
Leon3 Processor Variability Emulator for

Delay Variability Impact on Performance
Master Project Report

Nan Lyu

Dept. Electrical Engineering

University of California, Los Angeles

lvnanucla@g.ucla.edu

Advisor: Prof. Puneet Gupta

Abstract—Modern processors exhibit increasing variations in

performance due to complicated manufacture process as well as

long term usage. [1] That makes a processor emulator useful to

study delay impact on performance when executing various

tasks. This paper illustrates the implementation of a Leon 3

processor delay variability emulator based on Altera DE2-115

FPGA board, as well as several emulation results.

Keywords—Leon3 processor, Altera FPGA, Delay Variability

Emulation, CPU Performance

I. INTRODUCTION

Performance of a processor is usually different from what is

labeled on the product due to hardware variabilities. The

processor can either be overdesigned to guarantee to perform

well in the worst case, or can have a decreased performance

due to environmental influence or aging problem. Thus a

processor delay variability emulator becomes useful to study

the performance under several circumstances with different

tasks, and can hopefully provide a platform to further study

hardware-aware software development.

Figure 1. Framework of Leon3 processor emulator

In the project, a delay variability emulator is developed for

a SPARC-V8 ISA based Leon 3 processor which is

implemented on Altera De2-115 FPGA board. The emulator

uses GRMON debug monitor to realize processor simulation,

and can be used to conduct different types of experiments

about delay variability impact on processor performance. The

framework of the emulator is illustrated in Figure 1.

The delay insertion flow in this emulator is different from

what is done previous based on a Xilinx FPGA board [2]. The

advantage and disadvantage of the new method will be

explained in this report.

The following of the report is organized as follow. Section

II introduces the delay insertion flow and methodology; section

III introduces the configuration of the Leon3 processor and

how the emulator evaluates processor performance; section IV

illustrates several experimental results; and section V

concludes the project.

II. DELAY INSERTION AND VARIABILITY CONTROL

A. Delay insertion flow

The Leon 3 processor is the combination of multiple soft IP

cores which are written in VHDL. The implementation flow of

Leon 3 processor on Altera FPGA board is shown in Figure 2.

There are two methods of inserting the delay based on the

implementation flow. The first one is to insert the delay after

mapping and before fitting. In this method, after the processor

is analyzed and mapped, and the critical paths of the processor

can be selected according to a post-mapping timing analysis.

The delay can be inserted into these critical paths by manually

modifying the mapping output netlist which can be further used

as the input of an automated place and route in Quartus

software. This is a straightforward method, however, there are

some disadvantages. Firstly, this method varies among

different FPGA developing software, and it requires the

software to provide an interface for users to be able to change

the flow, in this case to play back the changes made in the

fitting stage. In addition, inserting the delay based on critical

paths does not give a clear look in the architecture level; and it

mailto:lvnanucla@g.ucla.edu

also requires lots of work to insert the delay in a different unit

in the processor.

Figure 2. Processor implementation flow

The second method to insert the delay, on the other hand, is

to directly insert them in the design phase in multiple units of

the processor, that is, to add the delay modules and the control

modules in the design source code. Since now the combined

‘new’ processor is a complete design, the rest of the flow can

be finished by Quartus software. This method does not depend

on the software interfaces, and it requires less work to insert

the delay in different parts of the processor. Therefore, the

method has strong portability and flexibility, and it makes it

easier to study the performance impact of delay insertion in

various units of the processor. The second method is selected

for the advantages above in this project.

B. The delay element module

The delay element is implemented as a series of Altera

Quartus predefined module lcell, which is simply one logic cell

on FPGA with output value equals to input value. Each such

logic cell will cause about 0.4 ns delay. A total number of 80

logic cells are used in one delay element, and a 7-bit selection

vector controls the number of activated delay cells in the

module. The structure of a delay element is shown in Figure 3.

The post-fit simulation shows that the module can provide a

range of 10 - 42 ns delay. The base delay of the module is 10

ns even when the select value is 0.

Figure 3. Delay element

C. The general purpose register (GPREG)

The general purpose register is a soft IP core provided with

the Leon 3 processor. [3] The core takes in the value of a 32-

bit register that is mapped to a memory address, and the value

is propagated to an output vector.

D. Controlling multiple delay elements

The method to control delay elements in multiple paths is

illustrated in Figure 4. The delay controller controls the enable

bit of each delay element, while the GPREG controls the delay

value as well as the delay controller. By writing certain value

to the address that maps the GPREG, all the delay elements in

each paths can be dynamically controlled.

Figure 4. Controlling multiple delay elements

E. Combine the delay element, control module and GPREG

with the Leon 3 processor

In order to insert the delay in the design stage, the three

modules are combined with the Leon 3 processor in VHDL

source file. Since GPREG is a regular IP core which is in the

Leon 3 library, a direct instantiation works well through

connecting the GPREG with a specific memory address.

However, a direct instantiation of delay element will be

optimized away by the software for it did nothing but to add

unnecessary delay in the design. To prevent this, several steps

needs to be done. Firstly, the delay elements and the

controllers should be saved as post-fit LogicLock hard blocks

through Quartus. Secondly, the delay elements and the

controllers should be instantiated in the top level design of

Leon 3 as empty wrapper modules which is connected with

GPREG, and these instantiations needs to be set as ‘design

partitions’ in Quartus. Finally, the hard blocks should be

imported into those design partitions, and a full compilation

should be executed for the Leon 3 processor.

There are two ways to choose the delay insertion paths.

From hardware perspective, a post-mapping timing analysis of

the original Leon3 can provide the critical paths with the

smallest setup timing slack, and inserting the delay in those

paths will cause setup timing violation. From the architectural

perspective, specific units of the processor can be selected,

and inserting the delay can force the paths in that unit to cause

a setup timing violation. In this project, 16 delay elements are

inserted in memory control module based on the first method,

and 8 delay elements are inserted into different stages of the 7-

stage pipeline of the processor. Figure 5 illustrate the location

of the delay insertion.

Figure 5. Delay insertion locations

The way to connect the delay element ports into the critical

paths is a little tricky. Since the memory controller and the

pipeline are instantiated many levels down from the top level

design of Leon3, two ports have to be reserved for each of the

delay element at each level of design, with one input port and

one output port for the delay element. That is to say, a total of

48 ports should be created in top level Leon 3, with 32 ports

going down to memory controller and 16 ports going down to

pipeline through multiple levels. Notice that the input port of

the delay element should be connect with the source signal in

the memory controller or the pipeline module, while all

signals which uses the value of the source signal should be

connected with the output port of the delay element.

After the full compilation, the chip planner shows the

fitting result of the Leon3 processor on the FPGA chip in

Figure 6. Since the inserted delay are hard blocks scattered on

the chip, there exists wiring delays in addition to the initial 10

ns base delay of the delay element. The extra delay causes the

highest clock rate which the processor can work with

decreasing from 90MHz to 70MHz, but this brings little

influence to the focus of this emulator.

Figure 6. Chip planner results of the new processor

III. LEON 3 PROCESSOR CONFIGURATION AND PERFORMANCE

EVALUATION

A. Leon 3 processor configuration

In this project, a high performance configuration is used for

the Leon 3 processor. The processor is set with debug support

unit, floating point unit, separate instruction/data cache,

memory management unit with TLB, and branch prediction

unit with a predict-taken policy. [4] In addition, the working

clock rate can be configured around a base clock rate of 50

MHz. The configuration will only be effective after full

compilation.

B. Performance evaluation of the Leon3 processor

 Four typical benchmarks are selected in this case, including

Stanford, Dhrystone, Coremark and Sream, and they need to be

compiled by sparc-gcc cross compiler in order to run on Leon 3

processor. [5] Debug monitor GRMON provides an interface

to perform loading and running executables on FPGA, as well

as to write or read memory value (which can be used to control

delay elements). [6] The debug monitor can also run batch

scripts, which make it possible for automatically running

multiple programs and changing delay element control value

on FPGA.

IV. RESULTS

Three types of experiments are conducted using the Leon 3

delay emulator.

A. Performance impact of different delay paths on different

benchmarks, when delay is inserted in memory control

module

The critical paths in the same module may be different

when benchmark is changed. In this experiment, four types of

typical benchmarks are used. To study the impact of different

delay paths in different benchmarks, a three dimensional sweep

is done using scripts, with one of sixteen critical path enabled

at a time, processor clock rate sweeping from 30 MHz to 70

MHz, and delay value sweeping from 0 to 80. If the delay

value is too large for the processor to work under certain clock

rate, the program which runs on the processor will end up with

errors. Error types and details are listed in Table 1.

Table 1. Error types in experiment type 1

Error types Details

Illegal instruction Unknown opcode or ‘unimp’

Memory address not aligned
‘ld’ & ‘st’ instructions, caused by

wrong address in instruction

Data store error Write buffer error

Hang Keep outputting unreadable code

Instruction/Data access error
Error during instruction fetch and

data load

 Based on the sweeping results in Figure 7, the critical paths

which has a big influence impact on performance varies among

the four benchmarks. In addition, the impact of different paths

in a single benchmark also have obvious difference.

B. Performance impact of transient delay insertion, when

delay is inserted in memory control module

To randomly insert delay when benchmark is running on

Leon 3, a new thread has to be created in the benchmark. The

sparc-gcc cross compiler support library lpthread, which

provides a way to change delay value for a transient time

randomly by writing to the memory connected with GPREG.

The program will fail with some probability with transient

delay, and that probability will increase as the transient time

interval grows. The result is shown in Figure 8 when running

Stanford benchmark under 60 MHz.

C. Performance impact of delay insertion, when delay is

inserted in different units of the CPU

 The delay elements are also inserted in three stages in the

processor pipeline: fetch stage, decode stage and execution

stage. The fetch stage delay, which creates error in branch unit,

will cause the program jumping among instruction segments

and eventually ends with errors. The delay in decode and

execution stage will cause data store error due to wrong

memory address computed.

Figure 7. Experiment results: type A

Figure 8. Experiment results: type B

D. Further thoughts on performance impact

The performance of a processor can be calculated based on

equation (1).

Execution time = Instruction count * CPI * Cycle Time (1)

Experiment type A, B and C studied the delay impact of

cycle time, which causes error when clock rate increases.

Although it is not usual for hardware to influence instruction

count, inserting the delay into speculation units of the

processor, such as branch predictor or prefetching unit, can

actually increase the instruction count by making those units

work in a wrong way. Unfortunately, Leon3 processor is a

basic and simple processor with limited speculation: it adopts

a static branch prediction (just predict always taken) and it

does not include a prefetching unit. Thus experimental results

cannot be obtained.

V. CONCLUSION

An Altera FPGA based Leon 3 processor delay variability

emulator is developed in the project. The emulator uses a

portable and flexible method to implement controlled delay

insertion, and several experiment results about delay insertion

impact on performance have been obtained and analyzed.

With further support from debug monitor on performance

detection, such as a detailed full program trace, the impact of

the delay insertion can be analyzed in a more accurate way. In

more sophisticated processors with speculation schemes, the

delay insertion can influence instruction count in addition to

cycle time.

REFERENCES

[1] Puneet Gupta, et al, “Underdesigned and Opportunistic Computing in
Presence of Hardware Variability,” IEEE transactions on computer-
aided design of integrated circuits and systems, vol. 32, no. 1, January
2013.

[2] Abhishek Bhatia, “VarLEON: FPGA Based Processor Variability
Emulator for Variation Aware Software,” 2014.

[3] Cobham website, “GRLIB IP Core User’s Manual,” Janurary 2016.

[4] Cobham website, “Configuration and Development Guide,” Janurary
2016.

[5] Cobham website, “BCC User’s Manual,” December 2015.

[6] Cobham website, “GRMON2 User’s Manual,” May 2016.

