SPIE’11 Review

Rani S. Ghaida
Decomposition-Aware Standard Cell Design Flows to Enable DPT (IBM)

- DPT unavoidable below 80nm pitch
Design-Flow Components Affected by DPT

- Functional Requirements
- High-Level Design
- RTL design
- Functional Verification
- Synthesis, Gate-Level Netlist
 - Placement
 - Routing
- Chip Finishing
- Extraction, Timing, Signoff
- Tapeout
- Incoming Checks
- Design Services
- Data Preparation
- Mask Build
- Wafer Fabrication
- Test and Characterization

Standard Cell Library

Process Design Kit:
- Design Rules
- Device Models
- Interconnect Models

Process Assumptions

Design
Technology
DP Decomposition and Issues

- Need DP decomposition that will eliminate layout legalization inefficiency
 - Decomposition for easy-to-fix conflicts (work in progress)
DP Placement – Extreme approaches

- No abutment rules:
 - conflicts avoided with smart placement
 - arbitrary placement guaranteed to be clean

15% area overhead with 50% logic-cell util

too complicated
too conservative
DP Placement – Hybrid Approaches

1. Only worry about conflicts at vertical boundary, by either filler cells or flipping color (if possible)
2. Power pre-assigned, cell right forced to one color, flippable color w.r.t. power
 - Post-placement coloring or have two versions for each cell and placer chooses

As low as 2-3% area overhead

Some infeasible cells, need large cell-height
DP Routing

• Typical iterative optimization involving cycles of coloring, checking, locally re-routing, re-coloring, and re-checking.

• “To avoid additional routing complexity from DPT, initial design flows will prevent routers from sharing wiring levels that are used predominantly in the cell level design.” (also with globalfoundries)
 – Eliminates DPT specific cell-to-router issues
 – May not be a long term solution
SADP Friendly Detailed Routing \textit{(Mentor)}

- RMT bits
- Routing variable (R):
 - 1 \rightarrow already occupied and routing blockage grids
- Mandrel-blocked variable (M):
 - 1 \rightarrow conflicting on mandrel
- Trim-blocked variable (T):
 - 1 \rightarrow conflicting on trim
Some Details

- **Protective grid**: trim grids that can provide assist spacer if filled with mandrel.
- **Bare grid**: occupied trim grid is bare if its protective grids are “don’t cares”. Assign to trim or mandrel?
- Calculate hesitation parameters for each grid (likelihood).
- Heuristic to find path with best cost for each net (min WL, WL on each mask).

<table>
<thead>
<tr>
<th>Design</th>
<th>Area (μm^2)</th>
<th>Nets</th>
<th>Router</th>
<th>Wirelength (nm)</th>
<th>SADP statistics (nm)</th>
<th>Runtime (sec.)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>blind-DR</td>
<td>8352</td>
<td>5344 984 1448 576</td>
<td>30.2</td>
<td></td>
</tr>
<tr>
<td>d1</td>
<td>410.292</td>
<td>672</td>
<td>blind-DR</td>
<td>8416</td>
<td>3584 4320 512 96</td>
<td>48.3</td>
<td>0.33</td>
</tr>
<tr>
<td>SADP-DR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SADP-DR</td>
<td>43713</td>
<td>21729 5632 10208 61444</td>
<td>1523.88</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>5581.594</td>
<td>10891</td>
<td>blind-DR</td>
<td>44512</td>
<td>20416 20544 3552 1024</td>
<td>2517.9</td>
<td>0.3</td>
</tr>
<tr>
<td>SADP-DR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.65</td>
</tr>
</tbody>
</table>
Double Patterning Compliant Logic Design (Globalfoundries, cadence, AM)

- 1900i cheaper less overlay accuracy
- 1950i slightly better throughput → almost same cost
- Spacer deposition → $14-$22 more per 12” wafer for 4 metal layers
 - Need 0.5%-1% less die area for same overall cost