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Motivation:
Power and Delay Tradeoffs
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Motivation:
FINFET Standard Cell Libraries

« (Gate sizes quantized (1x, 2x, 3x, 4x, ...)
— Affects the delay range and feasibility

 Limited avallability of Threshold Voltages
— Created by adjusting gate workfunction or use the back-gate
— Number of threshold voltages will likely be limited [Warnock 11]
« What does this mean for resulting designs? How
can this impact be quantified?
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Prior Approaches

* EXxperiments and heuristics for selecting library sizes

— Using Quantization Error + Experimental Results
[Beeftink et al 98, 00]

SOq(sizey = Ming,|s; — s|

— Experimental Results to determine best library sizes
« Use the geometric progression 1.3x, (1.3)2x, (1.3)3x, (1.3)%x, etc.
— [Singhal and Girishankar 06]
 Use .5x, 1X, 2%, 3X, 4X, bx
— [Afonso et al 09]

* Prior art could not predict

suboptimality of size selection
— More difficult and stronger question




Thought Experiment #1
N Inverter Chain, Vth

— Delay Constraint T X « 3y
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« Continuous Optimum for vy, = >
 With vy, € {1, 2}

— Discrete Optimum: have |T — N| gates at vy, = 2

— Suboptimality is at most 1 A
* Proportional to 1/N & decreases as N —» o
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Thought Experiment #2

N Inverter Chain,

— Delay Constraint T X X -
1 1 2
' ' ' ' 2 2 1

« Same Continuous Optimum: vy, = %
 With vy, € {1,2}

— Discrete Optimum: have |T — N| gates at vy, = 2
— Suboptimality does not decrease as N — o
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Suboptimality and Convexity

* Power vs. Delay Tradeoff curves are convex non-
Increasing functions

« Convex curves have the property that any secant

line lies at or above the curve
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Suboptimality expressions: vt

« Suboptimality is the difference between the upper
line and the lower tradeoff curve

A
Q" (vy) = Hliin{vt,i | v > i}
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Suboptimality of Full Design

« Sum of individual gate suboptimalities

so.(Design) = Z so.(v;)
{vgeDesign}

with

so.(vy) = p(vy) — p(v;) : Per gate suboptimality
p(v,) : Achievable power tradeoff with given sizes

p(v;): Continuous optimal size (v,) and power p(v;)




Non-convex Power Delay Curves

Non-convex curves
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« Optimal Solution Utilizes a
2 mixture of (1) and (2)
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Experimental Setup: vy assignment

Suboptimality Comparison #1

Randomly generated i
Compare suboptimalities
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Experiment (Exact Methods):
Estimating the tradeoff of vy assignment

« 30 randomly generated circuits, each with size 30
using [Stroobandt 00]

* Used to predict power delay tradeoff for different vy

libraries
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Experiment (TILOS):

Estimating the tradeoff of v¢ assignment

2 vt tradeoff prediction
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Power

Extension to Gate Sizing

* Power delay curves different for gate sizing
— Account for both delay at the input and output of the gate

A 3X (Single Gate Tradeoffs)

2X
1X

Delay
e TWO cases:

Power

A

X
2X 3

\1X

Delay

— Required delay is possible (use the same method as before)

— Required delay is impossible (estimate with round-up penalty)
 Fitting term needed (benchmark dependent)




Experiment: estimating the tradeoff of

gate sizing
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Discussion:
Dynamic Range Considerations

* Always need a low power option
— Dictated by the technology and allowable slew rates

x 10°
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— Estimate as fraction of minimum-sized devices with pos. slack

« Largest Size
— Related to the capacitive loads in a design
— Convex p/d curve — tradeoff between power vs. delay is worse

 Lowest Vt
— Related to delay range needs



Discussion:
SOl and TFET Technology Example

Power vs. delay Tradeoff for the Design
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Discussion:
Mixing Technologies

* Allows for several tradeoffs:
— Use one technology

— Use both technologies but optimize independently
— Use both technologies and optimize jointly

(Single Gate Tradeoff)

Power
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Summary

« Method to estimate the suboptimality related to a
selection of sizes or vy
— Related to the convexity of the power delay tradeoff

« Experimental results show strong explanatory power
compared to prior work
— 2X better (gate sizing) and 10x better (threshold voltage)
— Use in determining which standard library cells to provide
e Can be used to understand impact of future

technologies
— FinFet Libraries with limited size and vth availability
— Designs with mixtures of different technologies
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