Scratchpad Memory

Liangzhen Lai
Computer Architecture

- “Key of computer architecture is to get the correct operands”
Memory Hierarchy

- Motivation:
 - Memory access time vs. Memory size
 - Memory access pattern
- Use large memory to store more data
- Use small memory for fast access
Memory Hierarchy ≠ Cache

- Cache is one way of realizing memory hierarchy
Scratchpad Memory vs. Cache

<table>
<thead>
<tr>
<th>Cache</th>
<th>Scratchpad Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Larger</td>
<td>• Smaller</td>
</tr>
<tr>
<td>• Store a copy of the next level cache</td>
<td>• Store part of the data that requires fast access</td>
</tr>
<tr>
<td>• Mapping (same address)</td>
<td>• Moving (dedicated address)</td>
</tr>
<tr>
<td>• Hit/Miss</td>
<td>• Only Hit</td>
</tr>
<tr>
<td>• Unpredictable access time</td>
<td>• Controlled by software or compiler</td>
</tr>
<tr>
<td>• Runtime control</td>
<td></td>
</tr>
</tbody>
</table>
Scratched Memory Control

- Content Control
 - By special instructions
- Data Transfer
 - Direct Memory Access (DMA)
- Data Assignment
 - Identify “critical” data
 - With known access pattern
- Hybrid System
Scratchpad Memory Example

for i=1:1024
 for j=1:1024
 level=intensity[i][j];
 hist[level]=hist[level]+1;
 end
end