Bounded-Lifetime Integrated Circuits

Puneet Gupta and Andrew B. Kahng

Department of Electrical Engineering and Computer Science
University of California, Los Angeles

Abstract. Integrated circuits with bounded lifetimes can have many business advantages. We give some simple examples of methods to enforce tunable expiration dates for chips using nanometer reliability mechanisms.

Categories and Subject Descriptors: B.7.2 [Hardware]: INTEGRATED CIRCUITS – Design Aids; J.6 [Computer Applications]: COMPUTER-AIDED ENGINEERING

General Terms: Design, Reliability, Security, Standardization

Keywords: Bounded lifetime, physical IP, integrated circuits

Introduction. We propose physical IP-based enforcement of tunable lifetime bounds on the function of integrated circuits. Our approach exploits circuit physical (reliability) failure mechanisms that are prominent in ≤65nm process nodes. Benefits of having a well-defined “expiration date” in semiconductor products include:

1. increased IC production volumes potentially resulting from new business models associated with metered or time-based access to IC components;
2. reduced support and integration overheads, such as for embedded software, with respect to older product versions (i.e., cost of backward-compatibility); and
3. reduced silicon area and power resources when lifetime bounds allow decreased reliability guardbands.

We recognize that an “expiration date” may not be of interest in a life-critical application domain (e.g., pacemaker), or where a central server can disable functionality, or at certain levels of system complexity. On the other hand, with trends to open frameworks, systems implemented on chip, and high-volume platform SOCs – and for existing applications such as personal computing or mobile telephony – bounded chip (and hence product) lifetime may be an attractive proposition. Basic objectives of physical IP for bounded chip lifetime include:

1. use of multiple mechanisms to preclude any given attack;
2. implementation with drop-in circuit IP in standard process flavors, so as to avoid any process change or non-trivial design methodology changes; and
3. use of mechanisms beyond simple ‘counters’ (timers) that can be subjected to memory-corruption attacks.\(^1\)

Several kinds of lifetime bounding can be contemplated:

1. limiting total time of use (= metering), where the chip can be power-cycled multiple times;
2. limiting the lifetime of the chip starting from the date of manufacture (or first activation) – i.e., a calendar-time limit including time when the chip is shut down; and
3. limiting continuous time of use each time the chip is powered on.

Proposed Approach. Bounding the lifetime of a circuit requires (1) a circuit disabling mechanism; and (2) an aging detection and lifetime trigger circuit. For disabling the chip, straightforward alternatives exist such as power-gating, clock-gating or excess body biasing. We focus on lifetime triggering methods, and propose exploiting physical (reliability) failure mechanisms such as electromigration or wearout (NBTI, TDDB).\(^2\) In the following, we discuss example approaches for electromigration and NBTI. Criteria for a viable lifetime triggering mechanism include:

1. Is the mechanism robust with respect to sensitivities of the underlying reliability mechanism?
2. Is the mechanism robust with respect to manufacturing and operating variability?
3. Are resource (chip area, power) overheads reasonable?
4. Is the mechanism tunable to different lifetime bounds?

Electromigration. With EM, applied current can move metal atoms so as to eventually cause an open fault. The semi-empirical Black’s Law for electromigration time to failure states that \(t_f = \left(\frac{A}{J^n} \right) \exp \left(\frac{E_n}{kT} \right)\), where \(t_f\) is time to failure, \(J\) is current density, \(T\) is temperature, and the current density exponent \(n\) and activation energy \(E_n\) are empirical parameters. A basic life-
time (in power-on state) bounding approach is to instantiate a population of wire segments along with a lifetime trigger that is a function of the number of failures that have occurred within the population.

(1) With EM, exponential sensitivity requires that the lifetime-bounding IP be placed in a region of the die (e.g., in a corner) that is not subject to large activity-dependent temperature fluctuations. Further, ambient temperature must be (i) accurately predicted, or (ii) actively compensated on-die (e.g., by switching activity and joule self-heating of wires such that the lifetime is well-bounded across the ambient temperature specification.

(2) Robustness to manufacturing variability can be on one hand achieved by spatially separating elements (wires) of the lifetime-bounding IP, for example, by (x,y) location and/or by layer assignment, as well as by topological separation (connection to different portions of supply grid, etc.). Additionally, the population of wires will affect robustness. We propose that time be measured according to failures of short-lifetime wires that are ‘‘cascaded’’ (in the spirit of [2]) such that one wire begins to fail after its predecessor has completely failed.3 The lifetime trigger is the sum of hopefully-independent random variables \(\chi_r \) corresponding to the respective lifetimes of individual wires. If each \(\chi_r \) has normal distribution with parameters \((\mu_r, \sigma_r)\), then a population of wires will have sum of lifetimes \(L = \sum \chi_r \). For \(N \) wires, we have that \(\mu(L) = N \mu_r \), and that \(\sigma(L) = N \sigma_r \). Thus, there is a square-root reduction in the \(\mu/\sigma \) ratio (and, correspondingly, improvement in tightness of the lifetime bound) as the population \(N \) is increased.

(3) Individual wires must be longer than the Blech length, and incremental area resource depends on the desired population (tightness of lifetime bound). Incremental power is determined by the EM degradation of one short-lifetime wire at a time (ref. (2) above).

(4) To retarget a given tapeout to different lifetime bounds, some reconfigurability (bypassing some wires, changing supply voltage) would be needed.

The figure at right shows a trivial implementation of using EM-based wire resistance degradation as a lifetime trigger. The voltage across the resistor \(R \) is used to drive a buffer. The buffer output can be made to switch when \(R \) reaches a certain value. This implementation does not address issues mentioned above but gives the flavor of circuits that may be used.

Negative-Bias Temperature Instability (NBTI). With NBTI, PMOS performance can degrade over time. Under static NBTI conditions, 2-5% Ion degradation per year can be assumed [6] and it is likely to worsen with scaling oxide thickness or adoption of different gate oxide materials. Moreover, NBTI is strongly dependent on Vdd, and higher Vdd may be used to worsen NBTI. The temporal dependence of \(V_t \) under static NBTI conditions can be expressed as [6]

\[
\Delta V_t = (K_i^2 \frac{e^{-d}}{c})^{0.5}
\]

The figure below illustrates a simple lifetime trigger circuit to leverage PMOS NBTI effect. The measured current is converted to a voltage (e.g., with a simple resistor or an op-amp based circuit) and then buffered. When the current drops sufficiently over time due to NBTI, the buffer output will switch from 1 to 0. The buffer may be designed to have a low noise margin so that it is sensitive to \(\approx 20\% \) input voltage changes. The current-to-voltage conversion can also be used in a variety of ways to tune in the desired lifetime (e.g., keep the initial (time=0) output voltage as close as desired to switching threshold or use a differential amplifier). Another option is to feed the voltage to a forward body bias generator which speeds up hold-critical paths in the design leading to (intermittent) failures. To decrease the power overhead of the circuit while maximizing NBTI degradation, the drain of the PMOS can be tied to VDD under normal operation. Using a power-on-reset and a counter, drain current can be periodically sampled wherein the drain is tied to GND only in the sampling period. To avoid loss of predictability from process variation, instead of using one device, several parallel connected PMOS devices may be used which are strategically placed in different parts of the chip. To avoid Vdd-based fluctuation, the trigger circuit(s) can be placed near the power source (i.e., close to power ring or C4 bumps).

Conclusions.

Finally, we note that any lifetime bounding mechanism will likely be accompanied by an overall savings of area, power and design time due to reduced guardbands in the design process. For example, in 90nm foundry processes the 10-year model for NBTI (PMOS) wearout typically increases NLDM delay table entries by 10-15%. [5] showed an average of 8.7% increase in circuit area to achieve 10-year reliability. Designing to, e.g., a 3-year model that increases delays by 4-5% would reduce this reliability overhead. Our ongoing work, besides pursuing the ideas mentioned in this paper, also investigates possibilities of making counter-based timers usable as secure lifetime triggers. We are also looking into methods to age the circuit even when it is switched off.

References.

3 An alternative idea is to create a population of identical, relatively long-lifetime wires each with lifetime distribution \((\mu, \sigma)\), then estimate when a certain \((\mu + 3\sigma)n\) wire lifetime bound has been reached. (E.g., we can estimate a chip lifetime bound of \(\mu + 3\sigma\) to have been reached when 99% of the population has failed.) However, implementation seems difficult while maintaining independence (decorrelation) of the wires, and non-use of counters.