,
lc(g). This is defined as the difference between the slacks of the input
pins, and the minimum of the slacks of its fanins:

lc(g) = max
g′∈fi(g)

{s(g) − s(g′),0}. (4.46)

A value lc(g) = 0 means that the gate is at least as critical as any of its
fanins. However, a value of lc(g) > 0 implies that there is a fanin gate
that is more critical and thus the current gate does not contribute to
the worst case slack.

Following this rationale, in Step 1 of Algorithm 5, gates with
negative slack and lc(g) = 0 have their slew targets decreased, or tight-
ened, to reduce timing violations. All other gates have their slew targets
increased, to help recover power. These increases or decreases are
changed as a function of the local criticality lc(g), slack s(g), damping
factor Θk, and a constant γ, which is related to ∂τ(g)

∂s(g) . Θk starts with
value ≈ 1, indicating that target values and estimates are used in the
algorithm. As the algorithm progresses, Θk → 0, prompting the algo-
rithm to use the true slew values in place of the estimates for increased
accuracy.

Next, in Step 2 of the algorithm, the slew targets are applied to
each gate in reverse topological order. This is done by first estimating
the slews at the input of the gate, as the output slew depends on the
input slews. Next, the minimum power cell option that satisfies the
output slew target is chosen, and this process repeats for each gate in
the design.

In Step 3 of the algorithm, the slew targets are refined. This is to
reduce slack targets that are unnecessarily high, when “cells cannot be
enlarged further, or to locally non-critical cells that cannot be down-
sized sufficiently because of too large successors” [74]. To fix this, the
slew target is reduced by a factor of λ times the difference between the
estimated slew of the most critical input pin:

τ target
g = τ target

g + (λ) · (sp − τ target
g). (4.47)

The author reports that this method is very fast; 5.8 million cells
are sized within 2.5 hours on a 3.0 GHz Xeon Server. Furthermore, they

4.7 Slew Targeting Methods 73

Algorithm 5: Slew targeting method in [74].
Θk = step size & approximation parameter;
lc = local criticality;

foreach k ∈ {1, ...,kmax} do
Step 1: Update the slack targets;
Θk = 1

log(k+1) ;
foreach g ∈ G do

lc(g) = maxg′∈fi(g){s(g) − s(g′),0};
if (s(g) < 0) & (lc(g) == 0) then

∆τtarget = −min{(Θk · γ · |sg|),∆τ target
max };

else
sm = max{s(g), lc(g)};
∆τ target = min{(Θk · γ · |sm|),∆τ target

max };
end
τ target

g = τ target
g + ∆τ target

g ;
Project the slew target to feasible range
τ target

g = max{τ target
g ,∆τmin

g };
τ target

g = min{τ target
g ,∆τmax

g };
end

Step 2: Apply the slack targets;
foreach g ∈ G in reverse topological order do

foreach ∀g′ ∈ fi(g) do
Create input slew estimates
τ̂(g′) = Θk · τ target

g′ + (1 − Θk) · τg′

end
Using the estimated input slews τ̂(g′) set ωg as:
the minimum power cell option ω that satisfies
τ(g,ω) > τ target

g

end
Step 3: Refine slew targets;
foreach g ∈ G in topological order do

sp = max{g′| sg′=sfi
g } {τ̂(g′)}

τ target
g = τ target

g + (λ) · (sp − τ target
g)

end
end

74 Methods for Discrete Gate Sizing and Vt Assignment

report good results for timing closure with an average worst negative
slack of 6% reduced to 2% after applying their algorithm.

4.8 Linear Programming Based Assignment Methods

Linear programming can also be used to assign gates to specific cell
options [2, 34, 89]. This is in contrast to the continuous sizing methods
in Section 4.4.1, where the variables represent the continuous gate sizes.
In linear programming based assignment, each variable in this context
is a binary variable, xg←ω, where:

xg←ω =
{

1 if gate g is assigned to cell ω

0 otherwise.
(4.48)

A value of xg←ω = 1 means that gate g is implemented by the library
cell ω. These options ω can vary in sizes, threshold voltages, gate
lengths, etc. The variables xg←ω are referred to as assignment variables
as they assign gates to library cells. The power objective is written in
terms of these assignment variables as:

∑
∀g∈G

∑
ω∈Ωg

∆p(g,ω;ω0) · xg←ω (4.49)

where

∆p(g,ω;ω0) = p(g,ω) − p(g,ω0). (4.50)

The p(g,ω) refers to the power consumption of gate g when imple-
mented by the library cell ω (ω0 is the current implementation of the
gate). This power can be the leakage power or the dynamic power, or
a weighted combination of the two. As the short circuit portion of the
dynamic power is dependent on the input slew and output load, the cur-
rent slew and load values are used to evaluate the ∆p terms. Although
this may introduce modeling errors if the gate’s inputs change, this is
still a good proxy for the actual power.

4.8 Linear Programming Based Assignment Methods 75

The delay constraints are written in the linear program using the
block-based formulation16:

ta(g) +
∑

ω∈Ωg

∆d(g,ω;ω0) · xg←ω ≤ ta(g′), ∀g′ ∈ fanout(g)

0 ≤ ta(g), ∀g (4.51)

ta(g) ≤ Tmax, ∀g ∈ PO. (4.52)

The ta(g) are variables that are used to model the arrival times at the
input of gate g and the ∆d(g,ω;ω0) term is the change in delay when
the gate is changed from cell option ω0 to ω. This can be computed by
trying the cell option and computing the change in the arrival times.
To improve accuracy, the change in slack may also be used to model
downstream effects on the delay [89].

Combining the power and delay terms results in the linear program-
ming problem:

minimize
∑
∀g∈G

∑
ω∈CellOptions(g)

∆p(g,ω;ω0) · xg←ω

subject to ta(g) +
∑

ω∈CellOptions(g)

∆d(g,ω;ω0)

·xg←ω ≤ ta(g′), ∀g′ ∈ fanout(g)

0 ≤ ta(g) ≤ Tmax, ∀g ∈ G
0 ≤ xg←ω ≤ 1, ∀g, ω ∈ CellOptions(g)

∑
ω∈CellOptions(g)

xg←ω ≤ 1, ∀g.

(4.53)

Note that the assignment variable was originally intended to be
binary — the variable should only be 0 or 1. However, to improve the
runtime of this problem, it is relaxed so that the assignment variable
is continuous between 0 and 1.

Once (4.53) is solved, then the next step is to map the xg←ω into gate
cell changes. In [34], the authors apply any xg←ω > 0.99. However, due

16 See Section 4.1.3 for more information on the block-based delay formulation. For simplic-
ity, the difference between the rise and fall times are omitted, as well as the difference in
delay for different input–output paths in a gate. However, they are commonly incorpo-
rated by adding separate rise and fall arrival-time variables and additional delay models
for different input–output paths in a gate.

76 Methods for Discrete Gate Sizing and Vt Assignment

to the delay interactions, this may cause timing violations. They correct
these timing violations by running a linear programming assignment for
minimizing timing:

minimize max{ta(output),Tmax}
+ · · ·ε

∑
∀g∈G

∑
ω∈Ωg

∆p(g,ω;ω0) · xg←ω

subject to ta(g) +
∑

ω∈Ωg

∆d(g,ω;ω0)

·xg←ω · · · ≤ ta(g′), ∀g′ ∈ fanout(g),

0 ≤ ta(g) ≤ ta(output), ∀g ∈ G
0 ≤ xg←ω ≤ 1, ∀g,ω ∈ Ωg∑
ω∈Ωg

xg←ω ≤ 1, ∀g

(4.54)

where ε is a small constant used to give more weight to the timing
objective. In the minimizing timing case, values of xg←ω > 0.01 are
applied.

The main limitations with this method concern the delay model.
This model does not account for the interactions in the delays between
gates in two ways. To understand the first limitation, suppose that an
input gate to gate g has decreased in size, diminishing its ability to
drive its output gates. If the size of gate g is then increased, then the
resulting delay improvement will be worse than if the input gate had
not changed. This is because the input gate is less able to handle the
increase in the output capacitance from a increase in the gate size of g.
Due to this limitation, [89] adds a further constraint on neighboring
gates. That is, out of every pair of gates, only one gate should change
at a time. This reduces the problems due to the changing capacitances
of neighboring gates.

The other limitation is the interaction between the transition times
(slews). Decreasing the slew of an input gate will improve the delays
downstream, while increasing the slew will have the opposite effect on
the delay. Thus, any gate change may affect the ∆d(g,ω;ω0) down-
stream from it.

4.9 Summary 77

Due to these limitations, [89] uses this approach for incremental gate
sizing. The model has a better accuracy when the number of changes
is not too large, thus it is well suited for finding a small number of gate
changes that can be used to implement an Engineering Change Order
(ECO).

4.9 Summary

The discrete gate sizing and threshold voltage assignment methods pre-
sented in this section are summarized in Table 4.2. This chart indicates
whether the method is well-suited (�), applicable (�), or not applicable
(–) in a given context.

Pre-layout means that the method is well-suited for optimization
before the layout is fixed, such as after synthesis. Generally, this means
that the method can make large changes to the design and inaccuracies
in the delay modeling can be tolerated. In contrast, post-layout indi-
cates that the method can be used incrementally when large changes to
the design are to be avoided. Post-layout methods must be able to mod-
ify the current design, rather than start from scratch, and being close
to tape-out, accurate delay modeling is important. Generally, methods
that are not incremental do not work well in post-layout settings.

Power optimization indicates that the method can be used to
minimize power given a timing constraint. The timing closure opti-
mization column indicates that the method can be used to improve
timing, whether to find an minimum delay design, or to meet a timing
constraint.

Table 4.2. Summary of discrete gate sizing and threshold voltage assignment methods.

Pre Post Power Timing closure
layout layout optimization optimization

Score and rank � � � �
Slack and delay budgeting � � � —
Continuous sizing based � — � �
Dynamic programming � — � �
Lagrangian relaxation � — � �
Slew targeting � � — �
LP-based assignment � � � �

5
Comparing Sizing and Assignment Methods

This section considers the different factors involved in comparing gate
sizing and threshold voltage assignment methods, and provides some
comparative results. There are many contexts in which these methods
are used (see Section 1.2 for more information):

• Post-synthesis: after the design is mapped to logic blocks.
• Post-placement: after the locations of the cells are known,

along with approximate information on the lengths of con-
necting wires.

• Post-layout: after routing and placement are completed. At
this step, the layout, along with information on wire para-
sitics, is known.

Each context has different flexibilities, and accuracy requirements. For
example, post-synthesis gate sizing and threshold voltage assignment
has the most flexibility, as the gates are not yet placed (e.g., have
set locations), and also have the loosest timing accuracy requirement.
In contrast, post-layout gate sizing and threshold voltage assignment
has the least flexibility, as each change in the cell may require moving
and/or rerouting other cells. Furthermore, there is a high accuracy
requirement; after this stage, the design must be timing feasible.

78

5.1 Setting Up Experiments 79

Along with these different contexts is the experimental setup. The
library, buffering, timingmodel, benchmark type, timing constraints, and
powermeasurements all affect the resulting optimizations.For example, a
small library granularity tests amethod’s ability to handle only a few cells
that are available of each type. Benchmarks without sequential elements
(combinatorial benchmarks) generally havedifferent distributions of crit-
ical paths than sequential benchmarks. Tighter timing constraints may
test a method’s ability to create timing feasible designs.

5.1 Setting Up Experiments

In gate sizing and threshold voltage assignment, there are a significant
number of variables that affect the success of a method. In this section
we will discuss:

(1) Standard Cell Library: what cell options are available for
each gate?

(2) Benchmarks and synthesis options: what are the character-
istics of the test circuit?

5.1.1 Standard Cell Library

The most important factor in gate sizing and threshold voltage assign-
ment experiments is the standard cell library. This is an even larger
factor than the benchmark itself; the performance of an algorithm will
vary on the same benchmark under two different standard cell libraries.

The two major qualities of a library that impact the gate sizing and
threshold voltage assignment experiment are the range of the cells and
the number of the cells. The range of the cells determines the range for
the method. Gates that have a small range, such as those with cells of
1–2× of the minimum gate width, can provide only small impacts, as
the sizing method can increase gate sizes to just 2× for large fanout
loads. Similarly the range in the threshold voltages also plays a big role
in the performance of the algorithm. Most cell libraries provide large
ranges for popular gates and those used for buffering large fanouts
(such as inverters and buffers). However, less popular gates (such as
the AND-OR-INVERT) may have a small range, and the flexibility at
these cells is very limited.

80 Comparing Sizing and Assignment Methods

The granularity of a library impacts different algorithms differently.
A library that is dense, with many gate sizes and threshold voltages
for each gate footprint, will generally work better on methods that are
derived from continuous sizing methods. This is because the increased
granularity reduces the penalty for rounding and snapping — rounding
from 5.2× to 5× is much better than rounding down to 4×.

In contrast, other methods may fair poorer on dense libraries.
Dynamic programming based algorithms may suffer from significant
slowdowns due to the increased number of cell options. Greedy meth-
ods, which are heuristics, may also fair poorer than their continuous siz-
ing based counterparts. The granularity question — is the library sparse
or dense — may cause one method to perform better than another.

However, there is no typical library density or range. One 65 nm
commercial library provides 11 versions of the buffer and inverter cells,
and 4 versions of other cells. The Nangate Library [114], which is used
for testing and research, provides 5 versions of the buffer and inverter
cells, and 3 versions of other cells. In contrast, another 45 nm library
provides 20 versions of the buffer and inverter cells (ranging from 0.5×
to 16×), and between 5 and 11 versions of other cells (ranging from
0.5× to 6×). In addition, there are three threshold voltage options
for each cell. Therefore, it is important to understand the library that
will be targeted before developing a gate sizing and threshold voltage
assignment method.

5.1.2 Benchmarks and Synthesis Options

The type of benchmark and the synthesis options are the second most
important factor in comparing gate sizing and threshold voltage assign-
ment methods. The benchmarks are usually designs that have inter-
esting sizes and topologies. For example, the ISCAS ‘85 benchmarks
contain combinatorial designs representing controllers, arithmetic logic
units, and error correcting circuits [71]. The ISCAS ‘89 benchmarks
contain sequential designs1 and are sections of real designs, traffic light
controllers, and digital fractional multipliers [20].

1 For example, these designs include flip-flops.

5.1 Setting Up Experiments 81

Table 5.1. Effect of synthesis on the ISCAS ‘85 benchmarks [71] (adapted from [89]).
All times are in ns.

Tmax |G| Tmax |G| Tmax |G| %∆Tmax %∆|G|

c432 0.431 118 0.494 137 0.619 93 43.6% 47.3%
c499 0.477 586 0.612 322 0.881 189 84.7% 210.1%
c880 0.408 346 0.562 237 0.871 212 113.5% 63.2%

c1355 0.473 598 0.599 356 0.850 222 79.7% 169.4%
c1908 0.802 676 0.863 571 0.990 533 23.4% 26.8%
c2670 0.610 1041 0.787 791 1.140 748 86.9% 39.2%
c3540 1.096 1615 1.289 1359 1.675 1107 52.8% 45.9%
c5315 1.090 2019 1.226 1867 1.498 1766 37.4% 14.3%
c6288 1.845 3089 4.127 1656 8.692 1780 371.1% 86.5%
c7552 0.866 2894 0.977 2640 1.200 2481 38.6% 16.6%

At a high level, these benchmarks differ by the number of gates,
the depth of their logic, the delay distributions of their paths, and
the average number of fanouts and fanins for each of the gates. These
metrics, however, cannot predict what kind of method will work, or
how difficult the design will be to size.

A complicating factor is the effect of the synthesis tool on the design.
Table 5.1 shows the effect of different timing constraints on the resulting
netlist. The leftmost columns represent synthesis for minimum delay,
and the rightmost columns represent synthesis for minimum power. The
delay spread between fastest and slowest synthesis outputs vary from
0.188 ns (c432) to 6.847 ns (c6288), depending on the benchmark. The
size of the resulting netlists vary from 25 gates (c432) to 1309 gates
(c6288), which means that the number of gates can double, depending
on the design!

The difference between the synthesized netlists is the amount
of buffering, and the type of gates that are used. When the timing
constraint is generous, more complex gates are used, such as full
adders, half-adders, or–and-inverts, and–or-inverts, etc. These gates
are more power and area efficient than their lower level representations,
but they do not offer the kind of flexibility that can be used to improve
the delay. Conversely, tighter timing constraints will result in designs
with many more inverters and buffers, and also more basic building
blocks, such as nands.

82 Comparing Sizing and Assignment Methods

Table 5.2. Effect of different timing constraints used during synthesis on the final
layout (adapted from [80]) for an AES encryption circuit from [6]. After synthesis, a
timing constraint of 2.0 ns is used to perform placement, routing and incremental timing
optimizations.

With a 2.0 ns clock

Timing After Place and
Constraint Route Optimizations @ sign-off
used
@ synthesis Tmax slack Tmax slack

1.60 1.829 0.171 2.249 −0.249
1.80 1.912 0.088 2.196 −0.196
1.90 1.888 0.112 2.195 −0.195
1.95 1.926 0.074 2.449 −0.449
2.00 1.912 0.088 2.252 −0.252
2.10 1.912 0.088 2.214 −0.214
2.20 1.88 0.120 2.281 −0.281
2.40 1.838 0.162 2.081 −0.081

An odd consequence of this effect is that synthesizing designs for
minimum delay provides the largest examples for gate sizing and
threshold voltage assignment. These designs not only have the most
number of gates, but also the most gates that have multiple cell options.
For example, while there may only be 1 full-adder size, there might be
several inverter and nand cell sizes to play with. However, the effect of
the synthesis timing constraint on the end design after place and route
and additional optimizations is not clear. Table 5.2 shows the effect of
a variety timing constraints used during synthesis given in [80] on the
final design. A tighter timing constraint at synthesis does not always
lead to a faster design, and the relationship is not well-behaved.

5.2 Post-layout Considerations

Post-layout discrete gate sizing and threshold voltage assignment are
done after cell placement, interconnect routing, and clock tree synthesis
(see [89]). They are performed to eliminate violations and modify the
design to meet specifications. For example, they may be performed
to fix timing violations, signal integrity issues, maximum capacitance
violations, or hold time violations [73], as well as to recover power with
accurate timing models.

5.2 Post-layout Considerations 83

5.2.1 Post-layout Timing Considerations

As placement and routing have been performed, post-layout timing
estimates may utilize (see Section 2):

(1) information about the interconnect, and interconnect
parasitics;

(2) the clock distribution tree with its associated skews;
(3) the metal fills, effects of lithography on the gate length, and

stress parameters;
(4) complex timing models including variability and crosstalk

effects.

These models generally do not have convexity properties, nor do
they have simple analytical expressions. Thus, commercial timers
use detailed approximations to ensure that the resulting delays are
accurate.

Timing engines used at the place and route stage use a faster (albeit
less accurate) timing engine than that used at sign-off. Furthermore, the
parasitic extraction used at place and route generally is not as detailed
as the sign-off parasitic extraction [80]. This mismatch may result in
iterating between design modification and sign-off, as the timer used
to modify the design is often different from the timer used at sign-off.

An example of this mismatch is shown in Figure 5.1. Though
the timing estimates correlate well, the values differ by a substantial
margin. The error is as large as 0.2 ns, and in many cases the place
and route timer underestimates the delay, which may lead to multiple
cycles of validation. This deviation increases the difficulty of the tim-
ing closure problem, as the tool used for cell optimization, placing
and routing does not match with the tool that is used for verifica-
tion. Thus, iterations of design changes in the form of an Engineering
Change Order (ECO), and sign-off may need to be performed to create
a timing feasible design.

Another problem that arises from this mismatch is the potential for
suboptimality. While the sign-off and verification may be successful,
the design tool may be overly pessimistic if the timing estimates of the
place and route timer are significantly worse than the sign-off timer.
There may be pessimism in the timing for each path, as well as the total

84 Comparing Sizing and Assignment Methods

Fig. 5.1 Mismatch between the timing estimates at place and route and at sign-off. The
gray line indicates when the two estimates match. Data adapted from, and courtesy of [80].

worst-case delay, and minimum cycle time. This pessimism translates
into suboptimality due to over-design, and as this discrepancy grows,
the potential for this suboptimality also grows.

At this point in the design, it is important to consider slew.
Figure 5.4 shows how the sizing algorithms differ when slews are dis-
abled; it is important that post-layout methods handle slew effects,
and that post-layout sizing comparisons have slew effects enabled in
the timer to be realistic.

5.2.2 Incremental Placement and Routing Considerations

Another consideration is the need for incremental placement and rout-
ing. This may be needed if the cells increase in size or the connection
pins change location. While this is not important in the Vt assignment
or gate-length biasing contexts, it is important in the gate sizing con-
text where the cell size and the pin locations may change.

Incremental placement and routing is usually done after a series
of gate sizing changes,2 and may affect other aspects of the design.

2 While it can be done after each gate is changed, it is more efficient to handle these changes
at one time by performing an incremental placement, followed by an incremental routing
after a series of changes are made.

5.2 Post-layout Considerations 85

−0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
0

5

10

15

20

∆ slack

of

 in
st

an
ce

s

Fig. 5.2 Histogram of the change in the timing after incremental placement and routing.
There are 64 different examples. The majority of the cases have a zero change in timing, and
most of the changes increase the timing (the change is positive). The maximum decrease
and increase are −0.007 ns and 0.057 ns, respectively.

The changes made by gate sizing may change the locations of the pins
and require rerouting. This may also require neighboring gates to be
moved, which in turn may also require rerouting. After the incremental
placement and routing, the design may again become timing-infeasible,
and require an additional iteration of gate sizing. An example of the
change in timing after incremental placement and routing is shown in
Figure 5.2.

5.2.3 Measuring an Engineering Change Order (ECO)

In the post-layout context, there is an additional consideration of
having a minimal design disturbance as a means to minimize the
implementation cost. This is especially important when the verifica-
tion process has already begun. Larger ECOs may require more time
to implement and verify, and may case unwanted changes that will lead
to additional ECOs.

Examples of ECOs are shown in Figure 5.3. The changes are marked
in black. The changes in Figure 5.3(a) are small compared to the
changes in Figure 5.3(c). Lee et al. [89] proposes that this changed
area be measured as an ECO area cost.

86 Comparing Sizing and Assignment Methods

Fig. 5.3 Visual example of ECOs. The changed cells, wires and vias are marked in black.

Another consideration proposed in [89] is the use of an ECO timing
cost. This is the number of positive-slack output pins in a design that
had their timing signal changed. These pins did not need any changes
in their signal as they were positive-slack; thus, changes in their signal
are unnecessary and can be considered a cost. These measures were
used in [89] to perform incremental, low ECO cost gate sizing.

5.3 Comparisons

5.3.1 Comparisons Reported in the Literature

The comparisons reported in the gate sizing and threshold voltage
assignment literature are difficult to navigate. Most Vt assignment

5.3 Comparisons 87

Table 5.3. Improvements reported in literature.

Improvement

Method Comparison Min (%) Max (%) Avg (%)

DP+LP [101] Budgeting [117] 1 31 21 w, Vt
LSH [77] Greedy [47] 9 31 18 w
Continuous based [141] Greedy [148] 6 62 31 w, Vt
Global sizing [47] Greedy [143] 5.3 57.3 11 w
Continuous based [40] Greedy [98] 0 12 5 w
Continuous based [134] Com.∗ 1 39 11 w
LP assignment [34] Com.∗ −3.6 44.9 15.3 w

∗These methods were compared against the results of a commercial synthesis tool.

papers ([117, 148, 149, 150, 168]) report improvements over no Vt

assignment. Similarly, [67] shows improvements over no gate-length
biasing, and the improvements are those gained by adding additional
threshold voltages and gate-length variants. A summary of the results
from methods in Section 4 are reported in Table 5.3. However, these
methods are difficult to compare, as the experimental setup differs.
The standard cell library, wire models, synthesis options and timing
constraints may be too different to compare the results between papers.

An interesting set of comparisons is found in [169]. A branch-and-
bound solver is implemented, which provides the optimal sizing solu-
tions for ISCAS ‘85 [71] benchmarks and ISCAS ‘89 [20] benchmarks.
For these benchmarks, the greedy method achieves between 2% and
35% suboptimality from the optimum, with an average suboptimality
of 11%. A simulated-annealing method is also compared, which achieves
between 0.5% and 28% suboptimality from the optimum, with an aver-
age suboptimality of 7%.

A common site for benchmarking gate sizing and threshold
voltage assignment algorithms is available at http://vlsicad.ucsd.edu/
SIZING.3 This website provides methods implemented in Open Access,
PrimeTime and Encounter, with the source code freely available. The
goal of the website is to benchmark the current state of gate sizing and
threshold voltage assignment, and provide an infrastructure for future
experiments.

3 This website is developed by researchers at UCSD and has some contribution from the
authors of this paper.

88 Comparing Sizing and Assignment Methods

5.3.2 Comparisons using UCLA Timer

Comparisons of gate sizing and threshold voltage assignment meth-
ods can be found in [109]. In this comparison, an LP assignment [117]
and the LR+DP method [100] are compared against a feasible-start
greedy algorithm (see Algorithm 1) that uses a ∆Power/∆Slack sen-
sitivity function to convert the slack in a minimum delay design into
power savings. The experiments are run on the Nangate Open Cell
Library [114] and a commercial 65 nm library. The static timing analy-
sis tool used in this work is the UCLA Timer [110],4 which is an open
source project based on Open Access5 and the defunct OA Gear.6 The
open-source nature of this timer provides flexibility in implementing
the sizing methods and also increased access to timing information.

The results are shown in Table 5.4. In this table, positive
values denote improvement over a timing-feasible greedy method. The
improvements are generally small, on the order of 1%, with a maxi-
mum improvement of 10.46% on the b18 benchmark using the Nangate
Library. The small sizes of these improvements suggest that more

Table 5.4. Comparisons using UCLA timer.

Nangate 45 nm Commercial 65 nm

w w w,Vt

LP (%) LR (%) LP (%) LR (%) LP (%) LR (%)

c1355 0.20 −0.56 1.21 −1.15 0.41 0.19
c1908 0.47 1.41 1.90 −0.40 2.71 0.56
c3540 −0.20 0.40 1.70 −0.24 0.63 −0.21
c432 −0.20 0.07 −0.85 −0.68 0.60 −0.35
c5315 0.11 1.08 0.57 −0.23 −0.07 −0.27
c7552 0.37 0.27 0.52 −0.14 0.20 −0.13
b15 8.55 8.54 0.44 −0.07 0.10 −0.11
b17 6.50 6.50 0.21 −0.06 0.00 −0.01
b18 10.46 10.46 0.05 0.05 0.01 0.00
b20 0.30 0.23 0.39 −0.04 0.08 −0.02

Average 2.66 2.84 0.61 −0.30 0.47 −0.04

Percentages denote improvements over a feasible-start greedy algorithm (see
Section 4.2.1).

4 Available at http://www.nanocad.ee.ucla.edu/Main/DownloadForm.
5 See http://www.si2.org.
6 http://www.si2.org/openeda.si2.org/projects/oagear.

5.3 Comparisons 89

sophisticated sizing and threshold voltage assignment methods pro-
vide only modest benefits. An interesting comparison is to see how
disabling the slew affects the results. Figure 5.4 shows that disabling
slew increases the difference between the sizing methods.

5.3.3 Comparisons Using Eyecharts

Eyecharts7 [65] were developed as a benchmarking tool for gate sizing
and threshold voltage assignment, and are artificially constructed cir-
cuits that have known optimal solutions. These circuits are constructed
using combinations of the basic structures in Figure 5.5, which have the
property that the optimal solution can be computed using a dynamic-
programming-like optimization.

The appeal of Eyecharts is that the optimal solutions are known.
This makes it useful as a benchmarking tool for sizing methods.

Fig. 5.4 The effects of disabling slew in sizing experiments; the performance improvement
is relative to the timing-feasible greedy method. Disabling slew increases the difference
between sizing methods.

Fig. 5.5 The basic structures used in the eyechart benchmarks.

7 Eyecharts are available for download at http://www.nanocad.ee.ucla.edu/Main/Download
Form.

90 Comparing Sizing and Assignment Methods

Their performance relative to the absolute minimum can be judged,
as opposed to the majority of prior work where only the relative per-
formance between algorithms could be compared.

In [65], two commercial tools, (Comm1) and (Comm2), the LP slack
allocation in [117] (LP), a greedy sizing method using ρd from Equa-
tion (4.15) (GS), and a greedy sizing using ρs from Equation (4.16)
(SBS) are compared.

Figure 5.6 show the results of the comparisons. The LP method
performs the best in the gate sizing context (Figure 5.6(a)), while the
commercial tool (Comm2) performs the best in the Vt (Figure 5.6(b))
and the gate-length contexts. In contrast, the LP method performs
poorly in the Vt context.

The difference between the methods is significant, over 10% in some
cases, indicating that there can be substantial improvements to be
gained from good gate sizing heuristics. Furthermore, the results show
a suboptimality gap; the sizing methods are approximately 5–15% from
optimal.

Figure 5.7 shows the impact of the number of sizes on the resulting
suboptimality. The suboptimality decreases overall as the number of
sizes for each gate increase. However, this is not true for the commercial
tools (Comm1) and (Comm2) — they perform as well on libraries with
two cells as they do with libraries with 10 cells.

5.3.4 Comparisons Using Commercial Tools

Sizing and threshold voltage assignment methods were also compared
using TCL scripts implemented in Cadence Encounter [22].8 Implemen-
tations of four gate sizing and threshold voltage assignment methods
were compared:

(1) TILOS [60].
(2) Feasible-start greedy method (Algorithm 1).
(3) LP based slack assignment (Section 4.3).
(4) LP assignment method (Section 4.8).

8 These scripts are available at http://www.nanocad.ee.ucla.edu/Main/DownloadForm.

5.3 Comparisons 91

500 1000 1500 2000 2500 3000 5000 6000
0
4
8

12
16

Delay Budget(ps)

S
ub

op
tim

al
ity

 %

Comm1
LP
GS
Comm2
SBS

500 800 1000 1200 1300 1500

20

30

40

50

60

Delay Budget(ps)

S
ub

op
tim

al
ity

 %

 Comm1
LP
GS
Comm2
SBS

500 800 1000 1200 1500
10

15

20

25

30

35

40

Delay Budget(ps)

S
ub

op
tim

al
ity

 %

 Comm1

LP

GS

Comm2

SBS

(a)

(b)

(c)

Fig. 5.6 Eyechart comparisons of different gate sizing and threshold voltage assignment
methods. (a) represents a gate-sizing comparison, (b) represents a Vt assignment compari-
son with three threshold voltages, (c) represents a gate length assignment with three gate
lengths.

Experiments were run on the Nangate Open Cell Library [114] and
a commercial 65 nm library, and the benchmarks were originally syn-
thesized, placed and routed for minimum delay, with all optimization
effort flags set to high. In the implementation of [117], ∆Power/∆Slack
was used in place of ∆Power/∆ta, and in the implementation of TILOS
and the greedy method, the ∆Power/∆Slack sensitivity function was
used.

92 Comparing Sizing and Assignment Methods

2 4 6 8 10

1
3
5
7
9

11
13
15
17
19

Number of gate sizes

S
ub

op
tim

al
ity

 %

Comm1

LP

GS

Comm2

SBS

Fig. 5.7 The effect of the number of gate sizes available in the library on the suboptimality
of the gate sizing method.

Fig. 5.8 Comparison between sizing methods using the Nangate 45 nm Library. The y-
axis gives the % suboptimality relative to the best solution found. The x-axis is the delay
constraint — 0.0 is the minimum delay and 1.0 is the maximum delay. When the data point
is omitted, it indicated that algorithm did not return a timing-feasible solution.

Results are shown in Figures 5.8, 5.9, and 5.10 for the Nangate
Library, the commercial 65 nm library with gate sizing only, and the
commercial 65 nm with Vt assignment, respectively. The plots show
the relative leakage power suboptimality of each of the method with
the best solution found for that benchmark and timing constraint.
Overall, the LP assignment method performs the best, followed by the
TILOS method, and then the feasible-start greedy method. The details

5.3 Comparisons 93

Fig. 5.9 Comparison between sizing methods using a commercial 65 nm Library. The y-
axis gives the % suboptimality relative to the best solution found. The x-axis is the delay
constraint — 0.0 is the minimum delay and 1.0 is the maximum delay. When the data point
is omitted, it indicated that algorithm did not return a timing-feasible solution.

Fig. 5.10 Comparison between Vt assignment methods using a Commercial 65 nm Library=.
The y-axis gives the % suboptimality relative to the best solution found. The x-axis is the
delay constraint — 0.0 is the minimum delay and 1.0 is the maximum delay. When the data
point is omitted, it indicated that algorithm did not return a timing-feasible solution.

94 Comparing Sizing and Assignment Methods

of the results vary by library; in the Nangate Library results in Fig-
ure 5.8, the LP assignment provides results that are within 2% of the
best solutions, followed by TILOS (within 7.1%), feasible-start greedy
(within 10%), and LP Slack Allocation (within 32%). The average rel-
ative suboptimalities are 0.25%, 1.1%, 2%, and 11%, respectively.

The results for the commercial 65 nm with gate sizing (Figure 5.9)
are different from the Nangate Library results. This library has more
available gate size options; for example, the nand cell has 10 options
in this library, compared to 3 options in the Nangate Library. In this
case, the LP assignment has a couple poor solutions (s35932 and s38584
with delay constraint 0.2). In this case, the TILOS method is the best,
with a relative suboptimality of 1.3% on average, and a maximum of
4.4%. The suboptimalities for the remaining methods are 2.3% (avg)
and 8% (max) for the LP assignment, 4% (avg) and 28% (max) for the
feasible-start greedy, and 34% (avg) and 142% (max) for the LP slack
allocations.

The commercial 65 nm with Vt assignment has the most dramatic
results (see Figure 5.10). This is because Vt assignment can provide
order-of-magnitude type power reductions per gate, which exaggerates
the difference between good and bad solutions. The LP slack assign-
ment and the feasible-start greedy methods perform very poorly in this
situation for the combinatorial circuits. However, the results for the
sequential circuits (s13207, s35932, s38417, and s38584) are better; for
these cases, the suboptimality is a maximum of 26% with the LP slack
assignment and the feasible start greedy. The LP assignment method
works very well in this case, with an average relative suboptimality
of less than 1%, and maximum of 2%. The TILOS method was next
in performance, with an average relative suboptimality of 5% and a
maximum of 23%.

6
Statistical Gate Sizing

In nanometer designs, the effects of variability are too large to
ignore [115]. This is best seen by examining the ITRS Roadmap
2009 [79], which is a report sponsored by semiconductor companies
designed to identify future challenges. This report predicts that in 2011:

• 11%: Effects of parametric variation on sign-off delay.
• 20%: Vt variation.
• 60%: Performance variability.
• 88%: Total power variability.
• 255%: Leakage power variability.

Furthermore, this variability is projected to increase. Figure 6.1
shows the variability data through the year 2016. The increases are the
greatest for the leakage power variability, which is projected to increase
at a rate of 24% per year!

This has motivated statistical gate sizing methods to mitigate the
“soaring leakage variability” [79]. These methods use statistical models
for delay and power to create designs that are robust against variation.1

1 For an in-depth discussion of statistical variations and modeling, see [94].

95

96 Statistical Gate Sizing

Fig. 6.1 Projected variability in key design parameters (adapted from [79]).

Parametric variations are generally divided into two types [152]:
(1) within-die, or intra-die variations, where each device in a die will
see different values of the variation; and (2) die-to-die, or inter-die vari-
ations, where each device on a die has the same value of the variation.
These variations may come from many sources [93], such as dishing,
diffraction effects, line-edge roughness, lens aberrations, and dopant
fluctuations. Methods to reduce the impact of these variations will be
outlined in this section.

6.1 Motivating Examples

6.1.1 The Slack Wall

An excellent motivational example for statistical design is the “slack
wall” [7]. In regular deterministic design, there is an incentive to make
the delay for each path equal to the maximum allowed delay because:

(1) Paths slower than the maximum delay violate the timing and
are therefore not allowed.

(2) Paths faster than the maximum delay are not optimal —
they can be slowed down to save power.

6.1 Motivating Examples 97

Fig. 6.2 Effects of a “slack wall” on statistical slack. The PDF for the worst-case slack is
shown for 1, 10, 50 and 100 paths. The delay of each path is Gaussian with variance 100 ps.

This has the effect of creating a “slack wall”, a large number of paths
having a small positive slack.

While these slack walls are optimal from a deterministic point of
view, they are suboptimal from a statistical point of view because the
minimum slack over all the paths will be worse than the slack of each
one of its paths. This effect is illustrated in Example 6.1.

Example 6.1. Suppose that a 300 ps guard-band is used to ensure
a high yield. Also suppose that the delay variation of each path has a
standard deviation of 100 ps. Thus, the yield would be expected to be
the 3 − σ value 99.98%.

This is true when the paths are completely dependent, but it under-
estimates when the paths are not completely dependent. For example,
Figure 6.2 plots the statistical slack probability density distribution
(PDF) as a function of the number of independent paths. As the num-
ber of independent paths increases, the slack distribution shifts toward
the negative slack direction. When there are 100 independent paths,
the yield drops to 92% — a huge decrease from 99.98%.

98 Statistical Gate Sizing

This example shows that deterministic optimization may be overly
optimistic and result in under-design. However, there are also cases
where deterministic optimization may result in over-design [164].

6.1.2 Worst-case Corners and Over-design

Most earlier design methods relied on corner based methods for
design [111, 116, 162]. The corners were process and operating con-
dition parameters that were used for validation. For example, a fast
corner might be at a low temperature, have a high supply voltage,
and use a fast process. Conversely, a slow corner might operate at a
high temperature, have a low supply voltage and use a slow process.
An example of the corners in the Nangate 45 nm Library are shown in
Table 6.1.

When the variations become large, as in Figure 6.1, the parametric
variability of the transistors cause variations in the timing and power
that are on par with the fluctuations in the operating conditions. Due
to this, the fast and slow process corners become inadequate for char-
acterizing the design. One example of this inadequacy is the notion of
a worst-case corner. Traditionally, this corner is taken as a 3 − σ value
of the variations. However, when there are n independent sources of
variation, each with standard variations {σ1, . . . ,σn}, the corner must
be fitted to provide an overall 3 − σ value. Using the 3 − σ value for
each of these parameters will result in a

√
n · 3σ value [69], which is

much more conservative than is needed.
Even if a correct 3 − σ value for the delay can be found, it may still

be conservative due to intra-die random variations. Intra-die variations
may have a smaller impact on the size of the variation than inter-die
variations. For example, consider an inverter chain with N gates, whose
delays are random variables, D1, . . . ,DN that can be generated from

Table 6.1. Corners in the Nangate 45 nm library [114].

Corner Temperature Supply voltage Process

Fast 0◦C 1.25V FastFast
Typical 25◦C 1.1V TypicalTypical
Slow 125◦C 0.95V SlowSlow

6.1 Motivating Examples 99

N + 1 IID N (0,1) random variables X1, . . . ,XN as:

D1
...

DN

 = 1 +

α 0 . . . 0 (1 − α)
0 α . . . 0 (1 − α)
...

. . .
...

0 0 . . . α (1 − α)

X1
...

XN+1

. (6.1)

The parameter α is used to examine the effect of varying the pro-
portion of the variation caused by inter-die and intra-die variations.
The total delay of the inverter chain is the random variable defined by
D =

∑N
i=1Di. When α = 1 (no intra-die variations are present), D is

mean N and standard deviation
√

N . On the other hand, when α = 0
(only intra-die variations are present), D is still mean N but the stan-
dard deviation is N . For general α, the mean is always equal to N , but
the standard deviation varies as

√
N2(1 − α)2 + Nα2. The main idea

here is that the correlation between gates is important, as it impacts the
variance and, moreover, the impact of the correlation is also dependent
on the number of stages, N , as the difference between the correlated
and uncorrelated cases is N − √N and grows as the stages grow. How-
ever, this is difficult to incorporate into corners, as the number of stages
is design dependent.

The last motivation for statistical methods is due to the difference in
the sensitivities of gates to the variation sources. Different library cells
may respond differently to variations in gate lengths, oxide thicknesses,
doping, line-edge roughness, etc. This difference may make the param-
eters that make the worst-case for one cell different from another. In
other words, it may be impossible for two cells to be at the worst-case
scenario at the same time! Thus, characterizing them at their 3 − σ

points may be overly pessimistic.
These criticisms are not uncontested. In [111] the author argues that

the drawbacks of corner based analysis may be exaggerated. He argues
that corners can account for the correlations between gates by adjusting
the corner to be less conservative. Furthermore, he argues that corner
based analysis may not be overly conservative for the reasons shown
in Figure 6.2. A larger number of critical paths will cause the yield to
decrease, and thus a conservative approach may be needed.

100 Statistical Gate Sizing

6.2 Slack-wall Methods

In [7], the authors present a method to avoid the effect of the “slack
wall” in Section 6.1.1. This slack wall is the result of a deterministic
timing constraint where each of the paths is required to be less than
or equal to the clock period, but there is no incentive to be any faster.
Thus, many of the paths have delays that are near the clock period, and
when statistical delays are added, many of the paths violate timing.

To counter this, the deterministic timing constraint is replaced with
a modified timing constraint that gives paths an incentive to be faster
than needed. This is done using a penalty ; at each primary output i,
the penalty is: ∑

i∈PO

e−tai/θ, (6.2)

where θ is a constant that is used to tailor the profile of the slack wall.
This is then added to the power objective and the resulting problem is
solved as a multi-objective problem.

6.3 SSTA Based Methods

One branch of statistical gate sizing methods utilizes the develop-
ments in Statistical Static Timing Analysis, which adapts the tradi-
tional Static Timing Analysis methodology, to account for statistical
variations (see Section 2.10). Agarwal et al. [4] implements the greedy
sizing heuristic from Section 4.2.1 using the modified score function:

ρtaβ
= (taβ(g,ω) − taβ(g,ω0))/∆p(g,ω;ω0), (6.3)

where taβ is the β-percentile of the arrival time. Guthaus et al. [69]
uses the statistical slack version:

ρsβ
= (sβ(g,ω) − sβ(g,ω0))/∆p(g,ω;ω0), (6.4)

where sβ is the β-percentile of the slack. Srivastava et al. [151] utilizes
this score as well, but uses the statistical slack version of (4.17) from
Section 4.2 for timing closure. This is an adaptation of prior SSTA
work; by changing the timing to statistical timing, methods become
statistical sizing methods.

6.4 Gate Delay Approximation Heuristics 101

6.4 Gate Delay Approximation Heuristics

Several works use a continuous sizing framework that uses approxima-
tions for the statistical gate delay [36, 104, 106, 124, 146]. The idea
here is to approximate the statistical delay of the design by using the
statistical library cell delays in place of the deterministic gate delay.
Specifically, a percentile of the cell delay over the variation sources,
ξ, is used:

dβ(g) = [β−percentile](d(g,ξ)). (6.5)

When the underlying delays are Gaussian, this is equivalent to:

dβ(g) = d(g,ξ) + κσd(g,ξ), (6.6)

where σd is the standard deviation of the delay. This is then incorpo-
rated a block-based delay formulation in Section 4.4.2.

At first glance, this looks equivalent to the corner based formula-
tion — each gate is set to be at a “worst-case” type delay corner. How-
ever, there are two differences. The first difference is that the standard
deviation of the delay is gate dependent. According to Pelgrom’s
model [125], the variation in Vt is ∝ 1√

WL
and larger gates will have a

smaller σd. Thus, these heuristics have the advantage of using larger
gates to reduce the variation in Vt, and consequently, in the delay.

The next difference is in the choice in the κ. Worst-case corner
methods apply the same value of κ for all gates in the design (see [139]).
However, this precludes the ability to adjust the κ values to match
the actual criticalities. Some gates may heavily influence the statistical
delay if it is the bottleneck of many critical paths, while other gates may
effect the statistical delay less if they contribute to only a few paths.
In [105, 145], heuristic methods to tune the κ are presented to improve
the accuracy, and to reduce the pessimism described in Section 6.1.2.

6.5 Convex Functions of Statistical Delay

Another approach to sizing with a yield constraint is discussed in [51]
and [43]. The idea here is to use convex functions of statistical delay, as
they have the attractive property that there are no local minima that
are not global minima.

102 Statistical Gate Sizing

Davoodi et al. [51] minimizes the Bin–Yield Loss function:

BYL = −
∫ 0

−∞
s · Prob(slack = s) · ds, (6.7)

where Prob(slack = s) is the probability density function of the slack.
This expression is the negative of the expected value of the negative
slack. It is zero when there is no delay violations, in which case the
probability of a negative slack is zero. This function is convex when
the delay of the circuit is convex, and is used as a convex proxy to
maximize the yield.

Cong et al. [43] presents a convex approximation to the yield func-
tion. Their mean-excess delay function is given as:

MEDβ = min
z

{
z +

1
1 − β

∫ ∞
z

(t − z) · Prob(delay = t) · dt

}
, (6.8)

where Prob(delay = z) is the probability density function for the delay.
The utility of this function is in approximating percentiles, using the
following property of the MEDβ:

MEDβ ≥ percentileβ. (6.9)

Thus, a constraint that the β percentile delay is less than Tmax can be
approximated as:

MEDβ ≤ Tmax. (6.10)

This is preferred over the percentile constraint, as the percentile is
generally not a convex function of the delay.

The MED is a general version of the BYL; when t is equal to the
clock period, the MED is identical to the Bin–Yield Loss function.

6.6 Statistical Power Considerations

All of the prior discussion in statistical gate sizing has dealt with statis-
tical delay. However, a natural question is whether the statistical power
should also be considered — is it beneficial to perform gate sizing with
a statistical power objective?

6.6 Statistical Power Considerations 103

The statistical power can be represented as the sum of the statistical
leakage power and the statistical dynamic power random variables:

P = Pl + Pd. (6.11)

As Figure 6.1 indicates, the variations in the leakage power dominates
the total variation in power, and this will be the focus of this section.
The leakage power random variable is generally modeled as log-normal,
as in [130], and can be expressed as a function of the gate level leakage
as:

Pl =
∑
g∈G

p(g,ω)e−γg∆Vtge−ηg∆Lg (6.12)

where

• p(g,ω) is the nominal power.
• ∆Lg is a zero-mean random variable that describes the gate

length variations for gate g.
• ∆Vtg is a zero-mean random variable that describes the

threshold voltage variations for gate g.
• γg and ηg are fitting coefficients.

When the ∆Lg and ∆Vtg are Gaussian, e.g., normal, the expres-
sion (6.12) is log-normal. Generally, ∆Vtg and ∆Lg contain parts
related to the intra-die variations (∆Vtwid,g and ∆Lwid,g) and inter-
die variations (∆Vtdtd and ∆Ldtd). Note that there is no g subscript
for the inter-die variations — all gates on the same die see the same
variation. The random variable (6.12) is difficult to work with directly.
Generally, the random variable must be interpreted; for example, the
mean leakage power of (6.12) can be expressed as:

E[Pl] =
∑
g∈G

p(g,ω)e
γ2

gσ2
∆Vtg

/2
eη2

gσ2
∆Lg

/2 (6.13)

The percentile, or quantile, of (6.12) is generally difficult to express
in closed form. As an approximation, the mean + 3σ measure is often
used:

E[Pl] + 3(E[P2
l] − E[Pl]2) (6.14)

104 Statistical Gate Sizing

with

E[P2
l] =

∑
g∈G

∑
g′∈G

p(g,ω)p(g′,ω)E[e−(γg∆Vtg+γg′∆Vtg′)e−(ηg∆Lg+ηg′∆Lg′)].

(6.15)
This function is non-linear, and requires the computation of the covari-
ance terms.

In [42], the benefits of using a statistical power objective are eval-
uated. When the mean power is used to measure statistical power,
the improvements were small, on the order of 1%. For the mean +3σ

measure, the improvements can be noticeable (>5%). However, the fol-
lowing linear proxy measure can be used in place of the more complex
non-linear mean +3σ measure:

[proxy] =
∑
g∈G

p(g,ω)eγgσ∆Vtdtd+ηgσ∆Ldtd e
√

2(γgσ∆Vtg,wid+ηgσ∆Lg,wid)/2
.

(6.16)

Using this measure as an objective can be used to optimize to within
5% of the mean +3σ optimum.

6.7 Statistical Delay Considerations

There are many papers that show the benefits of using statisti-
cal delay [36, 104, 151]. For example, [21] cites a 20–30% power
improvement from using statistical delay. Unlike the case of statistical
power objectives, a statistical delay objective or constraint is widely
understood to provide a improvement.

It is important to recognize the comparison point for these improve-
ments. In [36] a 19% improvement is found over worst-case design with
a 6 − σ guardband; [104] provides a 31% static power improvement over
a 100%-yield worst-case scenario. These comparisons with overly con-
servative worst-case scenarios may exaggerate the benefits of statistical
optimization, but they show the benefits of preventing over-design.

References [21, 151, 163] provide comparisons between full statis-
tical optimization, and a design method called global guardbanding
(see [21]). In global-guardbanding, the optimization is performed using
nominal design methods, but the timing constraint is checked using

6.7 Statistical Delay Considerations 105

an SSTA. The SSTA is used to adjust the timing constraint and to
create a design that meets the statistical delay constraint exactly. This
reduces the additional costs associated with over-designing, and the
infeasibility associated with under-designing.

Comparisons between full statistical optimization and global guard-
banding are mixed. In [151], an improvement between 15% and 35% is
shown over a sensitivity based method that employs an SSTA to verify
the timing constraint. However, in similar experiments in [21, 163], a 6%
improvement is shown. This indicates that a majority of the improve-
ment comes from reducing the pessimism; however, there is still a small
but significant improvement that can be gained from a full statistical
optimization.

7
Conclusion

Gate sizing and threshold voltage assignment are versatile methods
used to optimize the power and timing of a design. The research over the
past three decades has produced methods such as the greedy method,
slack and delay budgeting, continuous sizing based, dynamic program-
ming, Lagrangian relaxation, and linear programming based assign-
ment methods. This survey has also covered the background needed to
understand gate sizing and threshold voltage assignment via sections
on static timing analysis, and on the mechanisms behind gate sizing
and threshold voltage assignment.

The comparisons given in Section 5 point to varying conclusions.
The need and potential benefits for new gate sizing and threshold
voltage assignment methods is not clear. To advance gate sizing and
threshold voltage assignment, it is important to quantify the current
best practices for gate sizing, and its potential benefits. The most
important step in proceeding is to understand the current state-of-
the-art.

The work on Eyecharts in [65] are a good first step toward this end,
as they make comparisons in several different contexts. The optima for
these benchmarks are known and they give a broad overview of how far

106

107

the methods are from optimal. However these benchmarks are artificial,
and their correlation to real designs must be justified.

The largest difficulty in comparing existing methods is a lack of a
common framework for the algorithms. The results provided in liter-
ature are difficult to compare, as the experimental setups are rarely
similar. However, an avenue for improvement might be found by exam-
ining the areas of placement and routing. The ISPD contests in place-
ment [112] and routing [113] provided benchmarks and a common
framework to compare different methods. The results from the con-
tests provided insight into the state of placement and routing, along
with its best practices. It also motivated new research on that combined
the best practices found in the contest. toward this end, the authors,
along with researchers at UCSD, have released a benchmarking website
at http://vlsicad.ucsd.edu/SIZING, that can be used to develop new
algorithms, and test existing ones.

Another area for research is in metrics to measure how difficult a
benchmark is, or what kind of method would perform well. As gate
sizing and threshold voltage assignment is an NP-hard combinatorial
problem, it may be difficult for one method to perform well across all
benchmarks. Thus, it may be worthwhile to consider metrics that can
determine whether one method would work better than another, and
even give an estimate on the amount of improvement that can be gained
by optimization.

There are also new challenges due to the increased variability. Sta-
tistical gate sizing methods have been studied for over decade, and it is
time to quantify the benefits and drawbacks of statistical gate sizing,
and find scalable methods for large scale design. The increased vari-
ability has also motivated questions into incremental design. How can
designs be optimized incrementally to account for changes in the man-
ufacturing process? These are areas to consider for the coming decade.

Acknowledgments

We would like to acknowledge Prof. Andrew Kahng and Dr. Kwangok
Jeong for their help with the post-layout timing, Amarnath Kasib-
hatla for his support with the eyecharts, and Santiago Mok for his
support with the UCLA Timer. We are also grateful for support from
the National Science Foundation Award 0811832.

108

References

[1] A. Abou-Seido, B. Nowak, and C. Chu, “Fitted Elmore delay: a simple and
accurate interconnect delay model,” IEEE Transactions on Very Large Scale
Integration (VLSI), vol. 12, no. 7, pp. 691–696, 2004.

[2] H. Abrishami, J. Lou, J. Q. J. Froessl, and M. Pedram, “Post sign-off leakage
power optimization,” in Proceedings of Design Automation Conference, 2011.

[3] A. Agarwal, D. Blaauw, V. Zolotov, S. Sundareswaran, M. Zhao, K. Gala,
and R. Panda, “Statistical delay computation considering spatial correla-
tions,” in Proceedings of Asia and South Pacific Design Automation Con-
ference, pp. 271–276, 2003.

[4] A. Agarwal, K. Chopra, and D. Blaauw, “Statistical timing based optimization
using gate sizing,” in Proceedings of Design, Automation and Test in Europe,
pp. 400–405, 2005.

[5] C. Amin, N. Menezes, K. Killpack, F. Dartu, U. Choudhury, N. Hakim, and
Y. Ismail, “Statistical static timing analysis: How simple can we get?,” in
Proceedings of Design Automation Conference, pp. 652–657, 2005.

[6] Available on http://www.opencores.org.
[7] X. Bai, C. Visweswariah, P. Strenski, and D. Hathaway, “Uncertainty-

aware circuit optimization,” in Proceedings of Design Automation Conference,
pp. 58–63, 2002.

[8] D. K. Beece, J. Xiong, C. Visweswariah, V. Zolotov, and Y. Liu, “Tran-
sistor sizing of custom high-performance digital circuits with parametric
yield considerations,” in Proceedings of Design Automation Conference,
pp. 781–786, 2010.

109

110 References

[9] F. Beeftink, P. Kudva, D. Kung, and L. Stok, “Gate-size selection for standard
cell libraries,” in Proceedings of the International Conference on Computer-
Aided Design, pp. 545–550, November 1998.

[10] R. Bellman, Dynamic Programming. 1957.
[11] M. R. C. M. Berkelaar and J. A. G. Jess, “Gate sizing in mos digital circuits

with linear programming,” in EURO-DAC ’90: Proceedings of the Conference
on European Design Automation, pp. 217–221, 1990.

[12] R. Berridge, R. Averill, A. Barish, M. Bowen, P. Camporese, J. DiLullo,
P. Dudley, J. Keinert, D. Lewis, and R. Morel et al., “IBM POWER6 micro-
processor physical design and design methodology,” IBM Journal of Research
and Development, vol. 51, no. 6, pp. 685–714, 2007.

[13] D. Bertsekas, Dynamic Programming and Optimal Control, vol. I. Athena
Scientific, 2005.

[14] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs:
A Practical Approach. Springer Verlag, 2009.

[15] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical timing
analysis: From basic principles to state of the art,” IEEE Transactions on
Computer-Aided Design, vol. 27, no. 4, pp. 589–607, 2008.

[16] K. Boese, A. Kahng, B. Mccoy, and G. Robins, “Fidelity and near-optimality
of Elmore-based routing constructions,” in Proceedings of International Con-
ference on Computer Design, pp. 81–84, 1993.

[17] S. Boyd, S. Kim, D. Patil, and M. Horowitz, “Digital circuit optimization via
geometric programming,” Operations Research, vol. 53, no. 6, p. 899, 2005.

[18] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[19] R. Brawhear, N. Menezes, C. Oh, L. Pillage, and M. Mercer, “Predicting
circuit performance using circuit-level statistical timing analysis,” in Proceed-
ings of the European Conference on Design Automation (EDAC). European
Test Conference (ETC). The European Event in ASIC Design (EUROASIC),
pp. 332–337, 1994.

[20] F. Brglez, D. Bryan, and K. Kozminski, “Combinatorial profiles of sequential
benchmark circuits,” in Proceedings of International Symposium on Circuits
and Systems, pp. 1929–1934, May 1989.

[21] S. M. Burns, M. Ketkar, N. Menezes, K. A. Bowman, J. W. Tschanz, and
V. De, “Comparative analysis of conventional and statistical design tech-
niques,” in Proceedings of Design Automation Conference, pp. 238–243, 2007.

[22] Cadence, “Encounter v. 10.11,” Avalilable on http://www.cadence.com.
[23] M. Celik, L. Pileggi, and A. Odabasioglu, IC Interconnect Analysis. Springer

Netherlands, 2002.
[24] P. Chan, “Algorithms for library-specific sizing of combinational logic,” in

Proceedings of Design Automation Conference, pp. 353–356, 1990.
[25] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering spatial

correlations using a single pert-like traversal,” in Proceedings of International
Conference on Computer-Aided Design, p. 621, 2003.

[26] H. Chang, V. Zolotov, S. Narayan, and C. Visweswariah, “Parameter-
ized block-based statistical timing analysis with non-Gaussian parameters,

References 111

nonlinear delay functions,” in Proceedings of Design Automation Conference,
pp. 71–76, 2005.

[27] C. Chen, C. Chu, and D. Wong, “Fast and exact simultaneous gate and
wire sizing by lagrangian relaxation,” IEEE Transactions on Computer-Aided
Design, vol. 18, no. 7, pp. 1014–1025, 1999.

[28] C. Chen and M. Sarrafzadeh, “Power reduction by simultaneous voltage scal-
ing and gate sizing,” in Proceedings of Asia and South Pacific Design Automa-
tion Conference, pp. 333–338, 2000.

[29] C. Chen and M. Sarrafzadeh, “Simultaneous voltage scaling and gate sizing
for low-power design,” IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing, vol. 49, no. 6, pp. 400–408, 2002.

[30] D.-S. Chen and M. Sarrafzadeh, “An exact algorithm for low power library-
specific gate re-sizing,” in Proceedings of Design Automation Conference,
pp. 783–788, 1996.

[31] H. Chen and S. Kang, “iCOACH: A circuit optimization aid for CMOS
high-performance circuits,” Integration, the VLSI journal, vol. 10, no. 2,
pp. 185–212, 1991.

[32] L. Cheng, J. Xiong, and L. He, “Non-linear statistical static timing analy-
sis for non-Gaussian variation sources,” in Proceedings of Design Automation
Conference, pp. 250–255, 2007.

[33] D. Chinnery and K. Keutzer, Closing the Power Gap between ASIC & Custom:
Tools and Techniques for Low Power Design. New York Inc.: Springer-Verlag,
2007.

[34] D. G. Chinnery and K. Keutzer, “Linear programming for sizing, vth and
vdd assignment,” in Proceedings of International Conference on Low Power
Electronics and Design, pp. 149–154, 2005.

[35] B. Choi and D. Walker, “Timing analysis of combinational circuits including
capacitive coupling and statistical process variation,” in Proceedings of VLSI
Test Symposium, pp. 49–54, 2000.

[36] S. H. Choi, B. C. Paul, and K. Roy, “Novel sizing algorithm for yield improve-
ment under process variation in nanometer technology,” pp. 454–459, 2004.

[37] K. Chopra, S. Shah, A. Srivastava, D. Blaauw, and D. Sylvester, “Parametric
yield maximization using gate sizing based on efficient statistical power and
delay gradient computation,” in Proceedings of International Conference on
Computer-Aided Design, pp. 1023–1028, 2005.

[38] K. Chopra, B. Zhai, D. Blaauw, and D. Sylvester, “A new statistical max oper-
ation for propagating skewness in statistical timing analysis,” in Proceedings
of International Conference on Computer-Aided Design, pp. 237–243, 2006.

[39] H. Chou, Y. Wang, and C. Chen, “Fast and effective gate-sizing with multiple-
vt assignment using generalized lagrangian relaxation,” in Proceedings of Asia
and South Pacific Design Automation Conference, pp. 381–386, 2005.

[40] W. Chuang, S. Sapatnekar, and I. Hajj, “Timing and area optimization for
standard-cell VLSI circuit design,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 14, p. 308, 1995.

[41] C. Clark, “The greatest of a finite set of random variables,” Operations
Research, vol. 9, no. 2, pp. 145–162, 1961.

112 References

[42] J. Cong, P. Gupta, and J. Lee, “Evaluating statistical power optimization,”
IEEE Transactions on Computer-Aided Design, vol. 29, no. 11, pp. 1750–1762,
2010.

[43] J. Cong, J. Lee, and L. Vandenberghe, “Robust gate sizing via mean excess
delay minimization,” in Proceedings of International Conference on Physical
Design, pp. 10–14, 2008.

[44] A. Conn, P. Coulman, R. Haring, G. M. C. Visweswariah, and C. Wu,
“JiffyTune: Circuit optimization using time-domain sensitivities,” IEEE
Transactions on Computer-Aided Design, vol. 17, no. 12, pp. 1292–1309, 1998.

[45] A. Conn, R. Haring, C. Visweswariah, P. Coulman, and G. Morrill, “Optimiza-
tion of custom MOS circuits by transistor sizing,” in International Conference
on Computer-Aided Design, p. 174, 1996.

[46] O. Coudert, “Gate sizing: A general purpose optimization approach,” in Pro-
ceedings of Design, Automation and Test in Europe, p. 214, 1996.

[47] O. Coudert, “Gate sizing for constrained delay/power/area optimiza-
tion,” IEEE Transactions on Very Large Scale Integration (VLSI), vol. 5,
pp. 465–472, December 1997.

[48] O. Coudert, R. Haddad, and S. Manne, “New algorithms for gate sizing:
A comparative study,” in Proceedings of Design Automation Conference,
pp. 734–739, 1996.

[49] Z. Dai and K. Asada, “MOSIZ: A two-step transistor sizing algorithm based
on optimal timing assignment method for multi-stage complex gates,” in Pro-
ceedings of Custom Integrated Circuits Conference, pp. 17–3, 1989.

[50] A. Davoodi and A. Srivastava, “Variability driven gate sizing for binning yield
optimization,” in Proceedings of Design Automation Conference, pp. 959–964,
2006.

[51] A. Davoodi and A. Srivastava, “Variability driven gate sizing for binning yield
optimization,” IEEE Transactions on Very Large Scale Integration (VLSI),
vol. 16, no. 6, pp. 683–692, 2008.

[52] M. Degrauwe, O. Nys, E. Dijkstra, J. Rijmenants, S. Bitz, B. Goffart, E. Vit-
toz, S. Cserveny, C. Meixenberger, and G. Van der Stappen et al., “IDAC: An
interactive design tool for analog CMOS circuits,” IEEE Journal of Solid-State
Circuits, vol. 22, no. 6, pp. 1106–1116, 1987.

[53] A. Dharchoudhury, D. Blaauw, J. Norton, S. Pullela, and J. Dunning,
“Transistor-level sizing and timing verification of domino circuits in the power
pctm microprocessor,” in Proceedings of International Conference on Com-
puter Design, pp. 143–148, October 1997.

[54] A. Dharchoudhury and S. Kang, “Worst-case analysis and optimization of
VLSI circuit performances,” IEEE Transactions on Computer-Aided Design,
vol. 14, no. 4, pp. 481–492, 1995.

[55] F. El-Turky and E. Perry, “Blades: An artificial intelligence approach to ana-
log circuit design,” IEEE Transactions on Computer-Aided Design, vol. 8,
pp. 680–692, June 1989.

[56] W. Elmore, “The transient response of damped linear networks with particular
regard to wideband amplifiers,” Journal of Applied Physics, vol. 19, pp. 55–63,
1948.

References 113

[57] P. Feldmann and S. Abbaspour, “Towards a more physical approach to gate
modeling for timing, noise, and power,” in Proceedings of Design Automation
Conference, pp. 453–455, 2008.

[58] P. Feldmann and S. Director, “Integrated circuit quality optimization using
surface integrals,” IEEE Transactions on Computer-Aided Design, vol. 12,
pp. 1868–1879, December 1993.

[59] P. Feldmann and R. Freund, “Efficient linear circuit analysis by pade approx-
imation via the lanczos process,” IEEE Transactions on Computer-Aided
Design, vol. 14, pp. 639–649, May 1995.

[60] J. Fishburn and A. Dunlop, “TILOS: A posynomial approach to transistor siz-
ing,” in Proceedings of International Conference on Computer-Aided Design,
1985.

[61] C. Forzan and D. Pandini, “Statistical static timing analysis: A survey,” Inte-
gration, the VLSI Journal, vol. 42, no. 3, pp. 409–435, 2009.

[62] A. Gattiker, S. Nassif, R. Dinakar, and C. Long, “Timing yield estimation
from static timing analysis,” in International Symposium on Quality Electronic
Design, pp. 437–442, 2001.

[63] G. Gielen and R. Rutenbar, “Computer-aided design of analog and mixed-
signal integrated circuits,” Proceedings of the IEEE, vol. 88, no. 12,
pp. 1825–1854, 2000.

[64] G. Gielen, H. Walscharts, and W. Sansen, “Analog circuit design optimization
based on symbolic simulation and simulated annealing,” IEEE Journal of
Solid-State Circuits, vol. 25, no. 3, pp. 707–713, 1990.

[65] P. Gupta, A. Kahng, A. Kasibhatla, and P. Sharma, “Eyecharts: Constructive
benchmarking of gate sizing heuristics,” in Proceedings of Design Automation
Conference, 2010.

[66] P. Gupta, A. Kahng, P. Sharma, and D. Sylvester, “Gate-length biasing
for runtime-leakage control,” IEEE Transactions on Computer-Aided Design,
vol. 25, no. 8, pp. 1475–1485, 2006.

[67] P. Gupta, A. B. Kahng, P. Sharma, and D. Sylvester, “Selective gate-length
biasing for cost-effective runtime leakage control,” in Proceedings of Design
Automation Conference, pp. 327–330, 2004.

[68] R. Gupta, B. Tutuianu, and L. Pileggi, “The Elmore delay as a bound for RC
trees with generalized input signals,” IEEE Transactions on Computer-Aided
Design, vol. 16, no. 1, pp. 95–104, 1997.

[69] M. Guthaus, N. Venkateswaran, C. Visweswariah, and V. Zolotov, “Gate sizing
using incremental parameterized statistical timing analysis,” in Proceedings of
International Conference on Computer-Aided Design, pp. 1029–1036, 2005.

[70] R. Haddad, L. van Ginneken, and N. Shenoy, “Discrete drive selection for
continuous sizing,” in Proceedings of International Conference on Computer
Design, pp. 110–115, October 1997.

[71] M. Hansen, H. Yalcin, and J. Hayes, “Unveiling the ISCAS-85 benchmarks: A
case study in reverse engineering,” IEEE Design and Test, vol. 16, pp. 72–80,
July–September 1999.

[72] R. Harjani, R. Rutenbar, and L. Carley, “OASYS: A framework for analog cir-
cuit synthesis,” IEEE Transactions on Computer-Aided Design, vol. 8, no. 12,
pp. 1247–1266, 1989.

114 References

[73] M. Hashimoto and H. Onodera, “Post-layout transistor sizing for power reduc-
tion in cell-based design,” in Proceedings of Asia and South Pacific Design
Automation Conference, pp. 359–365, 2001.

[74] S. Held, “Gate sizing for large cell-based designs,” in Proceedings of the Con-
ference on Design, Automation and Test in Europe (3001 Leuven, Belgium,
Belgium), pp. 827–832, 2009.

[75] M. Hershenson, S. Boyd, and T. Lee, “Optimal design of a CMOS op-amp
via geometric programming,” IEEE Transactions on Computer-Aided Design,
vol. 20, no. 1, pp. 1–21, 2001.

[76] S. Hu, M. Ketkar, and J. Hu, “Gate sizing for cell library-based designs,” in
Proceedings of Design Automation Conference, pp. 847–852, 2007.

[77] S. Hu, M. Ketkar, and J. Hu, “Gate sizing for cell-library-based designs,”
IEEE Transactions on Computer-Aided Design, vol. 28, no. 6, pp. 818–825,
2009.

[78] Y. Huang, J. Hu, and W. Shi, “Lagrangian relaxation for gate implementa-
tion selection,” in Proceedings of International Conference on Physical Design,
pp. 167–174, 2011.

[79] International Technology Roadmap for Semiconductors — Design Available
on http://www.itrs.net.

[80] K. Jeong and A. Kahng, “Methodology from chaos in ic implementation,”
in Proceedings of International Conference on Quality Electronic Design,
pp. 885–892, 2010.

[81] A. Kahng, B. Liu, and X. Xu, “Constructing current-based gate models based
on existing timing library,” in Proceedings of the International Symposium on
Quality Electronic Design, pp. 37–42, 2006.

[82] T. Karnik, Y. Ye, J. Tschanz, L. Wei, S. Burns, V. Govindarajulu, V. De, and
S. Borkar, “Total power optimization by simultaneous dual-vt allocation and
device sizing in high performance microprocessors,” in Proceedings of Design
Automation Conference, pp. 486–491, 2002.

[83] K. Kasamsetty, M. Ketkar, and S. Sapatnekar, “A new class of convex func-
tions for delay modeling and its application to the transistor sizing problem
[cmos gates],” IEEE Transactions on Computer-Aided Design, vol. 19, no. 7,
pp. 779–788, 2000.

[84] I. Keller, K. Tam, and V. Kariat, “Challenges in gate level modeling for delay
and SI at 65 nm and below,” in Proceedings of Design Automation Conference,
pp. 468–473, 2008.

[85] V. Khandelwal and A. Srivastava, “A general framework for accurate sta-
tistical timing analysis considering correlations,” in Proceedings of Design
Automation Conference, pp. 89–94, 2005.

[86] T. I. Kirkpatrick and N. R. Clark, “Pert as an aid to logic design,” IBM
Journal of Research and Development, vol. 10, pp. 135–141, March 1966.

[87] H. Koh, C. Sequin, and P. Gray, “OPASYN: A compiler for CMOS oper-
ational amplifiers,” IEEE Transactions on Computer-Aided Design, vol. 9,
no. 2, pp. 113–125, 1990.

[88] M. Krasnicki, R. Phelps, R. A. Rutenbar, and L. R. Carley, “Maelstrom:
Efficient simulation-based synthesis for custom analog cells,” in Proceedings
of Design Automation Conference, pp. 945–950, 1999.

References 115

[89] J. Lee and P. Gupta, “Incremental gate sizing for late process changes,” in
Proceedings of International Conference on Computer Design, pp. 215–221,
October 2010.

[90] J.-F. Lee and D. T. Tang, “An algorithm for incremental timing analysis,” in
Proceedings of Design Automation Conference, pp. 696–701, 1995.

[91] C. Lemaréchal, “Lagrangian relaxation,” Computational Combinatorial Opti-
mization, pp. 112–156, 2001.

[92] W. Li, “Strongly np-hard discrete gate sizing problems,” in Proceedings
of International Conference on Computer Design, pp. 468–471, October
1993.

[93] X. Li, J. Le, and L. Pileggi, “Statistical performance modeling and optimiza-
tion,” Foundations and Trends R© in Electronic Design Automation, vol. 1,
no. 4, pp. 331–480, 2006.

[94] X. Li, J. Le, and L. T. Pileggi, Statistical Performance Modeling and Opti-
mization. Hanover, MA, USA: Now Publishers Inc., 2007.

[95] C. Liao and S. Hu, “Approximation scheme for restricted discrete gate siz-
ing targeting delay minimization,” Journal of Combinatorial Optimization,
vol. 21, no. 4, pp. 497–510, 2011.

[96] H.-R. Lin and T.-T. Hwang, “Power reduction by gate sizing with path-
oriented slack calculation,” in Proceedings of Asia and South Pacific Design
Automation Conference, 1995.

[97] R. Lin and M. Wu, “A new statistical approach to timing analysis of vlsi
circuits,” in Proceedings of International Conference on VLSI Design, pp. 507–
513, 1998.

[98] S. Lin, M. Marek-Sadowska, and E. Kuh, “Delay and area optimization
in standard-cell design,” Proceedings of Design Automation Conference,
pp. 349–352, June 1990.

[99] J.-J. Liou, A. Krstic, L.-C. Wang, and K.-T. Cheng, “False-path-aware statis-
tical timing analysis and efficient path selection for delay testing and timing
validation,” in Proceedings of Design Automation Conference, pp. 566–569,
2002.

[100] Y. Liu and J. Hu, “A new algorithm for simultaneous gate sizing and threshold
voltage assignment,” in Proceedings of International Conference on Physical
Design, pp. 27–34, 2009.

[101] Y. Liu and J. Hu, “A new algorithm for simultaneous gate sizing and threshold
voltage assignment,” IEEE Transactions on Computer-Aided Design, vol. 29,
pp. 223–234, February 2010.

[102] R. Macys and S. McCormick, “A new algorithm for computing the effective
capacitance in deep sub-micron circuits,” in Proceedings of the Custom Inte-
grated Circuits Conference, pp. 313–316, 1998.

[103] H. Mangassarian and M. Anis, “On statistical timing analysis with inter-and
intra-die variations,” in Proceedings of the Conference on Design, Automation
and Test in Europe-Volume 1, pp. 132–137, 2005.

[104] M. Mani, A. Devgan, and M. Orshansky, “An efficient algorithm for statistical
minimization of total power under timing yield constraints,” in Proceedings of
Design Automation Conference, pp. 309–314, 2005.

116 References

[105] M. Mani, A. Devgan, M. Orshansky, and Y. Zhan, “A statistical algorithm for
power- and timing-limited parametric yield optimization of large integrated
circuits,” IEEE Transactions on Computer-Aided Design, vol. 26, pp. 1790–
1802, October 2007.

[106] M. Mani and M. Orshansky, “A new statistical optimization algorithm for
gate sizing,” in Proceedings of IEEE International Conference on Computer
Design, pp. 272–277, 2004.

[107] T. Massier, H. Graeb, and U. Schlichtmann, “The sizing rules method for
CMOS and bipolar analog integrated circuit synthesis,” IEEE Transactions
on Computer-Aided Design, vol. 27, no. 12, pp. 2209–2222, 2008.

[108] T. McConaghy, P. Palmers, G. Gielen, and M. Steyaert, “Automated extrac-
tion of expert knowledge in analog topology selection and sizing,” 2008.

[109] S. Mok, “Post-layout sizing for leakage power optimization: A comparative
study,” Master’s Thesis, Department of Electrical Engineering, University of
California at Los Angeles, 2010.

[110] S. Mok, “Propagation delay approximation considering effective capaci-
tance and slew degradation,” Techical Report, UCLA, Available on http://
nanocad.ee.ucla.edu/pub/Main/Publications/MSTR4 paper.pdf, 2011.

[111] F. N. Najm, “On the need for statistical timing analysis,” in Proceedings of
Design Automation Conference, pp. 764–765, 2005.

[112] G. Nam, “Ispd 2006 placement contest: Benchmark suite and results,” in Pro-
ceedings of International Conference on Physical Design, pp. 167–167, 2006.

[113] G. Nam, M. Yildiz, D. Pan, and P. Madden, “Ispd placement contest updates
and ispd 2007 global routing contest,” in Proceedings of International Confer-
ence on Physical Design, pp. 167–167, 2007.

[114] Nangate Open Cell Library v1.3 Available on http://www.si2.org/openeda.
si2.org/projects/nangatelib.

[115] S. Narendra, “Challenges and design choices in nanoscale CMOS,” ACM Jour-
nal on Emerging Technologies in Computing Systems (JETC), vol. 1, no. 1,
pp. 7–49, 2005.

[116] S. Nassif, A. Strojwas, and S. Director, “A methodology for worst-case anal-
ysis of integrated circuits,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 5, no. 1, pp. 104–113, January
1986.

[117] D. Nguyen, A. Davare, M. Orshansky, D. Chinnery, B. Thompson, and
K. Keutzer, “Minimization of dynamic and static power through joint assign-
ment of threshold voltages and sizing optimization,” in Proceedings of Inter-
national Conference on Low Power Electronics and Design, pp. 158–163,
2003.

[118] W. Nye, D. Riley, A. Sangiovanni-Vincentelli, and A. Tits, “DELIGHT.
SPICE: An optimization-based system for the design of integrated circuits,”
IEEE Transactions on Computer-Aided Design, vol. 7, no. 4, pp. 501–519,
1988.

[119] E. Ochotta, R. Rutenbar, and L. Carley, “Synthesis of high-performance
analog circuits in ASTRX/OBLX,” IEEE Transactions on Computer-Aided
Design, vol. 15, no. 3, pp. 273–294, 1996.

References 117

[120] M. Orshansky and K. Keutzer, “A general probabilistic framework for worst
case timing analysis,” in Proceedings of Design Automation Conference,
pp. 556–561, 2002.

[121] M. Ozdal, S. Burns, and J. Hu, “Gate sizing and device technology selec-
tion algorithms for high-performance industrial designs,” in Proceedings of
International Conference on Computer-Aided Design, pp. 724–731, November
2011.

[122] P. Pant, V. De, and A. Chatterjee, “Simultaneous power supply, threshold
voltage, and transistor size optimization for low-power operation of cmos cir-
cuits,” IEEE Transactions on Very Large Scale Integration (VLSI), vol. 6,
no. 4, pp. 538–545, 1998.

[123] P. Pant, R. Roy, and A. Chattejee, “Dual-threshold voltage assignment with
transistor sizing for low power cmos circuits,” IEEE Transactions on Very
Large Scale Integration (VLSI), vol. 9, no. 2, pp. 390–394, 2001.

[124] D. Patil, S. Yun, S. Kim, A. Cheung, M. Horowitz, and S. Boyd, “A new
method for design of robust digital circuits,” in Proceedings of International
Conference on Quality Electronic Design, pp. 676–681, 2005.

[125] M. Pelgrom, A. Duinmaijer, and A. Welbers, “Matching properties of mos
transistors,” IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1433–
1439, 1989.

[126] R. Phelps, M. Krasnicki, R. Rutenbar, L. Carley, and J. Hellums, “ANA-
CONDA: Robust synthesis of analog circuits via stochastic pattern search,”
in Proceedings of Custom Integrated Circuits, pp. 567–570, 1999.

[127] L. Pillage and R. Rohrer, “Asymptotic waveform evaluation for timing analy-
sis,” IEEE Transactions on Computer-Aided Design, vol. 9, no. 4, pp. 352–366,
1990.

[128] J. Qian, S. Pullela, and L. Pillage, “Modeling the effective capacitance for the
RC interconnect of CMOS gates,” IEEE Transactions on Computer-Aided
Design, vol. 13, no. 12, pp. 1526–1535, 1994.

[129] A. Ramalingam, A. Singh, S. Nassif, G. Nam, M. Orshansky, and D. Pan, “An
accurate sparse-matrix based framework for statistical static timing analysis,”
Integration, the VLSI Journal, 2011.

[130] R. Rao, A. Srivastava, D. Blaauw, and D. Sylvester, “Statistical analysis of
subthreshold leakage current for VLSI circuits,” IEEE Transactions on Very
Large Scale Integration (VLSI), vol. 12, no. 2, pp. 131–139, 2004.

[131] D. Rautenbach and C. Szegedy, “A class of problems for which cyclic
relaxation converges linearly,” Computational Optimization and Applications,
vol. 41, no. 1, pp. 53–60, 2008.

[132] S. Roy, W. C. aad C. Chen, and Y. Hu, “Numerically convex forms and their
application in gate sizing,” IEEE Transactions on Computer-Aided Design,
vol. 26, no. 9, pp. 1637–1647, 2007.

[133] S. Roy and W. Chen, “Convexfit: An optimal minimum-error convex fitting
and smoothing algorithm with application to gate-sizing,” in Proceedings of
International Conference on Computer-Aided Design, pp. 196–203, 2005.

[134] S. Roy, Y. H. Hu, C. C.-P. Chen, S.-P. Hung, T.-Y. Chiang, and J.-G. Tseng,
“An optimal algorithm for sizing sequential circuits for industrial library based

118 References

designs,” in Proceedings of Asia and South Pacific Design Automation Con-
ference, pp. 148–151, 2008.

[135] A. Ruehli, P. Wolff, and G. Goertzel, “Analytical power/timing optimization
technique for digital system,” in Proceedings of Design Automation Confer-
ence, pp. 142–146, 1977.

[136] T. Sakurai and A. Newton, “Alpha-power law mosfet model and its applica-
tions to cmos inverter delay and other formulas,” IEEE Journal of Solid-State
Circuits, vol. 25, pp. 584–594, April 1990.

[137] S. Sapatnekar, Timing. Springer, Netherlands, 2004.
[138] S. Sapatnekar and W. Chuang, “Power vs. delay in gate sizing: Conflicting

objectives?,” in Proceedings of International Conference on Computer-Aided
Design, pp. 463–466, November 1995.

[139] N. Satish, K. Ravindran, M. Moskewicz, D. Chinnery, and K. Keutzer,
“Evaluating the effectiveness of statistical gate sizing for power optimization,”
Technical Report, University of California at Berkeley, ERL Memorandum
M05/28, August 2005.

[140] C. Sechen and H. Tennakoon, “Gate sizing using lagrangian relaxation
combined with a fast gradient-based pre-processing step,” in Proceedings of
International Conference on Computer-Aided Design, pp. 395–402, 2002.

[141] S. Shah, A. Srivastava, D. Sharma, D. Sylvester, D. Blaauw, and V. Zolo-
tov, “Discrete vt assignment and gate sizing using a self-snapping continuous
formulation,” in Proceedings of International Conference on Computer-Aided
Design, pp. 705–712, 2005.

[142] B. Sheu, D. Scharfetter, P. Ko, and M. Jeng, “BSIM: Berkeley short-channel
IGFET model for MOS transistors,” IEEE Journal of Solid-State Circuits,
vol. 22, no. 4, pp. 558–566, 1987.

[143] J. Shyu, A. Sangiovanni-Vincentelli, J. Fishburn, and A. Dunlop,
“Optimization-based transistor sizing,” IEEE Journal of Solid-State Circuits,
vol. 23, no. 2, pp. 400–409, 1988.

[144] L. Silveira, M. Kamon, J. White, and I. Elfadel, “A coordinate-transformed
Arnoldi algorithm for generating guaranteed stable reduced-order models of
RLC circuits,” in Proceedings of International Conference on Computer-Aided
Design, p. 288, 1996.

[145] J. Singh, Z.-Q. Luo, and S. Sapatnekar, “A geometric programming-based
worst case gate sizing method incorporating spatial correlation,” IEEE Trans-
actions on Computer-Aided Design, vol. 27, pp. 295–308, February 2008.

[146] J. Singh, V. Nookala, Z. Luo, and S. Sapatnekar, “Robust gate sizing by
geometric programming,” in Proceedings of Design Automation Conference,
pp. 315–320, 2005.

[147] J. Singh and S. Sapatnekar, “Statistical timing analysis with correlated non-
Gaussian parameters using independent component analysis,” in Proceedings
of Design Automation Conference, pp. 155–160, 2006.

[148] S. Sirichotiyakul, T. Edwards, C. Oh, R. Panda, and D. Blaauw, “Duet: An
accurate leakage estimation and optimization tool for dual-Vt circuits,” IEEE
Transactions on Very Large Scale Integration (VLSI), vol. 10, no. 2, pp. 79–90,
2002.

References 119

[149] S. Sirichotiyakul, T. Edwards, C. Oh, J. Zuo, A. Dharchoudhury, R. Panda,
and D. Blaauw, “Stand-by power minimization through simultaneous thresh-
old voltage selection and circuit sizing,” in Proceedings of Design Automation
Conference, pp. 436–441, 1999.

[150] A. Srivastava, D. Sylvester, and D. Blaauw, “Power minimization using simul-
taneous gate sizing, dual-vdd and dual-vth assignment,” in Proceedings of
Design Automation Conference, pp. 783–787, 2004.

[151] A. Srivastava, D. Sylvester, and D. Blaauw, “Statistical optimization of leak-
age power considering process variations using dual-Vth and sizing,” in Pro-
ceedings of Design Automation Conference, pp. 773–778, 2004.

[152] A. Srivastava, D. Sylvester, and D. Blaauw, Statistical Analysis and Optimiza-
tion for VLSI: Timing and Power. Springer Verlag, 2005.

[153] V. Stojanovic, D. Markovic, B. Nikolic, M. Horowitz, and R. Brodersen,
“Energy–delay tradeoffs in combinational logic using gate sizing and supply
voltage optimization,” in Proceedings of European Solid-State Circuits Con-
ference (ESSCIRC), pp. 211–214, 2005.

[154] I. Sutherland and R. Sproull, “Logical effort: Designing for speed on the back
of an envelope,” in Proceedings of the 1991 University of California/Santa
Cruz Conference on Advanced Research in VLSI, pp. 1–16, 1991.

[155] I. Sutherland, R. Sproull, and D. Harris, Logical Effort: Designing Fast CMOS
Circuits. Morgan Kaufmann, 1999.

[156] Synopsys, “Liberty open source library modeling,” Web resource, http://www.
opensourceliberty.org.

[157] Synopsys, “NanoTime,” http://www.synopsys.org.
[158] Y. Tamiya, Y. Matsunaga, and M. Fujita, “Lp based cell selection with

constraints of timing, area, and power consumption,” in Proceedings of Inter-
national Conference on Computer-Aided Design, pp. 378–381, 1994.

[159] T. Tokuda, J. Korematsu, O. Tomisawa, S. Asai, I. Ohkura, and T. Enomoto,
“A hierarchical standard cell approach for custom VLSI design,” IEEE Trans-
actions on Computer-Aided Design, vol. 3, no. 3, pp. 172–177, 1984.

[160] R. Trihy, “Addressing library creation challenges from recent liberty exten-
sions,” in Proceedings of Design Automation Conference, pp. 474–479, 2008.

[161] S. Tsukiyama, M. Tanaka, and M. Fukui, “A statistical static timing analysis
considering correlations between delays,” in Proceedings of Asia and South
Pacific Design Automation Conference, pp. 353–358, 2001.

[162] P. Tuohy, A. Gribben, A. Walton, , and J. Robertson, “Realistic worst-case
parameters for circuit simulation,” in Proceedings of Communications, Speech
and Vision, pp. 137–140, 1987.

[163] V. Veetil, D. Sylvester, and D. Blaauw, “A lower bound computation method
for evaluation of statistical design techniques,” in Proceedings of International
Conference on Computer-Aided Design, pp. 562–569, 2010.

[164] C. Visweswariah, “Death, taxes and failing chips,” in Proceedings of Design
Automation Conference, pp. 343–347, 2003.

[165] C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, and S. Narayan,
“First-order incremental block-based statistical timing analysis,” in Proceed-
ings of Design Automation Conference, pp. 331–336, 2004.

120 References

[166] J. Wang, D. Das, and H. Zhou, “Gate sizing by lagrangian relaxation
revisited,” IEEE Transactions on Computer-Aided Design, vol. 28, no. 7,
pp. 1071–1084, 2009.

[167] Q. Wang and S. Vrudhula, “Static power optimization of deep submicron cmos
circuits for dual vt technology,” in Proceedings of International Conference on
Computer-Aided Design, pp. 490–496, 1998.

[168] L. Wei, K. Roy, and C. Koh, “Power minimization by simultaneous dual-Vth
assignment and gate-sizing,” in Proceedings of the Custom Integrated Circuits
Conference, pp. 413–416, 2000.

[169] T. Wu and A. Davoodi, “PaRS: Parallel and near-optimal grid-based cell sizing
for library-based design,” IEEE Transactions on Computer-Aided Design,
vol. 28, no. 11, pp. 1666–1678, 2009.

[170] T. Xiao and M. Marek-Sadowska, “Gate sizing to eliminate crosstalk induced
timing violation,” in Proceedings of the International Conference on Computer
Design, p. 0186, 2001.

[171] Y. Zhan, A. Strojwas, X. Li, L. Pileggi, D. Newmark, and M. Sharma,
“Correlation-aware statistical timing analysis with non-Gaussian delay distri-
butions,” in Proceedings of Design Automation Conference, pp. 77–82, 2005.

[172] L. Zhang, W. Chen, Y. Hu, J. Gubner, and C. Chen, “Correlation-preserved
non-Gaussian statistical timing analysis with quadratic timing model,” in Pro-
ceedings of Design Automation Conference, pp. 83–88, 2005.

[173] L. Zhang, Y. Hu, and C. Chen, “Statistical timing analysis with path recon-
vergence and spatial correlations,” in Proceedings of Design, Automation and
Test in Europe, p. 112, 2006.

[174] Q. Zhou and K. Mohanram, “Gate sizing to radiation harden combina-
tional logic,” IEEE Transactions on Computer-Aided Design, vol. 25, no. 1,
pp. 155–166, 2006.

[175] C. Zhuo, D. Blaauw, and D. Sylvester, “Variation-aware gate sizing and clus-
tering for post-silicon optimized circuits,” in Proceedings of the International
Conference on Low Power Electronics and Design, pp. 105–110, 2008.

