Introduction on NBTI

Prepared by : Chan Tuck Boon
What is NBTI?

- NBTI: Negative Bias Temperature Instability
- \(V_{th} \) varies on PMOS device
 - \(V_{th} \) increases with negative bias, \(V_{gs} = -V_{dd} \)
 - But recover with zero bias, \(V_{gs} = 0 \)

Source: Vincent Huard, IEDM 2007
NBTI impact

- Wang, VLSI 2010
 - 7% to 10% frequency degradation on benchmark circuits
- Mangalagiri, ICCAD 2008
 - 5% to 10% delay degradation in FPGA due to NB#TI (PTM model)
 - 1% delay degradation for process with hi-Vt and thick oxide.
- Neeraj, IEDM 2005
 - Degradation depends on configuration and application.
 - $V_{\text{error}} > 7 \text{ mV}$ (maximum allowed error=7.8mV) for a 64 bit DAC.
- J.C. Lin, IEDM 2006
 - SRAM read margin decrease as a result of NB#TI stress.
 - Limit NB#TI impact using a less “read margin” dominant design.
Impact on SRAM

- NBTI shows noticeable impact on SRAM yield
- Yield loss is huge considering NBTI + PBTI

Drapatz, *Journal Advances in Radio Science, 2009*
NBTI vs PBTI

- trade-off between NBTI/PBTI and metal gate thickness

![Graph showing the trade-off between NBTI/PBTI and metal gate thickness](image-url)
Reaction-diffusion model

- Interface traps is generated when device is stressed (negative bias)
Differential Equations for NBTI

\[\frac{dN_{IT}}{dt} = k_F (N_o - N_{IT}) P - k_R N_H N_{IT} \]
Reaction

\[\frac{dN_H}{dt} = D_H \frac{d^2 N_H}{dx^2} \]
Diffusion

Analytical model

Stress
\[\Delta V_{th}(t) = (K_v(t - t_0)^{1/2} + 2^n \sqrt{\Delta V_{th}(t_0)})^{2n} \]

Recovery
\[\Delta V_{th}(t) = \Delta V_{th}(t_1) \left(1 - \frac{2\xi_1 t_c + \sqrt{\xi_2 C(t-t_1)}}{(1 + \delta) t_{ox} + \sqrt{C t}}\right) \]

Kv is proportional to Temperature

2n=1/3 for reaction dominant by H₂

Recovery factor

Related to

Source: W. Ping et al. DAC 2007
NBTI Characteristics

• NBTI degradation is front-loaded
• Frequency dependent or independent?
• V_{gs} dependence
• V_{th} variation reduction due to NBTI
Front Loaded Degradation

- Degradation rate is steep at the beginning but slows down rapidly

Source: W. Ping et al. DAC 2007
Frequency independence

http://www.iue.tuwien.ac.at/phd/wittmann/node10.html

- RD model predicts frequency independence [Alam, IEDM 2003]
- Contradict observations are found in
Frequency Dependence

- **DPN**: decoupled-plasma-nitrided SiO₂
- **RTN**: rapid-thermal-nitrided SiO₂

Increased nitrogen concentration in gate oxide results in weaker frequency dependence.

Frequency dependence is due to deep level holes.
- Holes have enough time to generate interface traps during low freq.

[Wang, IEDL 2008]
NBTI vs Vgs

- ΔV_t increase exponentially with increasing V_{gs}
NBTI and V_{th} Variation

ΔV_{th} process $\approx \Delta V_{th}$ NBTI

ΔV_{th} process + ΔV_{th} NBTI

\Rightarrow Overall process variation reduced

Source: W. Ping et al. DAC 2007
On-going Studies on NBTI

• Modeling and characterizing NBTI
 – Physical mechanism of NBTI
 – Measuring NBTI
 – Circuit and architectural level NBTI model

• NBTI mitigation techniques
 – Input vector control
 • Flipping bit cell data in SRAM
 – Power-gating schemes for NBTI