Manufacturing of Flexible Organic LED

Yasmine Badr
07/21/2015
Flexible OLED

Demonstration of a flexible OLED device.
Photo: General Electric
Roll to Roll processing (R2R)

R2R processing of graphene film for flexible touchscreen displays [1]
Advantages of R2R processing[2]

• Enables high-throughput low-cost manufacturing
 1. Faster: Continuous steady-state processing can eliminate the transients and latency that exist in conventional batch processing
 2. A rolled-up web prevents any particulates from entering the devices reducing the cleanroom requirements.
 3. Size of substrate scales up only with the width of the web rather than the width and length so that equipment scaling is also one-dimensional
Disadvantages of R2R [2]

• In a high-throughput process:
 – patterning and alignment can be difficult,
 – and process monitoring on a moving web becomes more complicated
Self-aligned Imprint lithography (SAIL)

Conventional Photo-Lith
- deposit
- spin resist
- align/expose
- develop
- etch
- strip/clean

SAIL
- deposit
- imprint
- etch
- etch mask
SAIL

- By HP, manufactured prototype
- SAIL solves the problem of precision interlayer registry on a moving web
- Encodes all the geometry information required for the entire patterning steps into a monolithic 3D imprint with discrete thickness modulation.
- Imprint lithography
- Defect and yield are major issues
SAIL is Misalignment-proof

<table>
<thead>
<tr>
<th>Photoolithography</th>
<th>SAIL</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple masking and alignment steps required</td>
<td>Multiple patterns and alignments encoded into thickness modulations of a monolithic masking structure</td>
<td>Process induced distortion of 1000 ppm results in 100 μm misalignment over 10 cm web</td>
</tr>
<tr>
<td>Different mask used to pattern each layer</td>
<td>Single mask used multiple times to pattern all the layers</td>
<td>No misalignment because mask distorts with substrate</td>
</tr>
</tbody>
</table>
FIGURE 7 — Schematic diagrams of SAIL process flow:
(a) 3-D polymer mask that contains all the information for patterning is imprinted onto pre-deposited full TFT stack,
(b) stack materials are etched using various selective etching steps, isolating device from the surroundings,
(c) bottom metal underneath the crossover fuse area is separated by means of isotropic undercutting,
(d) imprint mask is etched and thinned down until the surface under the next lowest level is exposed,
(e) stack materials are etched down to the bottom-metal defining gate pad,
(f) imprint mask is thinned down so that the channel is exposed,
(g) top metal and n+ layers are etched, opening a-Si in the channel area,
(h) with removal of the remaining polymer mask, fabrication of a TFT device is completed.
1. Deposition

- Sputtered Cr
- PECVD a-Si:H
- PECVD Si nitride
- PECVD Si dioxide
- Sputtered Al
- μ-xstal Si
2. Imprint Lithography

- Capable of producing features less than sub-100 nm on plastic substrates.

3. Self-aligned etch

Elastomeric imprint stamp wrapped around UV-transparent quartz roller, through which UV light passes to cure the imprint polymer.
Other manufacturing method: Transfer printing [3]
References

