Incremental Gate Sizing for Late Process Changes

John Lee and Puneet Gupta
lee@ee.ucla.edu, puneet@ee.ucla.edu
Electrical Engineering Department
UCLA
Outline

1. Process change
2. ECO Costs
3. ECO Aware Design via LPECO
4. Experiments
5. Summary
Manufacturing process

• The foundry provides designers with a model of the manufacturing process
 – Information about the way transistors and interconnect
 – BSIM / PTM models, Liberty (.lib) model

• Model contains information about:
 – Electrical parameters: threshold voltage, saturation current, leakage current, I-V characteristics, interconnect resistance, capacitance, dielectric information
 – Geometrical parameters: gate length, gate width, source / gate / drain capacitance
Manufacturing Process Changes

- Aggressive schedules = uncertainty
 - From ITRS 2008:

<table>
<thead>
<tr>
<th>Year of Production</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalized mask cost from public and IDM data</td>
<td>1</td>
<td>1.3</td>
<td>1.7</td>
<td>2.3</td>
<td>3</td>
<td>3.9</td>
</tr>
<tr>
<td>% V_{dd} variability: % variability seen in on-chip circuits</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>% V_{th} variability: doping variability impact on V_{th}, (minimum size devices, memory)</td>
<td>31%</td>
<td>35%</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
<td>58%</td>
</tr>
<tr>
<td>% V_{th} variability: includes all sources</td>
<td>33%</td>
<td>37%</td>
<td>42%</td>
<td>42%</td>
<td>42%</td>
<td>58%</td>
</tr>
<tr>
<td>% V_{th} variability: typical size logic devices, all sources</td>
<td>16%</td>
<td>18%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>26%</td>
</tr>
<tr>
<td>% CD variability</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
</tr>
<tr>
<td>% circuit performance variability, circuit comprising gates and wires</td>
<td>46%</td>
<td>48%</td>
<td>49%</td>
<td>51%</td>
<td>60%</td>
<td>63%</td>
</tr>
<tr>
<td>% circuit total power variability, circuit comprising gates and wires</td>
<td>56%</td>
<td>57%</td>
<td>63%</td>
<td>68%</td>
<td>72%</td>
<td>76%</td>
</tr>
<tr>
<td>% circuit leakage power variability, circuit comprising gates and wires</td>
<td>124%</td>
<td>143%</td>
<td>186%</td>
<td>229%</td>
<td>255%</td>
<td>281%</td>
</tr>
</tbody>
</table>

Solutions known, under development
Solutions not known
45nm Manufacturing Process change Example

- From April 2008 to March 2010
 - Real data from a commercial 45nm process

![Graph showing NMOS and PMOS parameters comparison]
Engineering Change Order (ECO)

• Design changes that are made late in the design process are referred to as an Engineering Change Order (ECO)

Example:

HotFab Foundry provides Design Tech Inc. with an updated set of manufacturing parameters that decrease I_{sat} (the saturation current), causing their current designs to violate timing.

They fix their design using an ECO which includes changing the gate sizes (e.g. INV X1 -> INV X8), and routing changes

ECO = design / tool time + delays! (€€€ / $$$!)
ECOs should minimize implementation costs!
What does an ECO cost?

Legend

- Added nets
- Deleted nets
- Moved cells
- Resized cells

Quantify ECO cost → Guide Optimization
Proposed Measures for ECO Cost

• **ECO Area Cost:** Changed area
 – Amount of area that must be reanalyzed for
 • Parasitic Extraction & LVS / DRC
 – Potential layout errors to be corrected

• **ECO Timing Cost:** Changed timing
 – The effect of the ECO on the timing signal (circuit topology):
 • # of pins with unnecessary timing changes
 – The pin was not violating timing before the ECO
 – Changes cause slew, crosstalk violations, in paths that run through the ECO
 – Potential timing errors to be corrected
ECO Area Cost

• Measured as the amount of area, in \(\mu m^2 \) that has changed
 – Includes gate area, metal wires and vias
Estimating ECO Area Cost

• Performing trial ECOs are too costly:
 – Impractical to try all possible ECO moves
 – Estimates of routing cost are needed to guide optimization

• Area Cost Estimated as a linear function of:
 – Number of changed pins
 – Number dislocated pins
 • Old and new locations do not overlap
 – Area of the pin bounding box
 – Congestion over the pin bounding box
Estimating ECO Area Cost

• Area Cost Estimate:

\(m_1 \): Number of affected pins
\(m_2 \): Number of dislocated pins (old locations and new locations do not overlap)
\(m_3 \): Pin bounding box area
\(m_4 \): Utilized area over pin bounding box (routing over all layers)

\[
\hat{C}_{\text{area}} = \sum_{i=1}^{4} a_i m_i + b
\]

\(a_1 = 0.0367 \, \mu m^2/\text{pin} \)
\(a_2 = 0.186 \, \mu m^2/\text{pin} \)
\(a_3 = 5.35 \)
\(a_4 = 9.65 \)
\(b = 0.264 \, \mu m^2 \)
ECO Timing Cost

• Timing is affected downstream and upstream
• ECO Timing cost is defined as:
 – # of non-critical pins that are upstream and downstream from an ECO

\[\text{ECO Timing Cost} = \text{\# of non-critical pins upstream and downstream} \]
ECO Cost Example:

Timing cost:
118.9 µm²

Pin Cost:
2838 pins
ECO Cost Example:

Timing cost:
586.6 µm²

Pin Cost:
10198 pins
ECO-cost aware design via LPECO

- Linear programming based ECO gate sizing
 - Objective: ECO cost + Power cost
 - Constraints: Delay (timing closure)
 - Timing, power and ECO are modeled as a function of the candidate gate size

Example: Gate 1

Gate Size Candidates

<table>
<thead>
<tr>
<th>X1</th>
<th>X4</th>
<th>X8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Current size

- X2
 - Timing cost: 1
 - Area cost: 2
 - Power cost: 1
 - Delay: 4

NanoCAD Lab John Lee (lee@ee.ucla.edu)
ECO-cost aware design via LPECO

minimize \[\sum_{i,k} p_{ik} y_{ik} + \gamma_t \hat{c}_{\text{timing}} (y; x) + \gamma_a \hat{c}_{\text{area}} (y; x) \]

subject to \[t_i + d_{i0} + \sum_k \delta_{ik} y_{ik} \leq t_j, \quad \forall i \in \text{fo}(j) \]

\[t_i \leq T_{\max} \]

\[\sum_k y_{ik} \leq 1, \quad \forall i \]

\[0 \leq y_{ik} \leq 1 \]

Example: Gate 1

<table>
<thead>
<tr>
<th>Gate Size Candidates</th>
<th>X1 ((y_{11} = 1))</th>
<th>X4 ((y_{14} = 1))</th>
<th>X8 ((y_{18} = 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current size</td>
<td>X2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timing cost:</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Area cost:</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Power cost:</td>
<td>(-1 (p_{11}))</td>
<td>(3 (p_{11}))</td>
<td>(7 (p_{11}))</td>
</tr>
<tr>
<td>Delay change:</td>
<td>(4 (\delta_{11}))</td>
<td>(3 (\delta_{14}))</td>
<td>(2 (\delta_{18}))</td>
</tr>
</tbody>
</table>

\(t \): arrival time for gate \(i \)
\(d_{i0} \): current delay for gate \(i \)
\(\delta_{ik} \): change in delay of gate \(i \) under size \(k \)
\(y_{ik} \): assignment variable of gate \(i \) to size \(k \)
\(p_{ik} \): change in leakage power of gate \(i \) to size \(k \)

(\(\delta_{ik}, d_{i0} \) are from the commercial tool)
Experimental Setup

- 45nm Nangate Open Cell Library
- Manufacturing process change:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nmos</th>
<th>Pmos</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{th}</td>
<td>-10%</td>
<td>-5%</td>
</tr>
<tr>
<td>t_{ox}</td>
<td>+5%</td>
<td>-5%</td>
</tr>
<tr>
<td>C_{gate}</td>
<td>+10%</td>
<td>+10%</td>
</tr>
<tr>
<td>l_{eff}</td>
<td>+5%</td>
<td>+5%</td>
</tr>
</tbody>
</table>

- ECO’s are performed by a leading commercial design tool
- Runtime of LPECO ~.01 to 103s
Experimental Setup

<table>
<thead>
<tr>
<th></th>
<th>Nmos</th>
<th>Pmos</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{th}</td>
<td>-10%</td>
<td>-5%</td>
</tr>
<tr>
<td>t_{ox}</td>
<td>+5%</td>
<td>-5%</td>
</tr>
<tr>
<td>C_{gate}</td>
<td>+10%</td>
<td>+10%</td>
</tr>
<tr>
<td>l_{eff}</td>
<td>+5%</td>
<td>+5%</td>
</tr>
</tbody>
</table>

Synthesized Netlist → Commercial Design Tool → Placed and Routed Design

Incremental Optimization (Commercial Design Tool) → Commercial ECO

(Number Manufacturing Process)

Generate Timing Data (Arrival Times and Slacks) → Timing Feasible?

ECO Cost Model → LP → ECO Instructions

ECO Instructions → Commercial Design Tool → LPECO
Results: Area Cost Comparison

Normalized Area Cost

90% Utilization
alu
c7552
c6288
c5315
c3540
c2670
c1908
c1355

80% Utilization
alu
c7552
c6288
c5315
c3540
c2670
c1908
c1355

LPECO
Commercial
Results: Timing Cost Comparison

- 90% Utilization
 - LPECO vs. Commercial
 - Identification of alu, c7552, c6288, c5315, c3540, c2670, c1908, c1355

- 80% Utilization
 - Similar comparison as 90% Utilization
 - Additional identification of alu, c7552, c6288, c5315, c3540, c2670, c1908, c1355

Normalized Timing Cost

John Lee (lee@ee.ucla.edu)
Results: Leakage Power

Normalized Leakage Power

90% Utilization

c7552
alu
c1355

80% Utilization

alu

LPECO
Commercial

John Lee (lee@ee.ucla.edu)
Results: Slack (Infeasible Cases)

Normalized Slack (ns)

-1.600 -1.400 -1.200 -1.000 -0.800 -0.600 -0.400 -0.200 0.000

alu
c7552
c6288
c5315
c3540
c2670
c1908
c1355

LPECO
Encounter

(LP based timing closure)
Summary

• Quantified ECO Costs:
 – ECO Timing Cost
 – ECO Area Cost

• Performed incremental optimization to minimize ECO costs using LPECO

• Method performs well compared to commercial tool:
 – 22% to 88% reduction in ECO Area
 – 1% to 67% reduction in ECO Timing Cost

• Future goals:
 – Initial designs that incur small ECO penalties in the future
 – Large scale examples