ERSA: Error-Resilient System Architecture

Liangzhen Lai

Outline

- Probabilistic Applications
- ERSA Overview
- SRC and RRC
- ERSA experiments
Probabilistic Applications

• Some probabilistic applications such as Recognition, Mining and Synthesis (RMS) applications have the following properties:
 – Massive parallelism
 – Algorithmic resilience (e.g. iterative refinement, relying on convergence)
 – Cognitive resilience (e.g. qualitative results,)

• Key Challenges:
 – Control flow is hardly error-tolerant
 – Asymmetric tolerance: low-order bits vs. high-order bits
 – Surviving from high error rates
Hardware Architecture

Super Reliable Core
- Highly Reliable Main thread (Fig. 3)
- OS visible
- Supervise RRCs

Relaxed Reliability Core
- Inexpensive & Unreliable Worker thread (Fig. 3)
- Sequestered from OS
- Reliable MMU, restart unit

The diagram illustrates the hardware architecture with various components and their interconnections. The reliable components are indicated by a box, while the unreliable components are marked in red.
Super Reliable Core (SRC)

- An SRC is responsible for:
 1. Executing non-error-tolerant codes
 - OS
 - Application main thread
 2. Supervising RRC
 - Workload distribution
 - Sanity checks
 - Timeout / Reset
 - Computation results checking
Relaxed Reliability Core (RRC)

- RRC is the main execution units that can be unreliable
 - A reliable memory management unit is used to detect memory access bound violations
Computation Model
Software Optimization

• Convergence Damping
 – If $\Delta > \text{threshold}$, let $\Delta = \text{threshold}$

• Convergence Filtering
 – If $\Delta_i > \text{threshold}$, discard Δ_i
Experiment Platform

- 2 Processor cores in FPGA
 - One for SRC
 - One for RRC with time-multiplexing
- Bit-error in injected randomly in registers
 - 32 general purpose registers
 - Stack and base pointers
Results

Figure 5. ERSA computation accuracy. Basic ERSA and Enhanced ERSA implementations are compared.